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Extended spin model in atomistic simulations of alloys
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An extended atomistic spin model allowing for studies of the finite-temperature magnetic properties of alloys
is proposed. The model is obtained by extending the Heisenberg Hamiltonian via a parametrization from
a first-principles basis, interpolating from both the low-temperature ferromagnetic and the high-temperature
paramagnetic reference states. This allows us to treat magnetic systems with varying degree of itinerant character
within the model. Satisfactory agreement with both previous theoretical studies and experiments are obtained
in terms of Curie temperatures and paramagnetic properties. The proposed model is not restricted to elements
but is also applied to binary alloys, such as the technologically important material permalloy, where significant
differences in the finite magnetic properties of Fe and Ni magnetic moments are found. The proposed model
strives to find the right compromise between accuracy and computational feasibility for accurate modeling, even
for complex magnetic alloys and compounds.
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I. INTRODUCTION

First-principles calculations and atomistic modeling play
an important role for understanding the properties of magnetic
compounds and alloys. In particular, the finite-temperature
properties determine the usefulness of the material for
technological applications. However, a complete theory for
finite-temperature magnetic properties remains a formidable
challenge in condensed matter physics despite the vast ad-
vances in the recent decades. Such a theory needs to include
not only transversal but also longitudinal spin fluctuations
(LSF) of the magnetic moments responsible for the moment
formation in the material. Magnetic moments can roughly be
classified in two different types, either being well localized
or exhibiting a more itinerant character. Previous studies have
typically described localized moment systems by means of the
Heisenberg model [1] and itinerant magnets by band theories
[2–6], respectively. However, several efforts [7–10] have been
directed towards a unification of the existing approaches with
the goal of being able to describe the two different scenarios
within a single spin model.

The first step was taken by Moriya [7] describing the
magnetic phase transition based on low-energy excitations.
In the framework of Ginzburg-Landau theory, the Hamilto-
nian is expanded in the even powers of the local moment
magnetization M(r) where the expansion coefficients are
obtained by calculating the constrained total energy E(M)
[11]. This theoretical effort was followed by Uhl and Kübler
[8], who formulated a spin fluctuation theory in which the
exchange parameters of the Hamiltonian were calculated from
first principles of spin-spiral states. Inspired by this work,
Rosengaard and Johansson [9] proposed a Hamiltonian where
a LSF term was introduced in addition to the Heisenberg term
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and subsequently calculated thermodynamic properties by
means of Monte Carlo simulations. Ruban et al. [10] developed
an extended scheme where a more advanced treatment of the
LSF was introduced. In this latter approach, the disordered
local moment was used as the reference state of mapping the
total energies and thus the model can be expected to give a
more accurate description of the paramagnetic state compared
to the ferromagnetic (FM) ground state.

A large number of works have later been focused on
the effect of longitudinal fluctuations in the description of
the half-metallic properties of the Heusler alloys [12–15].
Common to these works is the proposal of a model Hamiltonian
that considers a separate treatment of the strong-moment
components and the induced moment, such that it can
effectively take into account the fluctuations on the induced
moments by renormalization of the exchange interactions. A
similar technique has been applied to systems with multiple
sublattices in other studies [16,17]. A further extension
includes calculation of the ordering temperature not only to
the ferromagnetic-nonmagnetic transition, but also for the Néel
temperature of antiferromagnetic systems [17,18]. Parallel to
the studies of equilibrium magnetic properties from Monte
Carlo methods, there have recently been attempts to include
longitudinal fluctuations also in dynamical simulations in the
framework of Langevin spin dynamics [19,20]. However, so
far it has only been applied for simple elemental metals as Fe
and Gd.

Experimentally, the degree of itinerancy is most frequently
studied in the paramagnetic susceptibility, either by comparing
the effective moment extracted from the Curie-Weiss constant
with the true local moment or the deviation of the Curie-Weiss
law. Recently, a great deal of progress has been achieved to
study the Stoner excitations through the transversal dynamical
susceptibility from first principles within the framework
of linear response time-dependent density functional theory
[21,22] or from tight-binding theory [23]. However, due to the
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complexity of such calculations, one is faced with difficulties
applying the theory to complex magnetic compounds and
alloys and to include temperature effects. An issue that often
occurs when mapping total energies from first principles to
a spin model is that the calculated exchange interactions
sometimes render distinctly different results depending on
the starting reference state of the mapping. Hence, it would
be very attractive to construct an extended spin model where
the reference state dependence is eradicated and at the same
time include effects of LSF.

