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Spontaneous finite momentum pairing in superconductors without inversion symmetry
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We analyze the effect of magnetic fluctuations in superconductors with strong spin-orbit coupling and
show that they drive a phase transition between two superconducting states: a conventional phase with zero
center-of-mass momentum of Cooper pairs, and an exotic phase with nonzero pair momentum. The latter
is found to exhibit persistent currents without magnetic field in doubly connected geometries such as rings.
Surprisingly, the transition temperature into the superconducting state can be increased by applying a Zeeman
magnetic field.
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I. INTRODUCTION

The coupling between the spin of an electron and its
momentum gives rise to various phases in condensed-
matter systems. In magnetic systems, spin-orbit coupling
(SOC) induces numerous phases, spectacularly different from
the familiar (anti)ferromagnets and with exotic low-energy
excitations [1,2]. In systems with ferromagnetic tendencies,
SOC leads to a different ordering pattern—helimagnetism—
where the magnetic moments rotate as a function of posi-
tion in a spiral structure [3,4]. An even greater variety of
interesting phenomena arises from the combination of spin
orbit, magnetism, and superconductivity [5–15]. Here the
interplay of translations, spin rotations, and superconducting
phase rotations offers many possibilities for forming ordered
ground states [16]. In the presence of a Zeeman magnetic
field, SOC stabilizes a condensate of Cooper pairs with
finite momentum [17,18]. This is a variant of the Fulde-
Ferrel-Larkin-Ovchinikov (FFLO) state [19,20] where the
critical (Zeeman) magnetic field of the s-wave superconductor
significantly exceeds the Pauli limit. In crucial distinction
to the conventional FFLO state, SOC permits the super-
conducting order to exhibit a well-defined chirality even in
the absence of currents. Consequently, there are no nodes
in the pairing gap, and such a superconductor is robust
against disorder [21,22]. An additional consequence of SOC
is a finite spin susceptibility in the superconducting state—
comparable to its normal-state value—down to the lowest
temperatures [5,8].

The strong response of superconductors with large SOC
to magnetic fields raises questions regarding the role of spin
fluctuations in such systems. Superconductivity coexisting
with magnetic states has been observed in several materials
without inversion symmetry such as CePt3Si (Ref. [23]),
CeRhSi3 (Ref. [24]), and UIr (Ref. [25]). Another family
of systems exhibiting superconductivity and magnetism are
transition-metal-oxide heterojunctions, such as the interface
between LaAlO3 and SrTiO3 which hosts a two-dimensional
layer of high-mobility electrons [26] with strong SOC of the
Rashba type [27–29]. In addition, at low temperatures the
interface becomes superconducting on the background of an
inhomogeneous magnetic state [30,31].
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Measurements of LaAlO3/SrTiO3 heterostructures have
revealed a peculiar property of superconducting films with
strong SOC. A moderate magnetic field parallel to the interface
increases the transition temperature Tc [32] (at high magnetic
fields Tc is eventually suppressed). Such a nonmonotonic
dependence of Tc on the Zeeman field is not unique to
LaAlO3/SrTiO3 heterostructures; it is even more pronounced
in Pb films [32]. The presence of magnetic impurities was
proposed to account for this behavior [9], but has been ruled
out experimentally [32]. Moreover, mere formation of a paired
state at finite momentum that protects superconductors with
SOC from pair-breaking effects up to high Zeeman fields
does not explain the observed Tc enhancement. In fact, the
conventional BCS dependence of Tc on the reduced Zeeman
field H/Hc continues to hold in the presence of SOC, with the
enhanced critical field Hc as described above.

Motivated by these experimental findings, we study the
effect of magnetic fluctuations in phonon-mediated supercon-
ductors with strong SOC. While magnetization fluctuations
have long been proposed as the pairing mechanism in many
strongly correlated materials [33–35], they are known to cause
breaking of Cooper pairs in weakly coupled s-wave supercon-
ductors, and hence reduce Tc. We show that spin-orbit coupled
single-band superconductors can enter a finite-momentum
paired state solely by short-range magnetic fluctuations. Previ-
ous works described FFLO states exclusively in systems with
uniform magnetization [22] or external magnetic field [17,18].
Further studies of interplay of superconductivity and SOC con-
sidered the case where the pairing interaction involves several
channels [36,37]. There, a more complex nonuniform state was
found to occur only in the presence of constant magnetization
and for weak SOC [37]; we are instead interested in the effect
of strong SOC and fluctuating magnetic order.

Specifically, we find that magnetic fluctuations in the super-
conducting state can drive a second-order phase transition be-
tween two different superconducting states, one with uniform
order parameter �(r) = �0 and another with �(r) = �0e

iq·r.
The latter reflects the fact that Cooper pairs with center-
of-mass momentum q are formed spontaneously without an
external field. Near the transition, the superconducting phase
stiffness is suppressed and Tc decreases. The quantum critical
point between the two superconducting states is replaced by a
smooth crossover in the presence of a Zeeman magnetic field.
Consequently, Tc associated with either superconducting state
initially increases with applied field.
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II. MICROSCOPIC MODEL

To study the long-wavelength properties of a supercon-
ductor with strong SOC, we start from a microscopic model
H = H0 + HBCS + HM. The first term describes electrons in
a thin film with a Rashba term:

H0 =
∫

dr
∑
s,s ′

c†s,r

[
−∇2

2m
δs,s ′ − iαRẑ ·(∇ × σ ss ′ )

]
cs ′,r. (1)

Here c
†
s,r creates a spin s = ↑,↓ electron. HBCS describes

an attractive interaction in the s-wave channel, conveniently
expressed in terms of the (fluctuating) order parameter
�(r) = λ〈c↓,rc↑,r〉:

HBCS =
∫

dr{�(r)c†↑,rc
†
↓,r + �∗(r)c↓,rc↑,r + λ−1|�(r)|2}.

