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Odd-frequency superconductivity in a nanowire coupled to Majorana zero modes
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Odd-frequency superconductivity, originally proposed by Berezinskii in 1974, is an exotic phase of matter in
which Cooper pairing between electrons is entirely dynamical in nature. The pair potential is an odd function of
frequency, leading to a vanishing static superconducting order parameter and exotic types of pairing seemingly
inconsistent with Fermi statistics. Motivated by recent experimental progress in the realization of Majorana zero
modes in semiconducting nanowires, we show that odd-frequency superconductivity generically appears in a
spin-polarized nanowire coupled to Majorana zero modes. We explicitly calculate the superfluid response and
show that it is characterized by a paramagnetic Meissner effect.
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I. INTRODUCTION

Superconductors can be classified by the symmetry of the
pair potential, which can be thought of as the relative wave
function of two electrons in a Cooper pair. Fermi statistics
require the pair potential to be odd under the exchange of
those two electrons. The required sign change can come
either from exchanging the opposite spins of a spin-singlet
pair in even-parity (e.g., s-wave) superconductors or from
exchanging the opposite momenta of a spin-triplet pair in odd-
parity (e.g., p-wave) superconductors. In 1974, Berezinskii
proposed a third class of superconductors—odd-frequency
superconductors—in which the pair potential satisfies the
requirements of Fermi statistics not by being odd in spin space
or momentum space, but by being an odd function of time or,
equivalently, of frequency [1].

Odd-frequency pairing leads to a number of unusual
features. The first is that it enables spin-triplet (singlet)
pairing to appear in an s-wave (p-wave) superconductor [2,3],
since antisymmetry of the pair potential under fermionic
exchange is already satisfied in the time domain. The second
unusual feature of odd-frequency pairing is that it leads to
a vanishing static (i.e., equal-time) superconducting order
parameter because the latter is proportional to the integral
over all frequencies of the pairing potential [3]. A third
unusual feature predicted by theory is that odd-frequency
superconductors can exhibit a paramagnetic Meissner effect
[4–10], which may have recently been observed in experiment
[11].

Following Berezinskii’s original prediction, several mate-
rial platforms to engineer odd-frequency superconductors have
been proposed theoretically, such as heavy fermion systems
[12–14], normal-metal/superconductor junctions [15–17], and
ferromagnet/superconductor junctions [18–28]. In existing
proposals, odd-frequency superconductivity typically coexists
with a conventional even-frequency component (unless param-
eters are fine tuned) or is argued to occur in models of strongly
correlated electrons where one does not have full theoretical
control. Motivated by the recent experimental discovery of
Majorana zero modes (MZMs) in condensed-matter systems
[29–35], we demonstrate via a simple exactly soluble model

that coupling MZMs to a spin-polarized metallic nanowire
generically induces pure odd-frequency superconductivity in
the nanowire without any fine tuning of parameters required
[36,37]. We show by explicit calculation that the Meissner
response is paramagnetic.

II. SINGLE MAJORANA ZERO MODE

The fundamental building block in our proposal is the
realization that odd-frequency superconductivity is generically
induced in a spin-polarized nanowire coupled to a single MZM
(Fig. 1). The (effectively spinless) nanowire is described by the
Hamiltonian

Hw =
∫

dx c†x ξ̂ (x)cx, (1)

where cx (c†x) is the annihilation (creation) operator for a
spin-polarized electron at position x along the wire, and ξ̂ (x)
denotes the kinetic-energy operator. The coupling between the
wire and a single localized MZM γ0 at position x = 0 can be
modeled as

H 1
� = i

�

2

∫
dx δ(x)γ0(c†x + cx), (2)

where � is the coupling strength. One can rewrite the
MZM in the complex fermion basis f0 as γ0 = f0 +
f

†
0 and express the total Hamiltonian Hw + H 1

� in the
Nambu spinor basis �†(x) = (c†x,cx,f

†
0 ,f0) as Hw + H 1

� =
1
2

∫
dx�†(x)[Ĥw(x) + Mδ(x)]�(x), where

Ĥw(x) =

⎛
⎜⎜⎝

ξ̂ (x) 0 0 0
0 −ξ̂ (x) 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠,

M = �

2

⎛
⎜⎝

0 0 −i −i

0 0 −i −i

i i 0 0
i i 0 0

⎞
⎟⎠. (3)

The easiest way to show that odd-frequency superconduc-
tivity is induced in the spin-polarized nanowire is to calculate
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spin polarized nanowire

γ

FIG. 1. Odd-frequency superconductivity is induced in a spin-
polarized nanowire coupled to a single Majorana zero mode γ .

the Green’s function G(x,y,iωn) of the system, where ωn =
(2n + 1)πT , n ∈ Z is a fermionic Matsubara frequency, and
T is temperature. The Green’s function is given by the solution
of the Dyson equation,

G(x,y,iωn) = G0(x − y,iωn) + G0(x,iωn)MG(0,y,iωn),

(4)

where

G0(x − y,iωn)

=

⎛
⎜⎜⎜⎝

g0(x − y,iωn) 0 0 0

0 −g0(x − y,−iωn) 0 0

0 0 1/(iωn) 0

0 0 0 1/(iωn)

⎞
⎟⎟⎟⎠
(5)

is the Green’s function in the absence of the coupling (2), and
g0(x − y,iωn) is the electron propagator in the wire, given by
the solution of

[iωn − ξ̂ (x)]g0(x − y,iωn) = δ(x − y). (6)

The (2,1) component of the full Green’s function matrix
G(x,x,iωn) gives the induced local pairing correlator in the
nanowire as

〈c†x(iωn)c†x(−iωn)〉 = −�2g0(x,−iωn)g0(−x,iωn)

2iωn − [g0(0,iωn) − g0(0,−iωn)]�2
.

(7)

Equation (7) is our first main result and shows that the
local pairing correlator is an odd function of frequency at the
coupling site x = 0. This result is completely independent
of the details of the band structure in the nanowire. In fact,
the pair amplitude at x = 0 remains odd in frequency even if
translation symmetry is broken in the wire, e.g., by disorder.
If both translation and inversion symmetry are present in the
wire, g0(x,iωn) = g0(−x,iωn) and Eq. (7) is odd in frequency
for all x. (In the absence of inversion symmetry, the even-
parity odd-frequency pairing discussed here will generically
coexist with odd-parity even-frequency pairing.) A nanowire
with parabolic dispersion ξ̂ (x) = −∂2

x /(2m) − εF , with m the
effective mass and εF the Fermi energy, gives

〈c†x(iωn)c†x(−iωn)〉 ≈ i

2vF

sgn(ωn)e−4|ωn||x|/vF , (8)

in the low-frequency, weak-coupling limit |ωn| � � � εF ,
where vF is the Fermi velocity (see Appendix A). The pair
amplitude remains odd in frequency, but decays exponentially
away from the coupling site with a decay length ∼1/|ωn|.

spin polarized nanowire

nanowire 

s-wave superconductor
NW

B

a

FIG. 2. Inducing 1D odd-frequency superconductivity in a spin-
polarized nanowire. The Majorana zero modes (red dots) appear as
the result of coating a regular array of strongly spin-orbit-coupled
semiconductor nanowires (blue wires) with conventional s-wave
superconductors (green cylinders) [35], in a magnetic field B parallel
to the wires. The Majorana zero modes are then coupled to a
spin-polarized nanowire (orange wire).