In this paper, we propose a general extension of the
Heisenberg model that indeed removes the dependence on the
reference state and includes not only the low-energy transver-
sal excitations, but also the longitudinal spin fluctuations.
The scheme combines first principles and Monte Carlo (MC)
simulations and provides a more rigorous description of the
finite-temperature magnetic properties compared to models
that includes only transversal fluctuations. In particular, it is
expected that a wider range of materials can be investigated
within our model, including materials with induced moments.

The paper is organized as follows. Our extended spin model
and the procedure of calculating the parameters from first
principles are presented in Sec. II A. The modified algorithm
in the Monte Carlo for updating the moments in each step
is clarified in Sec. II B. Some practical issues including the
approximations made from the mapping of the system on the
extended spin model are discussed in Secs. II C and III A.
In the numerical results, Sec. III B, we compare the critical
temperature of each of the considered systems and study
the influence of imposing the LSF term. The energy and
moment distributions as functions of temperature are shown
in Secs. III D and III E. Paramagnetic properties, specifically
the magnetic short-range order (MSRO), are discussed and
compared with other works in Sec. III F. Section III G contains
technical remarks and comparisons to existing methods found
in the literature, and we conclude and summarize our work in
Sec. IV.

II. FORMALISM

A. Formulation of the problem

A magnetic material at finite temperatures displays two
different types of excitations, longitudinal and transversal
fluctuations, as illustrated in Fig. 1. The starting point for
the simulations is the construction of a model Hamiltonian that
includes both the longitudinal and transversal spin fluctuations
of the magnetic moments m, such that the total Hamiltonian

FIG. 1. Schematic illustration of the two types of excitations
possible for a magnetic material. The left panel illustrates longitudinal
spin fluctuation (change of moment size �M) of each magnetic
moment and the right panel illustrates transversal spin fluctuations of
two moments interacting with strength J .

can be expressed as

Htot = H0 + HLSF({|mi |}) + H2(mi ,mj ), (1)

where mi denotes magnetic moment at site i, H0 is the
nonmagnetic reference energy, HLSF and H2 the energies
(Hamiltonian) of longitudinal and transversal spin fluctuations,
respectively. The nonmagnetic reference energy can be disre-
garded from the problem since it only sets a reference energy
which does not change during the simulations. The proposed
form of the Hamiltonian (1) takes the form

Htot =
∑

i

J1({|mi |})

−
∑
ij

(1 + k)Jij (|mi |,|mj |)mi · mj . (2)

In Eq. (2), the first term describes the total energy of the homo-
geneous paramagnetic state which in the model corresponds
to the LSF energy that in turn depends on the parameter J1

which depends on the magnitudes of the local moments of
each magnetic atom type of the system. The second term is the
standard Heisenberg Hamiltonian of transversal fluctuations
with the important distinction that the exchange parameters
Jij now are explicitly dependent on the size of the magnetic
moments and “rescaled” with the parameter k, as will be ex-
plained below. All the parameters entering the Hamiltonian are
in our model parametrized from first-principles calculations
from which the total energy is mapped to the Hamiltonian.
When dealing only with transversal fluctuations, a common
weakness is the reference state dependence of the calculated
exchange interactions [24]. This weakness does not come as a
surprise since the Heisenberg model assumes rigid moments
where the size of the magnetic moment does not change upon
rotation, i.e., strictly speaking only valid for localized spins.
Unfortunately, most of the real materials possess some degree
of itinerancy where the size of the moment changes depending
on internal orientation rendering the Heisenberg model less
applicable. For instance, one severe and common example is Ni
where the magnetic moment vanishes for tilting angle between
two nearest-neighbor moments of around 60◦ or more [9,25].

Another large important class of materials for which a
pure Heisenberg description fails to describe the properties
correctly are systems which exhibit induced moments, i.e.,
moments that only appear in the presence of other localized
moments creating a local internal magnetic field that polarizes
the atoms. Even for systems where the Heisenberg description
works reasonably well, such as Fe, the calculated exchange
interactions do depend on the reference state [24,26] and
hence the calculated critical temperatures could differ to
some extent. Szilva et al. [26] proposed a formalism that
allows the calculation of the exchange interaction from a
general noncollinear magnetic state that better represents the
configurations at finite temperatures by adding a biquadratic
term. Here, in this study we take an alternative approach
to soften the reference state dependence and at the same
time include longitudinal spin fluctuations. This is achieved
by using the extended spin Hamiltonian (2) and employing
two reference states in the mapping, as illustrated in Fig. 2.
The most natural reference states in the present computational
framework are the ferromagnetic (FM) low-temperature state
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FIG. 2. Illustration of the reference states used in the mapping
of the extended spin Hamiltonian from DFT. FM denotes the
low-temperature ferromagnetic state and DLM the high-temperature
disordered local moment state.

and the paramagnetic high-temperature state. The latter is
referred as the disordered local moment (DLM) state.