(2)

HM incorporates the magnetic fluctuations arising from
spin exchange interactions and the coupling to an external

Zeeman field:

HM = −gμB

2

∫
dr

∑
s,s ′

HT(r) · σ ss ′c†s,rcs ′,r + U

∫
drM2(r).

(3)

Here M(r) = 〈∑s,s ′ σ ss ′c
†
s,rcs ′,r〉, and the total magnetic field

HT(r) = H + 2UM(r)/gμB includes the external field as well
as the magnetization divided by the Bohr magneton μB and the
Landé g factor. We focus on the effect of magnetic fluctuations
in the presence/absence of an external magnetic field parallel
to the film (with thickness smaller than the coherence length)
where only Zeeman coupling is important.

III. EFFECTIVE THEORY

Upon integrating out the electronic degrees of freedom and
assuming a finite superconducting gap 〈�〉 �= 0, we obtain the
effective low-energy description of the system at wavelengths
much longer than the coherence length ξ . This can be expressed
as a lattice free energy with lattice spacing a 	 ξ :

F =
∑

j,ν̂

{
α(T − Tc)|� 
j |2 + β|� 
j |4 + w

2
|� 
j − � 
j+ν̂ |2 + UM2


j − χ⊥
2

H 2
T⊥, 
j − χ||

2
H2

T||, 
j

− i
η

4
(ẑ × ν̂) · (HT 
j + HT 
j+ν̂)[�∗


j� 
j+ν̂ − �∗

j+ν̂

� 
j ]

}
. (4)

For a detailed derivation see Appendix A. For simplicity we
assume here a square lattice for which ν̂ = x̂,ŷ connects
neighboring lattice sites denoted by 
j . The total magnetic
field is separated into its in-plane HT||, 
j and perpendicular
HT⊥, 
j components. The first line of Eq. (4) is the conventional
Ginzburg-Landau free energy of superconductivity [38]. The
second line of Eq. (4) describes the magnetic fluctuations in the
itinerant electron system [39]. In the absence of external field
it becomes U

∑
μ[1 − ν(εF )Uχμ/χN ]M2

μ, 
j where μ = ⊥, ‖
and χN = (gμB)2ν(εF )/2 is the electron-spin susceptibility.
This form is familiar, e.g., from the study of the Stoner insta-
bilities. We are interested in the case ν(εF )U 
 1 (far from the
magnetic instability) where magnetic fluctuations are massive.
Therefore, we can neglect higher-order terms such as gradients
of M 
j and M4


j . The second line of Eq. (4) already contains an
important consequence of SOC: the spin susceptibilities χμ

are only weakly affected by superconductivity [5], and remain
nonzero deep in the superconducting state T → 0. This is in
contrast to the vanishing spin susceptibility of conventional
superconductors without SOC. Furthermore, SOC gives rise
to an anisotropic χ in the superconducting state; the spin
susceptibility normal χ⊥ and parallel χ|| to the plane are
no longer equal. Another important manifestation of SOC
is the appearance of the final term that explicitly breaks
inversion symmetry. Its coefficient η is proportional to αR.
In the continuum limit it takes the form

−i�∗(r)[ẑ · (HT × ∇)]�(r), (5)

which has been derived in Ref. [7] (see also Appendix A).

To study the universal properties, it is convenient to adopt
a phase-only formulation, writing � 
j = �0e

i�j . Under this
approximation, the free energy takes the form

F =
∑

j,ν̂

{
−ρs cos(� 
j+ν̂ − � 
j )

+ κ

2
(ẑ × ν̂) · (HT 
j + HT 
j+ν̂) sin(� 
j+ν̂ − � 
j )

+UM2

j − χ⊥

2
H 2

T⊥, 
j − χ||
2

H2
T||, 
j

}
. (6)

Here, ρs is the superfluid stiffness in the ν direction, and κ

grows from ∝ αR|�(T )|2/T 2
c near Tc to ∝ αR as T → 0 [40].

The unique form of the free energy of superconductors with
SOC in a uniform external Zeeman field has been studied in
the past [7]. Here we focus on the role of magnetic fluctuations
(with and without external field). Integrating out massive
fluctuations of M (see Appendix B for details) generates
short-range interactions for the pairing field, i.e.,

F = −
∑

j,ν̂

{
ρ̃s,ν cos(� 
j+ν̂ − � 
j − �ν̂)

+ ζ

4
[sin(� 
j+ν̂ − � 
j ) + sin(� 
j − � 
j−ν̂)]2

}
. (7)

The coefficient ζ ≡ Uκ2(1 − 2χ‖U/g2μ2
B)−1/(gμB)2 is pos-

itive in the paramagnetic phase; it grows as the magnetic
transition is approached and the corresponding fluctuations
become stronger.
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FIG. 1. The phase diagram as a function of temperature T and
ζ in units of ρs . In the absence of magnetic field (black curve)
superconductivity is suppressed to zero (Tc = 0) at the transition
between the states with uniform phase and chiral winding of the phase.
The transition temperature is shown to increase under application of
an external Zeeman field. The phase difference δν� as a function of
ζ is plotted in the inset.