III. ARRAY OF MAJORANA ZERO MODES

Although odd-frequency pairs can be induced locally in
the nanowire by a single MZM, one can in principle go a
step further and engineer an extended i.e., one-dimensional
(1D) odd-frequency superconductor by coupling an array of
MZMs to the nanowire (Fig. 2). We consider a periodic array
of strongly spin-orbit-coupled nanowires coated with s-wave
superconductors [35]. A magnetic field is applied, which
via the Zeeman effect turns these nanowires into effectively
spinless p-wave superconducting wires [38,39] that support
unpaired MZMs at their ends [40]. Denoting the separation
between two neighboring MZMs as a, the extension of Eq. (2)
to an array of MZMs is

H� = i
�

2

∑
n

∫
dx δ(x − na)(fx + f †

x )(c†x + cx)

= i
�

2

∑
n

∫
dp

2π
(fp + f

†
−p)(c†p−2πn/a + c−p+2πn/a), (9)

where we have Fourier transformed to momentum space.
The problem becomes analogous to that of electrons in a
periodic potential: momentum space is divided in periodic
Brillouin zones of width 2π/a, and the coupling between fp

and cp−2πn/a opens a gap at the zone boundaries. We now
consider a simple model problem when a is much smaller
than the Fermi wavelength λF , which captures the essence
of the physics. In Appendix B, we argue that odd-frequency
superconductivity survives for an arbitrary MZM separation a.

When a � λF , the coupling between fp and cp−2πn/a for
n �= 0 only affects modes far from the Fermi energy because
the Brillouin-zone edge momentum π/a is much greater than
the Fermi momentum. Thus, at low energies, we only need to
keep the coupling to the n = 0 mode,

Hn=0
� = i

�

2

∫
dp

2π
(fp + f

†
−p)(c†p + c−p), (10)

where p is restricted to the first Brillouin zone (−π
a
, π

a
].

Equation (10) is equivalent to modeling the spin-polarized
wire as a tight-binding chain of lattice constant a, with every
site coupled to a MZM.

The superconducting wires in recent experiments [35] have
a finite length, which leads to the hybridization of the MZMs
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localized at the opposite ends of the wire. We model this
hybridization with an energy splitting δ near the Fermi energy,

Hδ = 2δ

∫
dp

2π

(
f †

pfp − 1

2

)
. (11)

The combined Hamiltonian H = Hw + Hn=0
� + Hδ can

be written entirely in momentum space and expressed
in the Nambu basis �(p) = (cp,c

†
−p,fp,f

†
−p)T as H =

1
2

∫
dp

2π
�†(p)H(p)�(p), where the Bogoliubov–de Gennes

(BdG) Hamiltonian matrix H(p) is

H(p) =

⎛
⎜⎜⎜⎝

ξp 0 −i�/2 −i�/2

0 −ξ−p −i�/2 −i�/2

i�/2 i�/2 δ 0

i�/2 i�/2 0 −δ

⎞
⎟⎟⎟⎠. (12)

Here, ξp is the energy-momentum dispersion of the spin-
polarized wire that corresponds to the Fourier transform of
ξ̂ (x). As already mentioned, to maintain a sharp distinction be-
tween odd-frequency and even-frequency pairing in a spinless
wire, one must require inversion symmetry; we thus assume
ξ−p = ξp. We now show that the spin-polarized nanowire is
a uniform odd-frequency superconductor by computing the
Nambu Green’s function G(p,iωn) as

G(p,iωn) = [iωn − H(p)]−1. (13)

The pair potential for electrons in the spin-polarized nanowire
is obtained from the (2,1) component of G(p,iωn) as

〈c†p(iωn)c†−p(−iωn)〉 = �2iωn/2

ξ 2
pδ2 + (

ξ 2
p + �2 + δ2

)
ω2

n + ω4
n

,

(14)

which is an odd function of ωn. Equation (14) demon-
strates that by coupling to the MZM, the spin-polarized
wire effectively becomes an s-wave spinless odd-frequency
superconductor for generic values of the couplings �,δ and
for a generic inversion-symmetric normal-state dispersion ξp

in the wire. Although we have assumed translation symmetry
in our derivation so far, our calculations suggest the induced
odd-frequency pairing is robust against disorder in the MZM
coupling � (see Appendix C), as one expects for on-site
(s-wave) pairing.

The Bogoliubov quasiparticle spectrum is obtained by
diagonalizing the BdG Hamiltonian matrix (12) and is shown
schematically in Fig. 3(a) for energies near the Fermi level. For
simplicity, we consider the limit δ � � � εF , where εF is the
Fermi energy of the spin-polarized nanowire. The Majorana

FIG. 3. (a) Low-energy spectrum of Bogoliubov quasiparticles in
the odd-frequency superconductor; (b) electronic density of states.

modes give two nearly flat bands that become gapless at the
Fermi points ±pF due to the coupling to the spin-polarized
wire. In Fig. 3(b), we show a schematic plot of the electronic
density of states near the Fermi level. By contrast with fully
gapped even-frequency superconductors, the MZM-induced
odd-frequency superconductor has a nonzero density of states
at the Fermi energy which, as will be seen in the next section,
leads to a paramagnetic Meissner effect [4–10].

IV. MEISSNER RESPONSE

We now turn to the Meissner response of our odd-frequency
superconductor. To have a well-defined Meissner effect in 1D,
we consider fashioning the spin-polarized wire into a ring
(Fig. 4). A static magnetic field is applied perpendicular to the
plane of the ring; this corresponds to a flux threading the ring
that can be represented by a vector potential Ax , where x is
the coordinate along the ring. The Meissner response is given
by the London equation

jx = −nse
2

m
Ax, (15)

where jx is the electric current along the ring, e and
m = (d2ξp/dp2)−1|p=±pF

are the electron charge and mass,
respectively, and ns is the superfluid density. The super-
fluid density for our odd-frequency superconductor can be
calculated explicitly from the Nambu Green’s function (13)
following a standard diagrammatic procedure [41–43]. A
detailed calculation is presented in Appendices D–F; here
we outline the main steps. The total electric current jx =
j dia
x + j

para
x is the sum of diamagnetic and paramagnetic

contributions. For simplicity, we compute these contributions
in the limit δ � � � εF and T � �.

magnetic field magnetic field

     diamagnetic current 

(a) (b)

magnet magnet

o

dd-frequency superconductor

repulsive force

attractive force

        
  paramagnetic current 

    conventional superconductor

z

FIG. 4. Meissner effect of (a) a conventional superconducting
ring and (b) an odd-frequency superconducting ring. In a conventional
superconductor, the external magnetic field induces a diamagnetic
supercurrent, which leads to a repulsive force between the ring and
the magnet (superconducting levitation). By contrast, the paramag-
netic supercurrent in the odd-frequency superconductor leads to an
attractive force between the ring and the magnet (superconducting
antilevitation).