The proposed Hamiltonian (1) is designed in such a way
that it is exact for both the FM and DLM states, in the
sense the total energies from density functional theory (DFT)
are recovered, and it interpolates between the two limits at
intermediate temperatures. This is most easily realized in the
DLM limit where the Heisenberg term is equal to zero such that
the only surviving term is the sum of J1, consistent with the
model proposed by Shallcross et al. [27] and Ruban et al. [10].
The parameter k can then be viewed as a rescaling parameter
that tunes the interpolation between the DLM and FM limits.
However, it is worth stressing that the model does not contain
any free parameters. Calculating exchange parameters starting
from either FM or DLM state will indeed result in different sets
of Jij . However, since the overall Hamiltonian is fixed, it will
result in different values of the rescaling factor k such that the
“rescaled” exchange parameters as well as the exchange energy
are similar, independently from the starting reference state.
The most accurate LSF term in the Hamiltonian describes the
energy cost or gain of forming a local magnetic moment with
size |m| embedded in a host with the average moment 〈m〉 and
the LSF term then depending on both these indices. This choice
was employed by Shallcross et al. [27] and Ruban et al. [10]
but has the main disadvantage that it becomes prohibitively
complicated for systems with several magnetic components,
such as binary and ternary alloy. An approximation to simplify
the model is to assume that the embedded moment has the
same size as the host, in such a way that the number of
indices is reduced to the number of components without the
additional index of the average moment. For one atom per
cell, this reduces to the well-known Landau expansion, in
which the energy is expanded in even powers of the size of the
magnetic moment |m| = m, i.e., E(m) ≈ a1m

2 + a2m
4 + · · · ,

where ai are expansion coefficients. By employing constrained
density functional theory using the fixed spin moment (FSM)
technique, E(m) is easily calculated and analytically fitted to
the Landau expansion expression. Even with this simplified
LSF term in the Monte Carlo simulations, a number of studies
[9,12,19] have been demonstrated with rather satisfactory
results for systems with one atom per cell, such as Fe.

Alternative methods to treat longitudinal fluctuations in-
clude the spin cluster expansion (SCE) technique [28], in

which the magnetic energy from DFT is rigorously expanded
in series of multispin interactions. For the case of a weak
induced moment in presence of a strong moment, specialized
schemes have been designed by Lezaic et al. [13] and Polesya
et al. [16].

However, as far as we are aware, there have not been any
systematic attempts to expand the formalism to the general
case with several magnetic components, which is the main
motivation for this work. To be more specific, we here expand
the formalism to binary alloy systems. This covers many of the
technologically important alloys but also the essential class of
materials consisting of strong and weak magnetic moments,
where the weak moment is induced by the strong moment from
an internal magnetic field. The extension to several magnetic
components is straightforward, although the computational ef-
fort drastically increases. Nevertheless, by employing modern
computational techniques as discussed below, it is feasible
without too much computational effort. The crucial step in the
parametrization of the full LSF energy surface is to constrain
the size of the magnetic moment on one component at a time.
For simplicity, we restrict the discussion to binary alloys with
magnetic components mα and mβ , respectively. This could, as
an example, represent the Fe and Co magnetic moments in a
FeCo alloy. To obtain reasonable numerical accuracy, around
20 different moment sizes of each component are required,
such that the total number of configurations is 202 = 400
to fully parametrize the LSF energy surface. However, each
configuration is independent of each other, so clever scripting
and making use of the harvesting power of modern parallel
computers makes the parametrization efficient despite the vast
number of total configurations required. The moment sizes are
arranged in a n × m Cartesian grid with indices (mα

i ,m
β

j ),
where α = {1, . . . ,n} and β = {1, . . . ,m}, where n and m

are the number of moment sizes performed for mi and mj ,
respectively. Indices i and j denote the site indices. Electronic
structure calculations based on density functional theory for
each grid point yield the input parameters J1, k, and Jij in the
Hamiltonian (2) for that particular grid point.