IV. PHASE DIAGRAM

We begin by exploring the phase diagram in the ab-
sence of magnetic field, where �ν̂ = 0 and ρ̃s,ν = ρs is
the conventional superfluid stiffness. While the first term is
minimized by configurations with uniform � 
j , the second
term favors the phase on neighboring sites to differ by π/2.
The same model also describes XY spins with ferromagnetic
nearest-neighbor and antiferromagnetic next-nearest-neighbor
exchange [41]. Expressed in terms of effective XY spins
S 
j = (cos �j, sin �j ), the free energy becomes

F = −
∑

j,ν̂

[ρsS 
j · S 
j+ν̂ + ζ (S 
j × S 
j+ν̂ + S 
j × S 
j−ν̂)2]. (8)

There, frustration induces a transition into a helical ferromag-
netic state Cν ≡ 〈S 
j × S 
j+ν̂〉 �= 0. Similarly, depending on the
relative strength of the two terms in Eq. (7) the system can be
in one of two states: (i) a superconductor with a uniform phase
and (ii) a superconductor with δν� ≡ � 
j+ν̂ − � 
j = const �=
0. The latter is only possible when both SOC and magnetic
fluctuations are present (ζ > 0).

To study the phase diagram as a function of ζ and T ,
we initially consider only smooth variations of the phase.
We approximate Tc by the effective phase stiffness, i.e., the
coefficient of (∇�)2 in the expansion of the free energy. At
the transition between the two superconducting (SC) phases
the stiffness vanishes, as shown in Fig. 1. Microscopically,
the parameter ζ can be modified by changing the strength of
either the SOC or the magnetic fluctuations. The former is
conceptually simplest: within the single band model it leaves
ρs unaffected. In contrast, increasing the magnetic fluctuations
suppresses �0, and consequently, also modifies ρs . Neverthe-
less, the phase diagram (Fig. 1) equally applies to both cases
provided these dependencies are taken into account. We note
that suppression of Tc by magnetic fluctuations is well known
from mean-field treatments of ordinary superconductors. Our
result shows that in the presence of SOC, magnetic fluctuations
can have a much more pronounced impact on Tc due to
frustration effects. Similar behavior occurs in certain magnetic

systems, such as the frustrated spin system described above,
at the Lifshitz point [42].

Within mean-field theory, a second-order transition be-
tween superconducting states with δν� = 0 and δν� �= 0
occurs at ζc = ρs/2. On a square lattice and for ζ > ζc the
nearest-neighbors phase difference takes one of four values:
δx� = ±δy� = ± cos−1(ρs/2ζ ). These states are character-
ized by the superconducting order parameter � and a two-
component chiral order parameter,

Cν=x,y = 〈sin(� 
j − � 
j+ν̂)〉 =
⎧⎨
⎩

0 ζ <
ρs

2

±
√

1 − ρ2
s

4ζ 2 ζ >
ρs

2

. (9)

The phase transition into a superconducting state with finite
pair momentum is a key result of our work.

The nature of the chiral transition becomes transparent
when the free energy [Eq. (7)] is expressed in terms of
Cν . Note that under π/2 rotations around the z axis the
order parameter transforms as Cx/y → ±Cy/x . The generic
form of the free energy with this symmetry is F = r(C2

x +
C2

y ) + u(C2
x + C2

y )2 + vC2
xC

2
y , where expanding Eq. (7) yields

r = ρs/2 − ζ , and u = −v/2 = ρs/8. This model features a
continuous phase transition in the XY universality class, while
the dangerously irrelevant fourfold anisotropy ∼v determines
the nature of the ordered phase.

Above we have made several assumptions which are valid
in the ordered states, but must be revisited near the Lifshitz
point: (i) We neglected amplitude modulations of the order
parameter; based on Eq. (4), it is straightforward to show (see
Appendix C) that a single harmonics of the order parameter
�(r) = �0e

iq·r is energetically favorable. (ii) The previous
analysis excluded vortex excitations. Earlier studies of the
Kosterlitz-Thouless transition in closely related magnetic
systems showed that near the critical point, helical order
may survive even when vortex proliferation destroys magnetic
order [43–46]. Vortex physics, however, becomes important
only at finite temperature, thus it does not qualitatively change
the phase diagram (Fig. 1).

V. MAGNETIC FIELD EFFECTS

In the presence of a constant external magnetic field H, the
phase transition is replaced by a smooth crossover, and the
phase stiffness remains finite for all ζ ; see Fig. 1. This follows
from the free energy in Eq. (7), where

ρ̃s,ν =
√

(κH
‖
ν /4)2 + ρ2

s ,

�ν̂ = [π/2 − cos−1(κH ‖
ν /4ρ̃s,ν)]sgn(H ‖

ν ),

H ‖
ν = (ẑ × ν̂) · H

1 − 2χ‖U/g2μ2
B

. (10)

The phase �ν̂ changes from �ν̂ = κH ‖
ν /4ρ̃s at low Zeeman

field to ±π/2 at very high field. Within mean-field theory, the
phase difference δν� in the direction perpendicular to the field
is nonzero for all ζ . For ζ 
 ρ̃s/2 the phase difference equals
�ν̂ and tracks the Zeeman field, while at large ζ it acquires a
field-independent contribution (see Fig. 1). Consequently, the
Zeeman field enhances Tc as illustrated in Fig. 2. This result
applies provided the magnitude of the order parameter |� 
j | is
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FIG. 2. The transition temperature as a function of an applied
Zeeman field H for (a) ζ = 0.4ρs , (b) ζ = 0.5ρs , and (c) ζ = 0.6ρs .
The transition temperature is found from the phase-only model
assuming the magnitude of the order parameter � has a weak
dependence on H . Panel (d) shows the range of fields for which
the phase only approximation holds.

field independent. Since SOC protects superconductivity from
pair-breaking effects up to Zeeman fields well above the Pauli
limit, the phase-only model captures the main effect at small
H . At higher magnetic fields suppression of |�| is expected to
be dominant. The dependence of |�| on the magnetic field in
disordered superconductors [22] is illustrated in Fig. 2(d).