184506-3



SHU-PING LEE, ROMAN M. LUTCHYN, AND JOSEPH MACIEJKO PHYSICAL REVIEW B 95, 184506 (2017)

In the zero-temperature limit, the diamagnetic current is
given by (see Appendix E)

j dia
x ≈ −n

(
1 + �

2εF

)
e2Ax

m
, (16)

where n = pF /π is the electron density of the decoupled spin-
polarized wire. In the presence of the coupling � between the
spin-polarized wire and the MZM, the diamagnetic response is
simply that of the decoupled wire [41] plus a small correction
of the order of �/εF � 1. This is to be expected since the total
number of electrons in the wire is not conserved in the presence
of the coupling (2) to the MZM. For the paramagnetic current,
results differ depending on whether one is in the T � δ limit
or the δ � T limit (see Appendix F). In the T � δ limit, we
have

j para
x ≈ ne2Ax

m

{
1 + �

4δ

[
1 + ln

(
δ

T

)]}
, (17)

while in the δ � T limit, we have

j para
x ≈ ne2Ax

m

(
1 + �

4T

)
. (18)

Apart from the logarithmic term in Eq. (17), the two small
energy scales T and δ act as an infrared cutoff for each other.

Adding the diamagnetic and paramagnetic contributions,
we see that when the spin-polarized wire and the MZM are
decoupled (� = 0), both contributions exactly cancel each
other and the superfluid density of the wire is zero, as
expected. For � �= 0, the paramagnetic contribution to the
superfluid density is proportional to either �/δ or �/T , which
is much greater than unity in the limit considered, while the
diamagnetic contribution is proportional to �/εF , which is
much less than unity. As a result, the paramagnetic response
overwhelms the diamagnetic response, and the superfluid
density is (see Appendix G)

ns

n
≈ − �

4T
×

{
T
δ

[
1 + ln

(
δ
T

)]
, T � δ

1, δ � T ,
(19)

where we have neglected the small diamagnetic contribu-
tion proportional to �/εF . The superfluid density of the
spin-polarized wire is thus negative, which is a hallmark
of odd-frequency superconductivity. The dominance of the
paramagnetic contribution can be traced back to the presence
of gapless Bogoliubov quasiparticles at the Fermi points in
the odd-frequency superconducting state. In the limit δ � �,
the density of states at the Fermi level diverges [see Fig. 3(b)]
and the paramagnetic response dominates. Furthermore, the
superfluid density diverges at low temperatures [44], in stark
contrast with its smooth behavior as T → 0 in conventional
superconductors [45].

A negative superfluid density implies a paramagnetic
Meissner effect [4–10], whereby an applied magnetic flux is
enhanced rather than screened by the induced supercurrent. In
the setup of Fig. 4, the paramagnetic supercurrent leads to an
attractive force between the odd-frequency superconducting
ring and a magnet [Fig. 4(b)]. This is in sharp contrast with the
repulsive force between a conventional superconductor and a
magnet [Fig. 4(a)], which leads to the phenomenon of super-
conducting levitation [46]. To see this, we treat both the magnet

and superconducting ring in Fig. 4 as magnetic dipoles with
dipole moment mm = mmẑ and ms = ms ẑ, respectively, with
the latter being given by the induced supercurrent times the
area of the ring. The dipole-dipole interaction produces a force
on the ring given approximately by F = −3μ0mmms ẑ/(2πz4),
where z is the distance between magnet and ring (assuming it
is much greater than the ring radius) and μ0 is the vacuum
permeability. Therefore, the superconducting ring feels an
attractive force towards the magnet, a phenomenon one could
call superconducting antilevitation.

We now give a rough estimate of the magnitude of the
paramagnetic Meissner current (15). For an Al-coated InAs
nanowire [35], the induced topological superconducting gap
is � ≈ 2.3 K. For a wire length of 1 μm, this yields a MZM
splitting δ ≈ 0.1 K [35]. The spin-polarized nanowire can
be made of ferromagnetic metals such as Co, Fe, or Ni.
The coupling � between the MZM and the ferromagnetic
nanowire depends on the details of the sample. Since MZMs
are localized at the ends of the wire, the broadening due
to normal lead coupling � is given by � ∼ g� [47]. Here,
g is the dimensionless normal-state conductance of the
contact. Assuming g � 1, we estimate an upper bound for
the Majorana coupling as � ∼ 0.1 K. The Fermi velocity in a
Co ferromagnetic nanowire is vF ≈ 106 m/s [48], which we
can use to extract the ratio of electron density n to mass m as
n/m = vF /(πh̄). Threading one flux quantum 
0 into a ring
of circumference L ≈ 1 μm gives the electromagnetic vector
potential Ax = 
0/L on the ring. Using these values, we
find approximate upper bounds for the paramagnetic Meissner
current as jx ≈ 100 nA at temperature T = 100 mK in the
T � δ regime and jx ≈ 10 nA at temperature T = 0.5 K
in the δ � T regime. We believe such currents are within
experimental measurement capabilities.
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APPENDIX A: NANOWIRE COUPLED TO A SINGLE
MAJORANA ZERO MODE

Here we provide a detailed derivation of the results
presented in Sec. II. We start from a spin-polarized nanowire
coupled to a single Majorana zero mode, as shown in Fig. 1.
For simplicity, we model the Hamiltonian of the (effectively
spinless) nanowire as

Hw =
∫

dx c†x

(
− ∂2

x

2m
− εF

)
cx, (A1)

where cx (c†x) is the annihilation (creation) electron operator
in continuous space. The coupling of a single Majorana mode
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can be modeled as

H�1 = i
�

2

∫
dx δ(x)γ0(c†x + cx). (A2)

Here we assume the Majorana zero mode γ0 couples to the
nanowire at x = 0 and δ(x) is the Dirac delta function. One can
rewrite the Majorana zero mode in the complex fermion basis
f0 as γ0 = f0 + f

†
0 . In terms of these f operators, the coupling

(2) between the Majorana zero mode and the spin-polarized
wire can be written as

H�1 = i
�

2

∫
dx δ(x)(f0 + f

†
0 )(c†x + cx). (A3)

Because this coupling breaks the translation invariance of
the unperturbed nanowire, we determine the nature of the
pairing induced in the nanowire by calculating the Nambu
Green’s function in real space. We first rewrite the action
in the Nambu spinor basis �†(x) = (c†x,cx,f

†
0 ,f0) as H =

1
2

∫
dx�†(x)Ĥ(x)�(x), where the Bogoliubov–de Gennes

(BdG) Hamiltonian matrix Ĥ(x) can be split into two parts
as Ĥ(x) = Ĥw(x) + Ĥ�1(x). The matrix Ĥw(x) corresponds
to the unperturbed BdG Hamiltonian for the spinless wire,
which can be written as