B. Atomistic simulations including longitudinal moment
fluctuations

Following the full Hamiltonian parametrization, one can
use a statistical treatment, for instance Monte Carlo (MC)
simulations, to work out the equilibrium properties or atomistic
spin dynamics (ASD) for the dynamical properties. For
systems with one magnetic atom per cell, MC simulations have
been performed in a number of previous studies [9,10,12,13]
while ASD simulations are much less explored [19,20]. In this
study, we restrict ourselves for the moment to MC simulations
while ASD simulations are left for a future study. Using
the Metropolis algorithm, each trial move of every selected
atomic moment not only consists of the normal rotation,
but also a random change of the magnitude of the moment.
Since the Hamiltonian is only defined at the grid points,
we have employed bilinear interpolation of the intermediate
points in the simulations. As mentioned above, we are using a
slightly simplified LSF Hamiltonian and it has some practical
consequences. When the magnitude of a trial moment is
changed in the Metropolis update, i.e., mα′

i = mα
i + δm, we
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make the approximation that we use the average magnitude
〈mβ〉 of the other component in the binary alloys around
the site i, such that the parameters J1, k, and Jij yield
the configurations corresponding to (mα

i ,〈mβ〉) and after the
change (mα′

i ,〈mβ〉), respectively. This approximation does not
cause any significant issues for the homogeneous systems
since the magnitude of magnetic moments in average does not
change much within a sphere from the trial atom point of view.
Comparing this approximation against doing interpolation of
Jij between each pair mi and mj , only minor differences were
found, but it gains a magnitude faster in the computational
efforts. The J1 term may be a bit more sensitive since it is
assumed that moments belonging to the same component α

change the moment size instantaneously with the trial moment.
Comparison of different strategies is discussed in more detail
in Sec. III G.

C. Details of the calculations

Electronic structure calculations based on density func-
tional theory (DFT) were employed for extracting all material-
dependent parameters in the Hamiltonian. We used an imple-
mentation of multiple-scattering theory based on the Korringa-
Kohn-Rostoker (KKR) formalism [29]. We employed both the
local spin density approximation (LDA) and the generalized
gradient approximation (GGA) using the PBE parametrization
[30] as the exchange-correlation potential. Another method
normally referred to as fixed spin moment (FSM) [31,32]
where the magnitude of the magnetic moment was varied by
employing a small constraining field with strength adjusted
in such a way that it reaches the prescribed target. Around
20 different moment sizes were used for each magnetic
component. The chemical and magnetic disorders were treated
using the coherent potential approximation (CPA). A binary
alloy with components A and B can be written as AxB1−x ,
where x is the concentration of A and this configuration
is used for the ferromagnetic state (FM). The disordered
local moment (DLM) configuration is obtained by forming
a four-component alloy A

↑
x/2A

↓
x/2B

↑
(1−x)/2B

↓
(1−x)/2, with ↑ (↓)

denoting moments pointing along (opposite) to the quantiza-
tion axis. The exchange interactions Jij were calculated using
the Liechtenstein-Katsnelson-Antropov-Gubanov formalism
[33,34]. The experimental lattice constants were used for
all systems neglecting any thermal expansion. Moreover, the
electronic entropy effects were neglected to avoid additional
temperature dependence of the parameters.

The atomistic Monte Carlo simulations making use of
the Metropolis algorithm were performed and implemented
in the Uppsala Atomistic Spin Dynamics (UPPASD) software
package [35,36]. In each trial move in the Metropolis update,
in order to speed up the calculations, one of the three modes
was randomly selected between a pure transversal, a pure
longitudinal, or a combination of the two. The transversal
updates were in turn chosen randomly to either a uniform
rotation, a Gaussian distribution rotation, or a spin flip for
further speedup. Critical temperatures were extracted using
the fourth-order size-dependent Binder cumulant [37] taken
in the form of 1 − 〈m〉4/3〈m〉2 and since we are dealing with
random alloys, for each system and temperature, an ensemble
averaging over around 10 different disorder configurations

were performed. Spin stiffness is evaluated from the expression
D = 2/3m

∑
j J0j R2

0j , where m is the magnetization, J0j and
R0j are the interaction and the distance between m0 and mj . We
followed the procedure outlined in Ref. [38] and generalized to
random alloys using the same method as in Ref. [39] averaged
over 1000 disorder configurations.

Evaluation of thermodynamic properties for a model in-
cluding longitudinal fluctuations involves technically intricate
details. The longitudinal part of the partition function over
which a functional integration is performed can be written as
[15,18,40–43]

Z =
∫

g(m)dm exp

(
− Htot

kBT

)
, (3)

where g(m) is the phase space measure (PSM) [41]. In this
study we use g(m) = 1, that is the so-called uniform PSM
or Murata-Doniach metric that corresponds to the decoupled
treatment of longitudinal and transversal spin fluctuations.
However, as was pointed out in [41], magnetic moments are
not canonical variables and therefore the PSM is not known.
Including PSM with Jacobian factor, g(m) = m2, couples the
longitudinal and transversal spin fluctuations and it has been
argued that this choice could lead to improved results [15,43].
Although not used for the majority of simulations in this study,
we did implement this PSM in our MC program and we will
briefly discuss some results and differences to the uniform
PSM in Sec. III G.