VI. EXPERIMENTAL SIGNATURES

The mechanism described here provides a possible explana-
tion for the enhancement of Tc with magnetic field measured
in Pb films and LaAlO3/SrTiO3 heterostructures [32]. Both
systems feature strong SOC, and evidence of inhomogeneous
magnetism has been observed in the oxide interface. In Pb
films the strength of SOC can be enhanced by reducing the
film thickness. Interestingly, over a range of film thicknesses,
the field-induced Tc enhancement in Pb was found to be larger
for thinner samples, consistent with our theory for ζ < ρs/2.
In the LaAlO3/SrTiO3 interface such measurements were
performed for a particular value of SOC only. However, in
oxide heterostructures SOC can be gate tuned [27], making
them ideal candidate systems for exploring the entire phase
diagram. Direct observation of the chiral superconducting
state is more challenging; the absence of nodes in the pairing
gap rules out probes that are frequently used in search of
the FFLO state, such as specific-heat measurements. Instead,
phase sensitive techniques must be employed, e.g., measuring
the critical current in a Josephson junction. Alternatively,
numerous striking signatures arise in a ring geometry due
to the sensitivity of the superconducting phase to boundary
conditions.

To study the superconducting state on a ring of radius
R 	 ξ at low temperature, we consider Eq. (7) with periodic
boundary condition in the x direction, � 
j = � 
j+Nx̂ + 2πn,
where N is the number of sites in the x direction, and n is an
integer. This boundary condition only permits ground states
with δx� = 2πn/N . When the ring thickness is smaller than
ξ , modulations along the y direction are suppressed. The free
energy of such states is obtained by setting � 
j+x̂ − � 
j =

n
=
±1

n
=
±2

n
=
±4n

=
±3

n = 0

ζ/ρs

ζ/ρs

T
/
T

c

I[
2e

ρ
s
/N

c]

10.25 0.5 0.750
0

0.25

0.5

10.25 0.5 0.750

0

-0.1

0.1

FIG. 3. The phase diagram in a ring geometry. While at low tem-
perature the transition lines are functions of T/Tc and ζ/ρs , at higher
temperature they also depend on ρs explicitly (see Appendix D). The
corresponding persistent currents at T → 0 are shown in the inset.
The current is plotted assuming n � 0, for negative n the sign of the
current is inverted.

2πn/N and � 
j+ŷ − � 
j = 0 in Eq. (7), i.e.,

Fring = −ρs cos

(
2πn

N

)
− ζ sin2

(
2πn

N

)
. (11)

Similar to the planar geometry, for large ζ the free energy
is minimized by nmin �= 0. Here nmin changes discretely
whenever Fring(nmin) = Fring(nmin + 1), and in general the

current Ix = (2e/hc)∂Fring(n)/∂n|
n=nmin

is nonzero. This is

in contrast to the planar geometry where δν� takes continuous
values and satisfies ∂F/∂δν� = 0. Consequently, a ground
state with nmin �= 0 exhibits persistent current [47],

Ix = 2e

Nh̄c
sin

(
2πnmin

N

)[
ρs − 2ζ cos

(
2πnmin

N

)]
. (12)

The continuous transition that occurs in the planar geometry
at ζc is replaced by a sequence of first-order transitions as ζ

increases. As illustrated in Fig. 3, these states are characterized
by a persistent current even in the absence of an external
magnetic field. The current changes abruptly at the transition
points (in realistic systems these sharp changes would be
smeared). To extend the analysis to higher temperatures,
modulations of |� 
j | as well as � 
j must be considered. The
complete phase diagram is presented in Fig. 3, with a detailed
derivation in Appendix C.

Another signature of SOC can be obtained from measure-
ments of the persistent current [48] induced by a magnetic
field along the y direction. Here the orbital component as
well as the Zeeman contribution analyzed in Eq. (7) are
important. The boundary conditions are modified to � 
j =
� 
j+Nx̂ + 2πn + ϕ, where ϕ = 2eπR2H/hc is the magnetic
flux threading the ring in units of the superconducting
flux quantum. Correspondingly, Eq. (11) is modified as
Fring = −ρ̃s,x cos [ 2π(n−ϕ)

N
− �x] − ζ sin2 [ 2π(n−ϕ)

N
], and a per-

sistent current flows in the system as a function of magnetic
field even for small ζ . The current

Ix∼ρ̃s,x sin

[
2π (nmin − ϕ)

N
− �x

]
−ζ sin

[
4π (nmin − ϕ)

N

]

(13)
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I[
2e

ρ
s
/N

c]

0

-0.1

0.1

ϕ

FIG. 4. The persistent currents as a function of external magnetic
field for ζ = 0.1ρs < ζc. The magnetic field is expressed in terms
of the flux threading the ring in units of the superconducting flux
quantum ϕ. The change in periodicity as a function of κ is illustrated
for κ/ρs = 0 (black), κ/ρs = 0.4T −1 (blue), and κ/ρs = 0.8T −1

(green). These values of κ are chosen to give the correct order of
magnitude for a metallic system with a Fermi energy of 1 eV, a SOC
of 10 meV, and a transition temperature of 0.1 meV. In addition, we
set N = 25 and R = 0.1 μm.

is plotted in Fig. 4 as a function of ϕ. For weak fields
�x ∝ κH/ρs and the periodicity of the persistent currents
with respect to ϕ changes as a function of κ . For stronger
fields, �x is no longer linear in the field and together with the
H dependence of ρ̃s,x gives rise to a nonperiodic dependence
on the magnetic field.