Ĥw(x) =

⎛
⎜⎜⎜⎜⎝

− ∂2
x

2m
− εF 0 0 0

0 ∂2
x

2m
+ εF 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎠. (A4)

From this Hamiltonian, we can calculate the Matsubara
Green’s function G0(x − y,iωn) of the spinless nanowire
before we turn on the coupling between the Majorana mode
and the spinless wire. The unperturbed Green’s function
satisfies

[iωn − Ĥw(x)]G0(x − y,iωn)

=

⎛
⎜⎝

δ(x − y) 0 0 0
0 δ(x − y) 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (A5)

where ωn is a fermionic Matsubara frequency. The unperturbed
Green’s function is therefore given by

G0(x − y,iωn)

=

⎛
⎜⎜⎜⎝

g0(x − y,iωn) 0 0 0

0 h0(x − y,iωn) 0 0

0 0 1/(iωn) 0

0 0 0 1/(iωn)

⎞
⎟⎟⎟⎠,

(A6)

where we use g0(x − y,iωn) to denote the free-electron prop-
agator and h0(x − y,iωn) to denote the free-hole propagator.
The free-electron propagator in real space is given by Fourier
transformation,

g0(x − y,iωn) =
∫

dp

2π

eip(x−y)

iωn − p2/(2m) + εF

. (A7)

The integrand has two poles in the complex p plane given by
±p0, where p0 = Jeisθ/2, and we define θ = tan−1(|ωn|/εF ),
s = sgn(ωn), and J = √

2m(ε2
F + ω2

n)1/4.
Performing the integral with the help of the residue theorem,

we obtain the free-electron propagator in real space as

g0(x − y,iωn) = −mi

p0
seisp0|x−y|, (A8)

and the free-hole propagator as

h0(x − y,iωn) =
∫

dp

2π

eip(x−y)

iωn − [−p2/(2m) + εF ]

= −mi

p∗
0

se−isp∗
0 |x−y|, (A9)

where p∗
0 = Je−isθ/2 is the complex conjugate of p0. Changing

the sign of the Matsubara frequency ωn corresponds to
changing p0 to p∗

0 . (This is sensible as changing the sign of
the Matsubara frequency ωn results in the pole of the electron
propagator p0 becoming the pole of the hole propagator p∗

0 .)
Now, we turn on the coupling between the Majorana mode

and the spinless wire via the coupling Hamiltonian Ĥ�1(x) =
Mδ(x), where the matrix M is defined as

M = �

2

⎛
⎜⎝

0 0 −i −i

0 0 −i −i

i i 0 0
i i 0 0

⎞
⎟⎠. (A10)

The full Green’s function G(x,x ′,iωn) in the presence of the
coupling is given by the solution of the Dyson equation,

G(x,y,iωn) = G0(x − y,iωn) +
∫ ∞

−∞
dx ′ G0(x − x ′,iωn)

× Ĥ�1(x ′)G(x ′ − y,iωn)

= G0(x − y,iωn) + G0(x,iωn)MG(0,y,iωn).

(A11)

Setting x = 0, we get

G(0,y,iωn) = G0(−y,iωn) + G0(0,iωn)MG(0,y,iωn),

(A12)

which allows us to solve for G(0,y,iωn) as

G(0,y,iωn) = [1 − G0(0,iωn)M]−1G0(−y,iωn). (A13)

Substituting Eq. (A13) back into the Dyson equation (A11),
we get the full Green’s function as

G(x,y,iωn) = G0(x − y,iωn) + G0(x,iωn)M

× [1 − G0(0,iωn)M]−1G0(−y,iωn). (A14)

The (2,1) component of the full Green’s function matrix
G(x,y,iωn) gives the induced pairing correlator in the spinless
nanowire,

〈c†x(iωn)c†y(−iωn)〉 = �2h0(x,iωn)g0(−y,iωn)

2iωn − [g0(0,iωn) + h0(0,iωn)]�2

= −�2m2e−isp∗
0 |x|eisp0|y|

2iωn|p0|2 + ism�2(p0 + p∗
0)

. (A15)
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Since changing the sign of the frequency ωn corresponds to
interchanging p0 ↔ p∗

0 and changing the sign of s, Eq. (A15)
shows that the local pairing correlator 〈c†x(iωn)c†x(−iωn)〉 (i.e.,
with y = x) is an odd function of ωn. Therefore, odd-frequency
superconductivity is induced in the nanowire even with a single
Majorana zero mode. This remarkable fact is at the origin of the
robustness of the odd-frequency superconducting state induced
by the method we propose: because odd-frequency pairing is
induced in a local manner, it is largely insensitive to the ways
in which translation symmetry is preserved/broken. In other
words, since the induced odd-frequency superconductivity is s

wave, it is expected to be robust against translation symmetry
breaking. In fact, pairing at the coupling site (x = 0) remains
odd in frequency even if we break translation symmetry in
the wire Hamiltonian (A1). In that case, the free-electron and
-hole propagators are functions of x and y separately, i.e.,
g0(x − y,iωn) becomes g0(x,y,iωn), and likewise for h0. For
x = y = 0, Eq. (A15) thus becomes

〈c†0(iωn)c†0(−iωn)〉

= − �2g0(0,0,−iωn)g0(0,0,iωn)

2iωn − [g0(0,0,iωn) − g0(0,0,−iωn)]�2
, (A16)

which is manifestly odd in ωn, using the fact that the
hole and electron propagators are related by h0(x,y,iωn) =
−g0(x,y,−iωn).

In the low-frequency, weak-coupling limit |ωn| � � � εF ,
Eq. (A15) reduces to Eq. (8) in the main text. The decay
length for the pairing correlator depends on the frequency ωn

and diverges as ωn → 0. To engineer uniform odd-frequency
superconductivity, we can estimate a lower bound for the
decay length by setting ωn to εF , which gives a decay length
∼vF /εF ∼ λF of the order of the Fermi wavelength. In the
low-frequency limit |ωn| � εF , this decay length is in fact
much greater than the Fermi wavelength. In other words,
if the distance between Majorana modes is smaller than
the Fermi wavelength λF , we effectively engineer uniform
odd-frequency pairing in the wire. In Appendix B, we show
this more explicitly, and also discuss the fate of odd-frequency
pairing when the separation of the Majorana modes is larger
than the Fermi wavelength.

APPENDIX B: CONTINUUM NANOWIRE COUPLED TO
A PERIODIC ARRAY OF MAJORANA ZERO MODES

In the main text, we considered a simple model where
the spin-polarized nanowire is effectively described by a
tight-binding model, and the Majorana zero modes couple to
every lattice site of this tight-binding model. Here we consider
a more general case where the Majorana modes are coupled to a
continuous nanowire. This introduces an additional parameter
in the model, which is the ratio of the spacing a between
the Majorana modes to the Fermi wavelength λF in the
nanowire. As will be seen, the lattice model considered in the
main text corresponds to the a � λF limit in the continuous
model, which is technically simpler. However, odd-frequency
superconductivity is in fact obtained also away from this limit,
as we will demonstrate here.