III. RESULTS

For the results in this section, we consider the elemental
materials Fe, Co, and Ni, where Fe crystallizes in the bcc
structure and Co and Ni in fcc structure. Moreover, we
investigate the permalloy in the fcc structure, which is a
binary alloy with composition 81% Ni and 19% Fe. Finally,
we investigate a binary alloy of Fe and Co in the bcc structure,
with Co concentrations ranging from 30% to 70%.

A. Total energy landscape from the first-principles calculations

The energy surfaces relevant to the parameters J1 and
rescaling factor k are shown in Fig. 3 for Ni. We show that the
starting point of using different sets of exchange parameters
from DLM and FM state can be eliminated using the rescaled
interactions. Figures 3(a) and 3(b) indicate that the total energy
of FM state has a shallow minimum of the moment size
around 0.7 μB, while there is no such a minimum in the DLM
state, indicating that in the DLM state no magnetic moments
can be sustained unless additional fluctuations are present
in the system. The total exchange energy is not explicitly
plotted here, but from Eq. (2) it is apparent that it is the
total energy difference between the FM and DLM states.
Inspection of individual nearest-neighbor exchange interaction
corresponding to the total energy minimum for FM, it is found
that the DLM reference state gives approximately two times
larger Jij than in the FM state. This fact is well reflected
on the calculated Curie temperature based on the traditional
Heisenberg model. In Figs. 3(c) and 3(d), the rescaling factor
k of the exchange interactions is displayed in the case when
the “bare” exchange interactions are calculated from the DLM
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FIG. 3. The total energy surface of Ni is calculated using the binary-components scheme at each discretized grid of the moments size from
two starting points: (a) DLM reference state (J1) and (b) FM reference state. The magnitude of the rescaling factor k is shown in (c) (DLM)
and (d) (FM). Note that for visualization clarity the scale on the z axis and the viewing angle are different between (c) and (d).

and FM states, respectively. A negative (positive) value of
k corresponds to reduction (addition) of the exchange such
that it forces the exchange energy being the same regardless
of chosen initial reference state. Calculating Jij from the
FM state gives a larger surface roughness of k compared
to calculation from the DLM state due to larger numerical
sensitivity, however, since the overall total energy surface is
smooth, it is not expected to cause any particular numerical
difficulties in the simulations. Although we show only Ni as
an example of the the energy parametrization, the procedure
is similar for the other systems with the key feature that the
overall spin model gives correct total energy in both the FM
and DLM limits.

B. Critical temperatures and spin stiffness

In Table I, our calculated Curie temperatures Tc together
with previously published experimental and theoretical results
are collected. In all of our calculations, the rescaled exchange
parameters were used and we compare the two cases when LSF
is included or not in the Hamiltonian from Eq. (2). A few gen-
eral trends of the calculated results are immediately noticed.
First of all, the inclusion of LSF always lowers the calculated
Tc values and underestimates them compared to experiments,
with the exception of Fe where excellent agreement is found.
Second, within the same functional (LDA or GGA), there is
only a minor difference in Tc starting from either DLM or FM
configuration, which is one of the design goals of the model.
Without LSF and rescaling of the exchange parameters, the
well-known dependence of chosen reference state is evident.
For example, calculated Tc of Ni in GGA is around 400 K
(900 K) with “bare” exchange parameters calculated from FM
(DLM) reference, compared to around 580 K using rescaling
for both reference states. For the DLM state, the moments were

fixed to the same value as in FM since without constraints or
inclusion of LSF term, the DLM moment vanishes for Ni. In
general, for all the considered systems, without rescaling the
exchange interactions from FM configuration underestimate Tc

while there is an overestimation using exchange interactions
from DLM. Within the same level of approximation and
methodology, our calculations correspond in general rather
well with previous published results.