VII. CONCLUSION

We analyzed the effect of magnetic fluctuations on two-
dimensional BCS superconductors with large SOC, and found
that they suppress the phase stiffness, and hence, reduce Tc.
Furthermore, magnetic fluctuations induce a phase transition
between two superconducting states: a conventional one with
uniform phase and a second one where the phase winds as a
function of position. The latter corresponds to a superconduct-
ing state with finite-momentum pairing. We showed that in thin
films the transition temperature increases when an in-plane
magnetic field is applied—an effect that may already have
been observed experimentally [32]. In addition, we predict
interesting signatures of this system in a ring geometry, such
as the occurrence of spontaneous persistent currents without
an applied magnetic field in the finite-momentum paired state.
We emphasize that although we assumed s-wave pairing in
the derivation, our results apply for any singlet state. Con-
sequently, pairing at finite momentum may occur whenever
superconductivity arises in the vicinity of magnetic transitions.

APPENDIX A: DERIVATION OF THE FREE ENERGY

In this section we derive the free energy given in Eq. (4)
starting from the model Hamiltonian equations (1)–(3). While
the general form of the free energy is dictated by symmetry, the
values of the various coefficients (for example α or η) depend
on the microscopic theory. To demonstrate the derivation, we
consider here a clean superconductor with SOC and magnetic
fluctuations as described by Eqs. (1)–(3). Moreover, we focus
on the free energy in the vicinity of the superconducting
phase transition. In the end of this section we discuss the

generalization of the free energy to describe systems deep in
the superconducting state (T → 0) and the effects of disorder.

The expression for the free energy can be obtained from the
quantum partition function, i.e., the Euclidean path integral
Z = ∫

Dc̄Dce−S[c̄,c] where S is the imaginary time action for
the mean-field Hamiltonian in Eqs. (1)–(3) and c (c̄) is the
Grassmann field corresponding to the fermion operator c (c†).
Integrating out the electronic degrees of freedoms we get [39]

F =
∫

dr
[ |�(r)|2

λ
+ UM2(r) + T

∑
n

ln G−1(r − r′,εn)

]
.

(A1)

Here the free energy is written in terms of the Matsubara
single-particle Green’s function calculated with respect to
H0 + HBCS + HM , and εn = 2πT (n + 1/2). Note that we are
studying the mean-field Hamiltonian. An equivalent starting
point is given by interacting electrons, where the interaction
is decoupled in terms of two Hubbard-Stratonovich fields [39]
M and �.

Near the superconducting transition temperature Tc and
in the paramagnetic state, it is appropriate to expand the
logarithm in powers of � and its gradients as well as HT.
In the presence of a weak external field it is sufficient to
consider terms up to second order in the magnetic field
HT(r) = H(r) + 2UM(r)/gμB . The expansion with respect to
the superconducting order parameter, however, must include
also quartic terms to allow for a nonzero order parameter. Thus
the free energy takes the following form:

F ≈
∫

dr
{
α|�(r)|2 + β|�(r)|4 + w̃

2
|∇�(r)|2

+ η̃ν,ν ′

2
[�∗(r)∇ν�(r) − �(r)∇ν�

∗(r)]Hν ′
T (r) + UM2

ν

−χ0
ν,ν ′H

ν
T (r)Hν ′

T (r) + δχν,ν ′Hν
T (r)Hν ′

T (r)|�(r)|2
}
,

(A2)

where repeated indices ν and ν ′, which denote the vector com-
ponents, are summed over. Note that since the superconducting
order parameter carries electric charge, odd powers of � itself
are prohibited. In contrast, as we show below there are odd
terms in HT and the gradient of � in the presence of SOC.

The contribution to the free energy proportional to Hν
THν ′

T
has been calculated in Ref. [5] to all orders in �; it was
shown there that these terms can be written as χ‖(Hx

T )2/2 +
χ‖(Hy

T )2/2 + χ⊥(Hz
T)2/2, where χ⊥ remains equal to the spin

susceptibility of the normal state χN for all temperatures while
χ‖ drops from its normal value χN near Tc to χN/2 as T → 0.
Consequently, we will focus here on the derivation of the
remaining terms, starting with those proportional to |�|2.
These terms are given by [39]

F
(2)
� =

∫
dr

[
λ−1|�(r)|2 −

∫
dr′�(r − r′)�∗(r)�(r′)

]
.

(A3)

184515-5
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Here, �(r − r′) is the s-wave, static pair-correlation function

�(r − r′) =
∫

dt〈c†r,↑(t)c†r,↓(t)cr′,↓(0)cr′,↑(0)〉. (A4)

The thermal average 〈. . .〉 is performed with respect to
the Hamiltonian in Eqs. (1) and (3). In other words, the
contributions to F

(2)
� include the effect of magnetic fluctuations

but are calculated in the absence of superconducting order

� = 0. Furthermore, the pair-correlation function is calculated
up to second order in the gradients and first order in the total
field:

�(q) ≈ �(q = 0,HT = 0) + qνqν ′
∂2�(q,HT)

∂qν∂q ′
ν

∣∣∣∣
q,HT=0

+ 2qνH
ν ′
T

∂2�(q,HT)

∂qν∂Hν ′

∣∣∣∣
q,HT=0

, (A5)

where �(q) is the Fourier transform of Eq. (A4). The perturbative calculation of �(q) is determined by the unperturbed
single-particle Green’s function corresponding to H0 in Eq. (1). In the presence of SOC it has both diagonal and off-diagonal
spin components:

ĝk,εn
= [iεn − Ĥ0 + μ]−1 =

(
iεn − k2

2m
+ μ

)
σ0 + αRẑ · (k × σ )(

iεn − k2

2m
+ μ

)2 − α2
Rk2

, (A6)

where σ is a vector of Pauli matrices, and σ0 is the identity matrix.
We turn now to the derivation of the various terms in Eq. (A5). The first term is simply

�(q = 0,HT = 0) = T
∑

n

∫
dk

(2π )2

[
g

↑↑
k,εn

g
↓↓
−k,−εn

− g
↑↓
k,εn

g
↓↑
−k,−εn

] = T
∑

n,γ=±

∫ ∞

−∞
dξγ

Nγ

ε2
n + ξ 2

γ

, (A7)

where ξ± = k2/2m ± αR|k| − μ is the energy spectrum which contains two Rashba bands labeled by γ±. The sum of the density
of states (N±) of these bands is equal to the density of states in the absence of SOC. Therefore, the coefficient of the |�|2 term
in the free energy is not modified by the SOC.

Similarly, the leading contributions to the second term in Eq. (A5), i.e., the superfluid stiffness, as well as the quartic term in
� [which appears in Eq. (A2)] are also not modified by SOC. The third term is the first nontrivial contribution which is unique
to systems without inversion symmetry. To demonstrate its derivation we first consider the case where HT points along the x

direction:

2qνH
x
T

∂2�(q,HT)

∂qν∂Hx

∣∣∣∣
q,HT=0

= −qνgμBHx
T

∂

∂qν

T
∑

n

∫
dkdk′dk′′

(2π )6
〈c†k+q/2,↑c

†
−k+q/2,↓[c†k′,↑ck′,↓ + c

†
k′,↓ck′,↑]c−k′′+q/2,↓ck′′+q/2,↑〉

= −qνgμBHx
T

∂

∂qν

T
∑

n

∫
dk

(2π )2

{[
g

↑↑
k+q/2,εn

g
↓↓
−k+q/2,−εn

+ g
↑↑
−k+q/2,−εn

g
↓↓
k+q/2,εn

][
g

↑↓
k+q/2,εn

+ g
↓↑
k+q/2,εn

]

− g
↑↑
k+q/2,εn

g
↓↓
k+q/2,εn

[
g

↓↑
−k+q/2,−εn

+ g
↑↓
−k+q/2,−εn

] − (
g

↓↑
k+q/2,εn

)2
g

↑↓
−k+q/2,−εn

− (
g

↑↓
k+q/2,εn

)2
g

↓↑
−k+q/2,−εn

}
. (A8)

Using the expression in Eq. (A4), we find that the leading contributions are obtained when the derivative acts on the denominators
of the various components of the Green’s functions. Correspondingly, Eq. (A6) can be further simplified to give

2qνH
x
T

∂2�(q,HT)

∂qν∂Hx

∣∣∣∣
q,HT=0

= δν,yqνgμBHx
T

∂

∂qν

T
∑

n,γ=±
γ

∫
dk

(2π )2

ky

|k|
1

[iεn − ξγ (k + q/2)]2[−iεn − ξγ (−k + q/2)]

= qygμBHx
T

∂

∂qy

T
∑

n,γ=±
γ

∫ 2π

0

dθ

2π

∫ ∞

−∞
dξγNγ

sin θ

(iεn − ξγ − vF · q/2)2(−iεn − ξγ + vF · q/2)
= C(N+ − N−)

gμBHx
T vF qy

T 2
.

(A9)

Here, vF is the velocity at the Fermi energy which is identical for both Rashba bands, and C ≈ −0.03. Note that the omitted
contributions where the derivative acts on the numerators are smaller by T/εF which is several orders of magnitude below
unity in BCS superconductors. The term in Eq. (A9) is proportional to the difference in the density of states of the two Rashba
bands, and thus vanishes in the absence of SOC. The same calculation for the y component of the magnetic field yields a result

184515-6
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proportional to qx with the same magnitude but opposite sign. Therefore the full expression in the free energy can be written
as ∝ẑ · (q × HT ). Moreover, it is easy to show that there is no term that is linear in the out-of-plane component of the field
HT · ẑ.

Preforming a Fourier transform on Eq. (A9) and collecting all contributions to F (2) we get

F ≈
∫

dr
{
α(T − Tc)|�(r)|2 + β|�(r)|4 + w̃

2
|∇�(r)|2 + UM2(r) − χ⊥

2
H 2

T⊥(r) − χ||
2

H2
T||(r)

− i
η̃

2
[ẑ × HT(r)] · [�∗(r)∇�(r) − �(r)∇�∗(r)]

}
. (A10)

Here α, w̃, and β are given by their value in the absence of
SOC [as demonstrated in Eq. (A6)]. The spin susceptibilities
χν remain finite deep in the superconducting state due to the
SOC as shown in Ref. [5] and discussed below Eq. (A2).
Finally, the parameter η was computed in Eqs. (A8) and (A9).

The derivation above was performed in the continuum,
while our analysis is performed most conveniently on a lattice
model. As explained in the main text, this does not refer to the
crystalline lattice, but an effective description of the properties
at wavelength longer than the superconducting coherence
length ξ . As a final step we thus perform the following substitu-
tions: (i) In purely local terms (without derivatives) we replace
the continuous coordinate r by the discrete site label 
j . (ii) In
terms quadratic in the derivatives of the order parameter we re-
place ∇�(r) by [� 
j+ν̂ − � 
j ]/a where ν̂ is a vector connecting
two nearest neighbors and a is the lattice spacing. (iii) For the
final term, it is convenient (though not essential) to associate
the magnetic field with bonds. Consequently, this term takes
the form (ẑ × ν̂) · (HT 
j + HT 
j+ν̂)[�∗


j� 
j+ν̂ − �∗

j+ν̂

� 
j ]. Fol-

lowing this prescription we obtain Eq. (4) with w = w̃/a2 and
η = η̃/a.