The nanowire is described by the Hamiltonian (A1) as
previously, and coupled to a discrete array of Majorana

FIG. 5. Numerically calculated energy spectrum for a continuous
spinless nanowire coupled to a periodic array of Majorana modes. As
long as the Fermi points ±pF are not too close to the Brillouin-zone
boundary ±π/a, the low-energy spectrum is qualitatively the same
as the one obtained from the lattice model described in the main text
[compare with Fig. 3(a)].

zero modes (Fig. 2). The coupling to the Majorana modes
is described by the Hamiltonian H� in Eq. (9), and the
hybridization between the Majorana modes at opposite ends
of each superconducting wire is given by

Hδ = 2δ

∫
dx

∑
n

δ(x − na)

(
f †

x fx − 1

2

)
. (B1)

The combined Hamiltonian Hw + H� + Hδ then fully con-
tains the gapless fermion modes propagating between the
coupling sites in the nanowire.

As mentioned in the main text, the lattice structure of the
Majorana zero modes results in a periodic quasiparticle band
structure with Brillouin-zone boundary at p = ±π/a. One
can determine this band structure by diagonalizing the full
Hamiltonian Hw + H� + Hδ numerically [49], which gives
the BdG spectrum shown in Fig. 5. This illustrates that if the
Fermi points ±pF are sufficiently far from the Brillouin-zone
boundary ±π/a (i.e., if a is sufficiently small compared to λF ),
the low-energy spectrum is the same as obtained with the lattice
model described in the main text [compare with Fig. 3(a)].
One can understand this limit as corresponding to the spinless
nanowire uniformly coupling to a “smeared” Majorana mode,
inducing spatially uniform odd-frequency superconductivity
in the wire.

When the separation of the Majorana modes is larger than
the Fermi wavelength, the induced odd-frequency pairing
potential is no longer spatially uniform. The effect on the
low-energy spectrum of band folding into the first Brillouin
zone is more pronounced in this case, due to the coupling (fp +
f

†
−p)(c†p−2πn/a + c−p+2πn/a) between different momenta. In

principle, one can simply calculate the Nambu Green’s
function of the full Hamiltonian Hw + H� + Hδ and determine
whether the induced pairing is odd-frequency. However, this
is an infinite-dimensional problem if we take all the couplings
(fp + f

†
−p)(c†p−2πn/a + c−p+2πn/a), n ∈ Z, into account. Due

to the fact that we are only interested in low-energy properties,
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we can truncate the sum over n in Eq. (9) at a particular
value of n such that the condition |ξpF ±2nπ/a − ξpF

| � � is
satisfied, where ξpF

is the energy of the unperturbed wire at
pF (in the main text, our convention is such that ξpF

= 0 by
definition). In other words, since the Majorana modes couple
to the bands at the Fermi energy with coupling strength �,
for small enough � we can discard the high-energy bands and
focus on the bands which are within � of the Fermi energy
ξpF

. With this truncation scheme, we are effectively projecting
the Hamiltonian onto the low-energy subspace. This allows us
to rewrite the Hamiltonian as a finite-dimensional matrix in
momentum space, and use it to calculate the Nambu Green’s
function for the purposes of demonstrating odd-frequency
pairing.

As an example, we demonstrate odd-frequency pairing in
the case that the Majorana separation a is larger than the
Fermi wavelength λF , but small enough that only one folded
band with energy ξp±2π/a is coupled to the unfolded band
ξp by the Majorana coupling H� near the Fermi energy (i.e.,
|ξpF ±2π/a − ξpF

| � �). In this case, we can effectively project
the Hamiltonian onto the three relevant bands ξp±2π/a and ξp at
low energy. This allows us to write down a truncated coupling
Hamiltonian at low energy as

H� = i
�

2

1∑
n=−1

∫ ∞

−∞

dp

2π
(fp + f

†
−p)(c†p−2πn/a + c−p+2πn/a).

(B2)

This reduces the Hamiltonian to a finite-dimensional matrix,
which can be expressed explicitly in the basis �

†
trun(p) =

(c†p− ,c−p− ,c
†
p,c−p,f

†
p,f−p,c

†
p+ ,c−p+ ), where p± ≡ p ± 2π

a
.

The truncated Hamiltonian matrix is

Htrun(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξp− 0 0 0 − i�
2 − i�

2 0 0

0 −ξ−p− 0 0 − i�
2 − i�

2 0 0

0 0 ξp 0 − i�
2 − i�

2 0 0

0 0 0 −ξ−p − i�
2 − i�

2 0 0
i�
2

i�
2

i�
2

i�
2 δ 0 i�

2
i�
2

i�
2

i�
2

i�
2

i�
2 0 −δ i�

2
i�
2

0 0 0 0 − i�
2 − i�

2 ξp+ 0

0 0 0 0 − i�
2 − i�

2 0 −ξ−p+

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)

From the Nambu Green’s function [iωn − Htrun(p)]−1, we
obtain the induced Gor’kov function in the spinless nanowire
as

〈c†−p(−iωn)c†p(iωn)〉

= iωn�
2

2

(
ω2

n + ξ 2
p−

)(
ω2

n + ξ 2
p+

)
A + Bω2

n + Cω4
n + Dω6

n + ω8
n

. (B4)

Here we assume the inversion symmetry in the band structure
ξ−p = ξp, and the coefficients in the denominator of Eq. (B4)
are given by

A = δ2ξ 2
p−ξ 2

pξ 2
p+ ,

B = ξ 2
p−ξ 2

pξ 2
p+ + (�2 + δ2)

(
ξ 2
p−ξ 2

p+ + ξ 2
p−ξ 2

p + ξ 2
p+ξ 2

p

)
,

C = ξ 2
p−ξ 2

p+ + ξ 2
p−ξ 2

p + ξ 2
p+ξ 2

p + (2�2 + δ2)
(
ξ 2
p− + ξ 2

p + ξ 2
p+

)
,

D = ξ 2
p− + ξ 2

p + ξ 2
p+ + 3�2 + δ2. (B5)

This shows explicitly that the pairing correlator
〈c†−p(−iωn)c†p(iωn)〉 is still an odd function of frequency.

These calculations thus demonstrate that whether one
chooses the nanowire to be continuous or discrete only affects
the detailed form of the bands, not our fundamental conclusion
that pure odd-frequency pairing is induced in such systems.

APPENDIX C: ROBUSTNESS OF ODD-FREQUENCY
PAIRING AGAINST COUPLING DISORDER

In this Appendix, we present evidence that the induced
odd-frequency superconductivity in our setup is robust in
an average sense against disorder in the coupling between
Majorana modes and the nanowire. As explained in the main
text, our original setup consists of a periodic array of N

Majorana zero modes, such that the N coupling sites are not
random but evenly spaced. If we couple the Majorana modes
to every few lattice sites instead of to every site, the unit cell
is effectively enlarged, leading to a reduced Brillouin zone
and a folded BdG spectrum (see, e.g., Fig. 5). As discussed
in Appendix B, odd-frequency superconductivity still does
appear in such circumstances [see Eq. (B4)]. In this Appendix,
we further demonstrate that odd-frequency pairing is robust
against disorder by considering a random distribution of the
Majorana couplings �i . In retrospect, this fact might not
be surprising because the odd-frequency superconductor we
discuss in the main text is s wave, which is expected to be
robust against disorder.