The quantitatively underestimation of Tc with LSF included
is, however, slightly disappointing but could be understood in
the present model from relatively simple arguments. If the
LSF energy would not manifest a minimum, as in Ni for
example, or having a shallow minimum like as in Co, then
the system may gain energy by reducing the moment at finite
temperature. However, at the same time, the exchange energy
is decreasing upon decreasing moment and fluctuations. On the
contrary, increasing moment size gains exchange energy but
costs LSF energy, so there is a delicate energy balance between
the two contributions. Consequently, with LSF included it
does provide the system an alternative path of lowering the
energy, thus making the system more magnetically “soft”. It
could well be that the softening of the moment in the present
model is slightly overestimated since the LSF energy is only
an approximation to some extent and depends on the average
magnetic moments of the local environment. Moreover,
using the uniform phase space measure as done here causes
an oversampling of configurations with smaller moments
due to the decoupling of the transversal and longitudinal
fluctuations.

FexCo1−x alloys in bcc structure are known for having a
maximum average moment around x ≈ 0.7 according to the
Slater-Pauling relationship, which is found both in experiments
[46] and from calculations [49]. These alloys have among the
largest Curie temperatures of any discovered transition-metal
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TABLE I. Curie temperatures Tc in K from calculations and comparison to experiments (Expt.) and previous studies (Theory). N (LSF)
denotes calculations without (with) longitudinal fluctuations and rescaled exchange parameters. DLM and FM denote from which reference
state the exchange interactions are calculated.

DLM FM

Tc (K) LDA GGA LDA GGA Refs.

System N LSF N LSF N LSF N LSF Expt. Theory

Fe 1132 926 1275 1068 1238 939 1412 1083 1043a 1060b,1065c,900d,1095e

Co 1441 807 1611 979 1475 791 1637 902 1388a 1080b,1280d,1012e

Ni 509 432 580 478 486 431 578 459 633a 510b,615c,412e

Py 645 482 747 572 706 484 761 560 850f 650g

Fe0.3Co0.7 1564 927 1686 1105 1605 902 1733 1080 1490d

Fe0.5Co0.5 1650 1005 1862 1215 1634 982 1885 1165 1253–1370h 1600d

Fe0.7Co0.3 1689 1060 1879 1267 1656 1010 1847 1211 1490d

aReference [44].
bReference [9].
cReference [10].
dReference [45].
eReference [8].
fReference [46].
gReference [47] (RPA).
hReference [48].

alloy systems, even larger than the individual host elements Fe
and Co. This is mostly confirmed by our calculations, with a
possible exception of Fe0.3Co0.7 in GGA that it is very close to
the elemental Fe. On a technical note, the results of Fe, Co, and
Ni in Table I were obtained treating the system as having two
components. This makes the evaluation of the exchange and
LSF energies slightly more accurate than treating the system as
having single component, despite describing the same element.
A comparison between the two are discussed in more details
in Sec. III G.

TABLE II. Spin stiffness D in (meV Å
2
) from calculations and

comparison to experiments (Expt.) and previous studies (Theory).
DLM and FM denote from which reference state the exchange
interactions are calculated and LDA and GGA denote different
exchange-correlation potentials in calculations.

D (meV Å
2
) DLM FM Refs.

System LDA GGA LDA GGA Expt. Theory

Fe 320 368 466 573 314a 247b, 250c

Co 614 676 675 723 510d 502b, 663c

Ni 895 924 707 924 550e 739b, 756c

Py 655 693 620 611 390f

Fe0.3Co0.7 552 600 611 701 476g

Fe0.5Co0.5 536 588 526 646 800g

Fe0.7Co0.3 496 536 466 472 470g

aReference [50].
bReference [9].
cReference [38].
dReference [44].
eReference [51].
fReference [46].
gReference [52].

In Table II, results of our calculated values of the spin
stiffness together with experimental and previous published
values are compared. Spin stiffness is sensitive to the indi-
vidual exchange interactions just as the sum of all exchange
interactions gives the exchange strength which is relevant to the
Curie temperature. The difference being that the spin stiffness
contains an additional spatial dependence in the sum. The
calculated spin stiffness values are in general in reasonable
agreement with both experiments and previous calculations for
systems where such data exist. Fe is found to have too large
spin stiffness when the exchange parameters are calculated
from the FM configuration. This is due to the fact that the
individual exchange parameters are not only rather different
in DLM or FM configuration, but also rather sensitive to the
volume and the basis set in this case. Although the exchange
interactions are scaled uniformly to yield the correct total
energy, that does not universally translate to improving the spin
stiffness. The values of Ni are also overestimated compared to
experiments, as found in previous calculations, but the most
likely explanation is the use of LDA or GGA that fails to
fully describe the electronic structure of Ni being a moderately
correlated metal.