To conclude this section, we note that although we derived
the free energy near Tc, the same form holds deep in the
superconducting state. This again follows directly from the
symmetries of the problem. Alternatively, the expansion of

the free energy in gradients of � and magnetic field can be
calculated via the current-current, current-spin, and spin-spin
correlation functions inside the superconducting state. Such a
derivation has been performed in Ref. [40] for superconductors
with strong SOC in the presence of a uniform magnetic field.
It was found there that all parameters in Eq. (A10) remain
nonzero near T ≈ 0. Furthermore, from the treatment in
Ref. [22] it follows that the free energy maintains its structure
in the presence of disorder as long as the mean scattering rate
is smaller than the SOC energy.

APPENDIX B: INTEGRATING OUT MAGNETIC
FLUCTUATIONS

In this Appendix we provide technical details of integrating
out the massive magnetic fluctuations from the free energy in
Eq. (6). Since the free energy is quadratic in the magnetization,
the corresponding partition function can be brought into
the form Z = ∫

d� 
j dM 
j exp[−a 
j (M 
j − b 
j )2 − Feff(� 
j )] ∼∫
d� 
j exp[−Feff(� 
j )]. Here Feff is the effective free energy

obtained by integrating out M. To determine Feff it is
convenient to change the integration variable from M to
HT = H + 2U/gμBM. Correspondingly, we write the free
energy in Eq. (6) as

F =
∑

j,ν̂

{
−ρs cos(� 
j+ν̂ − � 
j ) + g2μ2

B

4U

(
1 − 2χ⊥U

g2μ2
B

)
H 2

T⊥, 
j + g2μ2
B

4U

(
1 − 2χ‖U

g2μ2
B

)
H2

T‖, 
j − g2μ2
B

4U
H 
j · HT‖, 
j

+ κ

2
(ẑ × ν̂) · HT‖, 
j [sin(� 
j+ν̂ − � 
j ) + sin(� 
j − � 
j−ν̂)]

}
. (B1)

In deriving the above terms (and from here on), we have omitted contributions to the free energy that depend only on the external
magnetic field H (and are independent of � and HT). From Eq. (B1), the effective free energy can be easily read off to be

Feff =
∑

j,ν̂

{
− ρs cos(� 
j+ν̂ − � 
j ) + U/g2μ2

B(
1 − 2χ‖U/g2μ2

B

)
(

g2μ2

2U
H 
j − κ

2
(ẑ × ν̂)[sin(� 
j+ν̂ − � 
j ) + sin(� 
j − � 
j−ν̂)]

)2}
.

(B2)

To bring Feff into its final form [Eq. (7)], we again drop the constant term and absorb the linear terms in the external magnetic field
into the cosine (first term) via the identity a cos x + b sin x = √

a2 + b2 cos(x + ϒ) with ϒ = [cos−1 b/
√

a2 + b2 − π/2]sgn(b)
for a > 0. The explicit expressions for a, b, and ϒ are given in Eq. (10).
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APPENDIX C: MODULATED SUPERCONDUCTING STATE

In the main text we considered only phase modulations of the order parameter; here we examine the free energy allowing for
spatial modulations of the amplitude. For this purpose, we start with Eq. (4) and integrate out the massive magnetic fluctuations
in the absence of an external field:

F =
∑

j,ν̂

{
α(T − Tc)|� 
j |2 + β|� 
j |4 + w

2
|� 
j − � 
j+ν̂ |2 + η̃

16
[�∗


j� 
j+ν̂ − �∗

j+ν̂

� 
j + �∗

j−ν̂

� 
j − �∗

j� 
j−ν̂]2

}
. (C1)

In the integration we neglected the weak dependence of the spin susceptibility on the superconducting order parameter, and
introduced η̃ = Uη2(1 − 2χ⊥U/g2μ2

B)−1/(gμB)2. In general, an amplitude-modulated order parameter can be written as � 
j =∑
q �qe

i 
j ·
q . For simplicity, we consider here a trial order parameter with only two nonzero elements in the sum, � 
j =
�1e

i 
j ·
q1 + �2e
i 
j ·
q2 , where 
q1 and 
q2 are arbitrary wave vectors. The generalization to a higher number of terms is straightforward.

Consequently, the free energy for the trial order parameter is

F =
∑

ν̂

{
α(T − Tc)

[
�2

1 + �2
2

] + β
[
�4

1 + 4�2
1�

2
2 + �4

2

] + w�2
1[1 − cos(q1,ν̂)] + w�2

2[1 − cos(q2,ν̂)]

− η̃

2

{
2�4

1 sin2(q1,ν̂) + 2�4
2 sin2(q2,ν̂) + 6�2

1�
2
2 sin(q1,ν̂) sin(q2,ν̂) + �2

1�
2
2[sin(q1,ν̂) + sin(q2,ν̂)]2

}}
. (C2)

Next, we show that this free energy is minimal only when
either �1 or �2 vanishes. The above expression can be further
simplified by defining the effective parameters:

ri = α(T − Tc) + w
∑

ν̂

[
1 − cos(qi,ν̂)

]
;

ui = β − η̃
∑

ν̂

sin2(qi,ν̂);

v = 4β − η̃

2

∑
ν̂

[sin2(q1,ν̂) + sin2(q2,ν̂) + 3 sin(q1,ν̂) sin(q2,ν̂)].