To break translation invariance and model the effect of
disorder, we imagine that the coupling strength between
Majorana modes and the spinless wire varies from site to site.
To do this, we Fourier transform the coupling Hamiltonian
(10) to real space and consider a spatially varying coupling
�i = � + δ�i ,

H� = i

N∑
i=1

�i

2
γi,a(c†i + ci), (C1)

where � is the average coupling and δ�i is the variation
of the coupling from site to site. In our calculations, the
disorder strength in the coupling δ�i is tuned to be the
same as the average coupling �. In other words, the on-site
Majorana coupling strength �i varies randomly between 0 and
2� according to a uniform distribution. With this coupling,
we can calculate the Nambu Green’s function as G(iωn) =
(iωn − H)−1, where H is the total Hamiltonian including
the wire Hamiltonian Hw, the tunnel coupling Hδ , and the
coupling of Majorana modes to the wire H� in real space.
From the matrix elements of the Green’s function, we can
extract the on-site pairing correlator 〈ci(−ωn)ci(ωn)〉. Because
translation symmetry is broken by disorder, the on-site pairing
correlator 〈ci(−ωn)ci(ωn)〉 depends on the lattice site i and the
detailed configuration of the disorder, but one can take into
account the average effect of disorder on pairing by defining
a disorder-averaged pairing correlator. The latter is spatially
uniform, but still depends on the Matsubara frequency ωn. In
Fig. 6(a), we plot the disorder-averaged pairing correlator with
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FIG. 6. (a) Disorder-averaged on-site pairing correlator as a
function of frequency; (b) density of states as a function of energy. Red
and black curves correspond to the case with and without disorder,
respectively. We average over 20 configurations of disorder in a
sample of 400 lattice sites. We take δ/� = 0.1.

(red curve) and without (black curve) disorder. As one can see,
the pairing potential is odd in frequency even in the presence
of disorder. Similar to dirty s-wave superconductors, the
disorder-averaged density of states exhibits smeared coherence
peaks [Fig. 6(b)], but is otherwise qualitatively similar to
the clean case [see Fig. 2(b)].

APPENDIX D: ELECTROMAGNETIC RESPONSE:
GENERAL FORMALISM

In this and the following two appendices, we provide a
detailed derivation of the electromagnetic response of our
system. We consider a 1D superconductor with periodic
boundary conditions, i.e., a superconducting ring. In second
quantization, the action of the odd-frequency superconducting
ring in imaginary time can be expressed in the Nambu basis
�(p) = (cp,c

†
−p,fp,f

†
−p)T as

S[�,�†] = −1

2
T

∑
ipn

∫
dp

2π
�†(p,ipn)G−1(p,ipn)�(p,ipn),

(D1)

at temperature T , where the imaginary-time Green’s function
G is defined as

G−1(p,ipn) = ipn − H(p)

=

⎛
⎜⎜⎜⎝

ipn − ξp 0 i�/2 i�/2

0 ipn + ξ−p i�/2 i�/2

−i�/2 −i�/2 ipn − δ 0

−i�/2 −i�/2 0 ipn + δ

⎞
⎟⎟⎟⎠,

(D2)

where ξp is the energy-momentum dispersion of the spin-
polarized wire measured with respect to the Fermi energy,
and p ≡ px . We assume that the spin-polarized wire preserves
inversion symmetry, such that ξ−p = ξp. This is required to
maintain a sharp distinction between the two possible forms
of pairing in a 1D spinless system: even-frequency odd-parity,
or odd-frequency even-parity. As a result, the velocity dξp/dp

is odd in p and the inverse effective mass d2ξp/dp2 is even
in p.

To determine the Meissner response, we couple the ring to
a vector potential Ax . The action in the presence of a vector

potential is [43]

S[�,�†,Ax] = −1

2

∑
p̃

�†(p̃)G−1(p̃)�(p̃)

− 1

2

∑
p̃,q̃

�†(p̃ − q̃/2)J (p̃,q̃)�(p̃ + q̃/2)

+ 1

2

∑
p̃,q̃

�†(p̃)M(p̃,q̃)�(p̃), (D3)

where we use the simplified space-time notation p̃ = (p,ipn)
and

∑
p̃ ≡ T

∑
ipn

∫
dp

2π
. The matrices J and M are defined as

J (p̃,q̃) = e
dξp

dp
IAx(q̃), (D4)

M(p̃,q̃) = e2

2

d2ξp

dp2
�zAx(−q̃)Ax(q̃), (D5)

where we define

I =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, �z =

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠. (D6)

In Eq. (D5), we have set q̃ = 0 in the vertices dξp/dp

and d2ξp/dp2. Furthermore, strictly speaking, the momentum
dependence of the last term in Eq. (D3) only appears after
performing the path integral over the fermions [43]. We can
integrate out the fermion fields to obtain an effective action for
the vector potential, which we expand to second order in the
latter,

Seff[Ax] = − ln Pf(−G−1 − J + M)

= − 1
2 Tr ln(−G−1) − 1

2 TrGJ + 1
2 TrGM

+ 1
4 TrGJGJ + O

(
A3

x

)
, (D7)

where the trace is to be understood in the functional sense (i.e.,
trace over Nambu spinor indices, sum over Matsubara frequen-
cies, and integral over momentum). Because the Nambu spinor
satisfies the (Majorana) condition �†(x) = �T (x)C, where
C = σx ⊕ σx is a charge-conjugation matrix, �† and � are not
independent variables in the functional integral and one obtains
a Pfaffian instead of a determinant in Eq. (D7) (see, e.g., the
Appendix of Ref. [50]). In linear response theory, the response
current is linearly proportional to the gauge field Ax . Because
the electric current jx is given by the functional derivative of
the effective action jx = −δSeff/δAx , we focus on the terms
quadratic in Ax in the effective action Seff. There are two such
terms: the diamagnetic term TrGM and the paramagnetic term
TrGJGJ .

APPENDIX E: DIAMAGNETIC RESPONSE

In a ring geometry, the x coordinate can be viewed as a
coordinate along the circumference of the ring with radius R,
such that x = Rθ where θ is the polar angle. If we consider the
response to an applied magnetic flux 
 threading the ring, the
corresponding vector potential is a constant, Ax = 
/2πR.
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The diamagnetic part of the effective action (D7) is

Sdia[Ax] = 1

2
TrGM

= e2A2
x

4
T

∑
ipn

∫
dp

2π

d2εp

dp2
tr[G(p,ipn)�ze

ipn0+�z ],

(E1)

where the convergence factor eipn0+�z is necessary [50] to
ensure that the total electron density n in the wire is correctly
given by n = 1

2 TrG�z in the absence of coupling � between
the wire and the Majorana zero modes. By contrast with the
functional trace Tr, the lowercase trace symbol tr on the right-
hand side of Eq. (E1) denotes a trace over Nambu spinor
indices only. We also neglect a factor of space-time volume
in the action coming from the fact that the vector potential
considered is constant in time and uniform in space.