In the case of random alloys Py and FexCo1−x , the spin
stiffnesses were calculated as an average over 1000 different
disorder configurations. Perhaps not so surprising, the spin
stiffness for Py is rather similar to Ni while values for
the FexCo1−x alloys are similar to those of elemental Fe
and Co. Regarding experiments, inelastic neutron scattering
experiments are considered the most straightforward way
to measure spin waves and thus the spin stiffness. For
the elemental materials Fe, Co, and Ni, there are plenty
of existing experimental studies and they all rather much
agree to each other. However, for random alloys such as
Py and Fe-Co, we find only very few studies of direct
measurements of D. For the measured Fe-Co systems, a thin
film geometry was used which could affect the results and that
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FIG. 4. Total energy decomposition from Monte Carlo simula-
tions in terms of the total energy, the exchange energy, and the LSF
energy as a function of temperature for (a) Fe, (b) Ni, and (c) Py.

could in turn explain the difference from the calculated bulk
value.

C. Finite-temperature transversal and longitudinal fluctuations

To further elaborate on the temperature-induced mag-
netic phase transition, we show in Fig. 4 the total energy
decomposition in terms of the exchange and LSF energies,
as a function of the temperature. The exchange term gives the
energy gain by aligning moments with each other, while the
LSF energy is a measure of the formation (reduction) of a
local moment. By resolving the exchange and LSF energies,
the stability of the local moment at a certain temperature can be
estimated. In the case of Fe [Fig. 4(a)], the LSF energy is more

or less constant, while the exchange energy is monotonous
increasing with respect to the temperature and vanishes at
high temperature where all moments are randomly distributed.
The energies confirm that Fe is forming a stable moment in
both the FM and DLM states. In contrast to Fe, Ni as shown
in Fig. 4(b) reveals a much more precarious energy balance.
Upon increasing the temperature to around Tc, a part of the
exchange energy increase is compensated by decreasing the
LSF energy, causing a reduction of the magnetic moment. For
Py, shown in Fig. 4(c), the interplay of the LSF and exchange
energies behaves similar as to elemental Ni where part of the
loss of the exchange energy is compensated by the LSF energy.
As a result, the moments of Py in average have a tendency to
be reduced at finite temperatures.

D. Energy distribution

In the previous section, we discussed the average decom-
posed energies as function of temperature. Here, we study in
more detail the distribution of energies during the simulations.

In Fig. 5, the composition of site-resolved energies of
Py from a snapshot during the Monte Carlo simulations is
displayed for two temperatures, at low temperature (10 K),
and around Curie temperature (550 K, see Table I). If the
energies are averaged both over all the atoms and in time, the
results in Fig. 4 are recovered. The spread of the magnitude of
moments is discussed in more details in Sec. III E.

At low temperatures, the thermal fluctuations are very small
and consequently the spread of energies are small. The total
energy is fluctuating around the minimum of the energy surface
and the largest difference between Ni and Fe moments is
the larger exchange energy associated with Fe. At elevated
temperature close to the Curie point, the situation is rather
different. First of all, due to the large thermal fluctuations,
the spread of both energies and moment magnitudes is
significant. Also, the directions of moments have large spread
and since the figure shows a particular snapshot, there are
certain moments that are antialigned to each other causing
positive site exchange energies. All these fluctuations make
the system different from pure DLM configurations where the
moment distribution is random but with fixed magnitude of
moments. The high-temperature snapshot configurations could
be viewed as many DLM-like configurations superimposed
on each other. This has also been explored directly from
DFT calculations in other studies. For instance, in Ref. [53]
DLM configurations combined with fluctuating moments and
statistical models were used to calculate high-temperature
properties such as elastic constants and average magnetic
moment in Fe. As a contrast, in the simulations employed
here, all these fluctuations are naturally arising as outputs. The
site-resolved LSF energy shows very different behavior for Ni
and Fe atoms. As in DLM, the positive curvature of Ni means
that it prefers not to sustain any magnetic moments on its
own, nevertheless, any finite Ni moments are stabilized by the
entropy of spin fluctuations. On the other hand, the LSF energy
of Fe has a minimum around 2.8 μB and, as a consequence,
the Fe moments are magnetically more resilient than Ni, and
which in turn are induced from the Fe moments. It is worth
noting that the individual output LSF energies on both Fe and
Ni in Py also follow the Landau-type expansion as expected
from the model.
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FIG. 5. Site-resolved energy decomposition (LSF, exchange and
total energy, top to bottom) of Py from a snapshot configuration using
Monte Carlo simulations at T = 10 K (left) and T = 550 K (right).