(C3)

Well below mean-field Tc, and as long as the gradient terms
in the free energy are small (αTc 	 w and β 	 η̃), the
parameters in the free energy satisfy ri < 0 and ui,v > 0.
Then, the free energy can be written as

F = r1�
2
1 + r2�

2
2 + u1�

4
1 + u2�

4
2 + v�2

1�
2
2. (C4)

To analyze Eq. (C4) we rescale �1 → �̃1 and �2 →
�̃2

√
r1/r2, as well as u1 → ũ1, u2 → ũ2r

2
2 /r2

1 , and v →
ṽr2/r1:

F = r1
[
�̃2

1 + �̃2
2

] + ũ1 + ũ2 + ṽ

4

[
�̃2

1 + �̃2
2

]2

+ ũ1 + ũ2 − ṽ

4

[
�̃2

1 − �̃2
2

]2

+ ũ1 − ũ2

2

[
�̃2

1 + �̃2
2

][
�̃2

1 − �̃2
2

]
. (C5)

Finally, we use the parametrization �̃1 = S cos θ and �̃2 =
S sin θ :

F = r1S
2 + ũ1 + ũ2 + ṽ

4
S4 + ũ1 + ũ2 − ṽ

4
S4 cos2 2θ

+ ũ1 − ũ2

2
S4 cos 2θ. (C6)

Under the conditions αTc 	 c and β 	 η̃, the coefficient of
cos2 2θ is negative (ũ1 + ũ2 − ṽ < 0). As a result, the extrema
of the free energy occur at θ = πn/2 with n = 0,1, . . ., i.e.,
either �1 = 0 or �2 = 0. Among these, the minima and
maxima are determined by the sign of ũ1 − ũ2. Thus, we
explicitly show that the energy is minimal in the absence of
amplitude modulations, � 
j = �0e

i 
q· 
j .

APPENDIX D: PHASE DIAGRAM IN RING GEOMETRY

In the main text we studied the effect of magnetic
fluctuations on the superconducting state in the presence of
SOC. Here we analyze the system in a ring geometry, i.e.,
a one-dimensional superconductor with periodic boundary
conditions. We therefore assume a narrow ring of radius R

with thickness smaller than the coherence length ξ . To impose
the boundary conductions on the free energy in Eq. (4), we
write the order parameter in terms of angular harmonics,

�x =
√

1

N

N/2∑
n=−N/2

�ne
2πixn/N . (D1)

Integrating out the magnetization, and using Eq. (D1), the free
energy takes the form

Fring =
N/2∑

n=−N/2

{
α(T − Tc) + w

[
1 − cos

(
2πn

N

)]}
|�n|2
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+ 1

4N

∑
n,m,p,�

δn−m,�−p

{
η̃

4
(e2πim/N − e−2πin/N )(e2πi�/N − e−2πip/N ) + β

}

× [2�∗
n�m�∗

p�� + �∗
n�m�∗

��p + �∗
m�n�

∗
p��]. (D2)

Similar to the treatment in the previous section, we neglect
the weak dependence of the spin susceptibility on the
superconducting order parameter, and define η̃ = Uη2(1 −
2χ⊥U/g2μ2

B)−1/(gμB)2. Our analysis of the phase diagram is
performed in the limit where the lattice spacing a = 2πR/N

satisfies ξ 
 a 
 R. Under these conditions w 
 αTc, as
inferred from the known expression for the free energy in
the continuum limit, w ∼ αTcξ

2/a2 
 αTc. We restrict our
analysis to η̃ 
 β. To study the opposite limit η̃ � β, it is
necessary to take into account terms of order |�n|6 in the free
energy which is beyond the scope of this work.

Below the transition temperature Tc, the free energy is
minimized by �n �= 0 for a single value of n. That is, the
superconducting state has a well defined angular momentum
(harmonic). Upon crossing Tc from above, a superconducting
state with uniform phase �0 �= 0 forms when temperature
is not too low. To observe nonuniform phases with n �=0,
temperature has to be lowered below the n-dependent transi-
tion temperature Tc(n) = Tc − w

α
[1 − cos ( 2πn

N
)]. When tem-

perature crosses Tc(n) the free energy acquires two additional
minima at

∣∣�min
±n

∣∣2 = −N
α(T − Tc) + w[1 − cos(2πn/N )]

2[β − η̃ sin2(2πn/N )]
. (D3)

The corresponding state is characterized by a phase that
winds around the ring. The appearance of new minima does

not necessarily indicate a transition into a superconducting
state with n �= 0. Rather, the transition occurs only when the
corresponding free energy

F min
ring (n) = −N

{α(T − Tc) + w[1 − cos(2πn/N )]}2

4[β − η̃ sin2(2πn/N )]
(D4)

becomes the global minimum. Exploring the phase diagram in
the ring geometry, we obtain that for

η̃ < η̃c = βw

αTc cos2(π/N )

[
1 − w

αTc

sin2(π/N )

]
(D5)

the system remains in the uniform phase for all T < Tc. For
N → ∞, this condition coincides with the critical ζ obtained
in the planar geometry. When the strength of SOC or magnetic
fluctuations increases and η̃ grows beyond η̃c, the global
minimum changes from �±n to �±(n+1). The transition lines
as a function of η̃ and T , shown in Fig. 3, are determined by the
equation F min

ring (n) = F min
ring (n + 1). One unique property of the

superconducting state with n �= 0 is that it supports persistent
currents without external magnetic field as indicated in Eq. (9)
and illustrated in Fig. 3. Note that by expanding Eq. (D4) at
low temperature with respect to η̃ and w one recovers the
phase-only free energy of Eq. (8) with ρs = 2wαTc/β and
ζ = η̃(αTc/β)2.
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