We can first verify that Eq. (E1) gives the correct result for
the diamagnetic response of the metallic wire in its normal
state, when it is decoupled from the Majorana zero modes.
Setting � = 0 in Eq. (D2), we obtain

G(p,ipn) = diag

(
1

ipn − ξp

,
1

ipn + ξp

,
1

ipn − δ
,

1

ipn + δ

)
,

(E2)

using ξ−p = ξp, and Eq. (E1) becomes

Sdia[Ax] = e2A2
x

4

∫
dp

2π

d2εp

dp2
T

∑
ipn

(
eipn0+

ipn − ξp

− e−ipn0+

ipn + ξp

)

= e2A2
x

2

∫
dp

2π

d2εp

dp2
nF (ξp), (E3)

where nF (ξ ) = (eξ/T + 1)−1 is the Fermi-Dirac distribution
and ξp is the energy of single-particle excitations. For p near
the Fermi momentum ±pF , we have ξp ≈ ±vF (p ∓ pF ). In
the effective mass approximation, we have d2ξp/dp2 = 1/m,
and we obtain the standard diamagnetic response,

Sdia[Ax] = ne2

2m
A2

x, (E4)

j dia
x (� = 0) = −δSdia

δAx

= −ne2

m
Ax, (E5)

where n = ∫
(dp/2π )nF (ξp) is the electronic density of the

metallic wire.
We now consider the diamagnetic response of the odd-

frequency superconductor with � �= 0. Once again, in the
effective mass approximation, we have

j dia
x = −e2Ax

2m
T

∑
ipn

∫
dp

2π
tr[G(p,ipn)�ze

ipn0+�z ], (E6)

where G is now the full Green’s function (D2) with � �= 0.
To perform the sum over Matsubara frequencies, it is most
convenient to introduce the spectral function A(p,ω), in terms
of which the Green’s function is given by

G(p,ipn) =
∫

dω

2π

A(p,ω)

ipn − ω
. (E7)

For the quadratic Hamiltonian considered here, the spectral
function can be written as

A(p,ω) = 2π
∑
A

Res
z=EA(p)

G(p,z)δ[ω − EA(p)], (E8)

where G(p,z) = [z − H(p)]−1 and the sum is over the four
Bogoliubov energy bands plotted in Fig. 3(a): E1(p), E2(p),
E3(p) = −E1(p), and E4(p) = −E2(p), with

E1(p) = 1√
2

√
ξ 2
p + �2 + δ2 + Y , (E9)

E2(p) = 1√
2

√
ξ 2
p + �2 + δ2 − Y , (E10)

where Y =
√

(ξ 2
p + �2)2 + 2δ2(�2 − ξ 2

p) + δ4. The residues

of the Green’s function are defined as

Res
z=EA(p)

G(p,z) = lim
z→EA(p)

[z − EA(p)]G(p,z). (E11)

We obtain

A(p,ω) = π

E1
(
E2

1 − E2
2

) [δ(ω − E1) − δ(ω + E1)]

×

⎛
⎜⎜⎜⎝

p(ω) + L(ω) �2ω/2 · · · · · ·
�2ω/2 p(ω) − L(ω) · · · · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎟⎠

+ (E1 ↔ E2), (E12)

where we define

p(ω) = ω3 −
(

�2

2
+ δ2

)
ω, L(ω) = ξp(ω2 − δ2). (E13)

It is not necessary to calculate the matrix elements denoted
by · · · in Eq. (E12); they contribute nothing to the trace in
Eq. (E6) because of Eq. (D6).

Performing the sum over Matsubara frequencies in Eq. (E6)
using Eq. (E8), we obtain

j dia
x = − e2Ax

2m

∫
dp

2π

1

E2
1 − E2

2

×
[
p(E1) − L(E1) + 2L(E1)nF (E1)

E1

−p(E2) − L(E2) + 2L(E2)nF (E2)

E2

]
. (E14)

Focusing on the zero-temperature limit, because E1 and E2 are
positive we have nF (E1) = nF (E2) = 0 and Eq. (E14) reduces
to

j dia
x = −e2Ax

2m

∫
dp

2π

1

E2
1 − E2

2

[
p(E1) − L(E1)

E1

− p(E2) − L(E2)

E2

]
. (E15)

We will evaluate this integral approximately in the limit δ �
� � εF . Let us define the change in diamagnetic current from
its value at zero coupling � = 0:

δj dia
x (�) = j dia

x (�) − j dia
x (� = 0). (E16)
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In the limit δ � � � εF , the changes in the band structure
and wave functions due to a finite coupling � are confined to
a small interval in momentum space of order ±� around the
Fermi points ±pF , where � is of the order of ∼�/vF . This
can be thought of as the weak-pairing limit of BCS theory.
Therefore, we can obtain an approximate expression for (E16)
by restricting the integral in (E15) to this interval around the
Fermi points. Because ξp vanishes at the Fermi points, in
this interval we can approximate ξp � �. Together with the
condition δ � �, we obtain the approximate expressions

E1(p) ≈ �, E2(p) ≈ δ|ξp|
�

, (E17)

which further implies E2
1 − E2

2 ≈ �2, p(E1) − L(E1) ≈
�3/2, and p(E2) − L(E2) ≈ −δ�|ξp|/2. Substituting in
Eq. (E15), we obtain

δj dia
x (�) ≈ −e2Ax

2m

(∫ −pF +�

−pF −�

dp

2π
+

∫ pF +�

pF −�

dp

2π

)

≈ −�

π

e2Ax

m
. (E18)

If we estimate the momentum-space cutoff as � = �/vF and
use n = pF /π for the density and εF = 1

2vF pF for the Fermi
energy, we obtain

j dia
x (�) = j dia

x (� = 0) + δj dia
x (�)

≈ −n

(
1 + �

2εF

)
e2Ax

m
, (E19)

at zero temperature. Thus, in the presence of the coupling �

between the spin-polarized wire and the Majorana zero modes,
the diamagnetic response is simply that of the decoupled
wire plus a small correction of the order of �/εF � 1. We
further assume that superconducting phase fluctuations are
suppressed and phase coherence is maintained among the
wires, for example via the common ground (see Fig. 2)
or a direct Josephson coupling that could be engineered
between the wires. Such an interwire Josephson coupling
will, in general, contribute an additional diamagnetic current.
However, one can always build the Josephson junctions or
the common ground such that they are far away from the
spin-polarized wire. Since the induced paramagnetic current
is localized on the spin-polarized ring, one can use a local
probe to detect the nontrivial paramagnetic current in the odd-
frequency superconductor without picking up a (potentially
larger) diamagnetic contribution coming from the conventional
Josephson effect between the wires.

APPENDIX F: PARAMAGNETIC RESPONSE

The paramagnetic part of the effective action (D7) is

Spara[Ax] = 1

4
TrGJGJ

= T
∑
iqn

∫
dq

2π
Qxx(q,iqn)Ax(q,iqn)Ax(−q,−iqn),

(F1)

where the current-current correlation function Qxx(q,iqn) is

Qxx(q,iqn) = e2

4
T

∑
ipn

∫
dp

2π

(
dξp

dp

)2

× tr[G(p − q/2,ipn − iqn/2)

× IG(p + q/2,ipn + iqn/2)I], (F2)

where ξp was defined below Eq. (E2). Using the spectral
representation (E7) and the Matsubara sum

T
∑
ipn

1(
ipn − iqn

2 − ω
)(

ipn + iqn

2 − ω̃
) = nF (ω) − nF (ω̃)

iqn + ω − ω̃
,

(F3)

we obtain

Qxx(q,iqn) = e2

4

∫
dp

2π

(
dξp

dp

)2 ∫
dω

2π

∫
dω̃

2π

×
[
nF (ω) − nF (ω̃)

iqn + ω − ω̃

]
× tr [A(p − q/2,ω)IA(p + q/2,ω̃)I]. (F4)

For the Meissner response, we are interested in the static (ther-
modynamic) susceptibility Qxx(q) ≡ limiqn→0 Qxx(q,iqn),

Qxx(q) = e2

4

∫
dp

2π

(
dξp

dp

)2 ∫
dω

2π

∫
dω̃

2π

×
[
nF (ω) − nF (ω̃)

ω − ω̃

]
× tr [A(p − q/2,ω)IA(p + q/2,ω̃)I]. (F5)

As in the previous appendix, in the δ � � � εF limit
we can focus on changes to the paramagnetic response
δQxx(q) ≡ Qxx(q)� − Qxx(q)�=0 due to a finite �, which
arises from small intervals in momentum space of the order
of ±�/vF around the Fermi points. This is sufficient since
in the � → 0 limit the spin-polarized wire is decoupled from
the Majorana zero modes, and its total superfluid response
(diamagnetic plus paramagnetic) vanishes. In fact, one can
check explicitly from Eqs. (E2), (F2), and (F3) that the
paramagnetic current j

para
x = −δSpara/δAx equals ne2Ax/m

for � = 0, which exactly cancels the � = 0 diamagnetic
current in Eq. (E19). Going back to the � �= 0 case, at low
temperatures and in the long-wavelength limit q → 0, the
dominant contribution to (F5) comes from states within ∼T of
the Fermi level. In the limit T � �, the only such states are the
±E2(p) bands. We can thus obtain an approximate expression
for the paramagnetic response in this limit by neglecting the
contribution of the ±E1(p) bands to the spectral function. In
the limit δ � � � εF and near the Fermi points, the spectral
function neglecting the contribution of the ±E1(p) bands is
given by

A(p,ω) ≈ π

2
{δ[ω − E2(p)] − δ[ω + E2(p)]}

×

⎛
⎜⎝

1 −1 · · · · · ·
−1 1 · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·

⎞
⎟⎠, (F6)
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and we obtain

δQxx(q) ≈ e2v2
F

16

∑
s,s̃

∫
|p±pF |<�

dp

2π

nF (sE2) − nF (s̃Ẽ2)

sE2 − s̃Ẽ2
,

(F7)

where s,s̃ = ±1 and we use the notation E2 ≡ E2(p − q/2),
Ẽ2 ≡ E2(p + q/2).

In the long-wavelength limit q → 0, the Fermi-Dirac
distribution can be expanded in powers of q and we have

δQxx(0) ≈ e2v2
F

8

∫
|p±pF |<�

dp

2π

×
{

dnF [E2(p)]

dE2(p)
+ nF [E2(p)] − 1

2

E2(p)

}
, (F8)

where E2(p) is defined in Eq. (E17).
One may then consider two limits, the T � δ and the δ � T

limits. In the T � δ limit, we can take the zero-temperature
limit of the derivative of the Fermi-Dirac distribution, which
becomes a δ function. The first term of (F8) becomes∫

|p±pF |<�

dp

2π

dnF [E2(p)]

dE2(p)
≈ −

∫
|p±pF |<�

dp

2π
δ[E2(p)]

= − 1

πvF

�

δ
. (F9)

In the last equality, we linearize the dispersion of the spin-
polarized nanowire as ξp ≈ ±vF (p ∓ pF ) and use Eq. (E17)
for the E2(p) inside the δ function. The second term of (F8)
can be written as∫

|p±pF |<�

dp

2π

nF [E2(p)] − 1
2

E2(p)

= − 1

πvF

�

δ

∫ δ/T

0

dx

x
tanh

(x

2

)
. (F10)

In the limit T � δ, the dominant contribution to this integral
comes from the x � 1 region, where tanh(x/2) ≈ 1, and we
obtain

∫
|p±pF |<�

dp

2π

nF [E2(p)] − 1
2

E2(p)
≈ − 1

πvF

�

δ
ln

(
δ

T

)
. (F11)

Putting (F9) and (F11) together, we find

δQxx(0) ≈ −e2vF

8π

�

δ

[
1 + ln

(
δ

T

)]
, (F12)

in the T � δ limit.
In the δ � T limit, we can set δ = 0 rather than

T = 0 in the derivative of the Fermi-Dirac distribution
dnF [E2(p)]/dE2(p) ≈ −1/4T . The Fermi-Dirac distribution
in the second term of (F8) can be expanded to first order in its
argument, since as p ranges from −� to � the dimensionless
argument E/T of the Fermi-Dirac distribution nF (E) ranges
from −δ/T to δ/T (assuming � = �/vF ), which is much
less than one in the limit considered. Both terms in (F8) then
contribute equally, and we obtain

δQxx(0) ≈ −e2vF

8π

�

T
, (F13)

in the δ � T limit.
The change in paramagnetic current δj

para
x (�) = j

para
x (�) −

j
para
x (� = 0) is thus given by

δj para
x (�) = ne2Ax

4m
×

{
�
δ

[
1 + ln

(
δ
T

)]
, T � δ

�
T
, δ � T ,

(F14)

where we have used vF /π = pF /mπ = n/m. Apart from the
logarithmically divergent term in the T � δ limit, the two
small energy scales T and δ act as an infrared cutoff for each
other.

APPENDIX G: SUPERFLUID DENSITY

Defining the superfluid density ns via the London equation
jx = − nse

2

m
Ax , where jx = j dia

x + j
para
x is the total current,

we obtain (taking into account the fact that ns vanishes for
� = 0)

ns

n
≈

{
�

2εF
− �

4δ

[
1 + ln

(
δ
T

)]
, T � δ

�
2εF

− �
4T

, δ � T .
(G1)

Because we consider the limit T ,δ � � � εF , the diamag-
netic term is negligible in front of the paramagnetic term, and
we obtain

ns

n
≈ − �

4T
×

{
T
δ

[
1 + ln

(
δ
T

)]
, T � δ

1, δ � T .
(G2)

The odd-frequency superconductor thus exhibits a negative
superfluid density, indicating a paramagnetic Meissner effect.
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