E. Average magnetization, local moment, and moment
distribution

The extended Heisenberg model where LSF is taken into
account allows us to examine the dependency of the change
in the local moment size on temperatures by performing the
MC simulations. The magnetization and the local moments

FIG. 6. (a) The averaged global magnetic moment, i.e., magne-
tization with dashed lines and the mean value of the local moments
amplitude with solid lines. (b) The standard deviation of the local
moments after normalized by the corresponding moment size at the
zero temperature.

size with respect to temperature are displayed in Fig. 6(a)
for Fe, Co, and Ni. We observe a linear reduction on the
magnetization at low temperature in all the considered cases
which does not follow the Bloch’s T 3/2 as expected from
using classical statistics. However, here we are focusing at the
high-temperature regime for temperature around Tc and above
where the classical spin model is well justified. The average
moment size of Fe is reduced only weakly of about 10% up
to Tc. In contrast, the reduction of the average moments of Co
and Ni in percentage increase by a factor of 2 compared to Fe.
Our results are consistent with what have been found in [9]
where the changes on the Ni size are continuous Tc, however,
a different behavior for Ni was shown in Ref. [10]. Despite
a rather constant average moment size, the variation on the
level of individual local moment sizes is rather different. This
is shown in Fig. 6(b), where we have calculated the standard
deviation of the local moment size as a function of temperature.
Compared to Fe and Co where the standard deviations are
relatively small at low temperatures, Ni has a large standard
deviation even at low temperatures. This fact indicates that the
description of a “rigid moment” in the longitudinal direction
is appropriate for Fe, intermediate for Co, but not so for Ni,
as expected since Ni moments being the most itinerant of the
three.

In Fig. 7(a), the component-resolved local moment size
and magnetization are calculated for Py. We focus on a few

184432-8



EXTENDED SPIN MODEL IN ATOMISTIC SIMULATIONS . . . PHYSICAL REVIEW B 95, 184432 (2017)

FIG. 7. (a) The average magnetization of Py 〈M〉, the sublattice
magnetization of Fe and Ni (MFe and MNi), and local moment size of
Fe and Ni (|mFe| and |mNi|) as a function of temperature. (b) Moment
size distribution of Fe and Ni moments in Py at T = 10 and 550 K.

intricate features that could only be displayed in random alloys.
First of all, the size of Fe moments in Py is calculated to
be larger than it is in the elemental Fe while the moment
size of Ni has roughly the same value, as expected from
other studies [54]. Moreover, compared to the elemental Fe
where moment sizes are rather constant, the local Fe moments
in Py are more strongly reduced, in particular above Tc. In
Fig. 7(b), the moment size distributions of Fe and Ni in Py are
shown for two temperatures, T = 10 and 550 K. At T = 10 K,
the longitudinal fluctuations are small for both Fe and Ni
resulting in narrow distribution. At elevated temperatures, the
longitudinal fluctuations are more energetically favored. At
T = 550 K, right below the Tc of the system, the moment
distribution of Fe shows an asymmetry with a long tail to small
moments. The distribution profile of Ni is rather different than
Fe. It has a significant shift to small moments indicating that
Ni prefer to eventually lose its moment.

F. Impact of LSF on the high-temperature properties

In Fig. 8, we show the magnetic short-range ordering
(MSRO) in terms of the average tilting angle between the
nearest-neighbor moments as a function of the temperature
relatively to the ordering temperature Tc. It is found that
above Tc the LSF term has negligible effect on the tilting angle,
moreover, it is only determined by the underlying structures,
which can be seen from the fact that all systems in fcc lattices

FIG. 8. The average tilting angle θNN between the nearest neigh-
bors of Fe, Ni, Py, and Co with selected cases included LSF term
plotted as a function of relative temperature T/Tc, where Tc is the
Curie temperature. LSF denotes that longitudinal fluctuations are
included.

the temperature-dependent θNN is essentially the same. Our
results confirm the conclusion in Ref. [41] where it was
reported that the MSRO is expected to be weak for spin models
of similar type as we employ in this study. In fact, the degree of
MSRO is expected to be more or less constant for a large range
of itinerancy. To be more specific, we obtain cosθNN = 0.2 at
T = 1.1Tc for Fe which is in an excellent agreement with
the value calculated in Ref. [41]. At temperatures below
Tc, in the case of Fe and Ni, including LSF renders a
reduced tilting angle compared to without. Co sticks out from
the other systems by showing a rather different behavior where
the θNN increases gradually at the low-temperature regime
while rapidly at around Tc.

Apart from the average tilting angle that reveals only the
nearest-neighbor ordering, the magnetic order can also be
evaluated through the correlation length of the real-space
correlation function 〈m0 · mj 〉 fitting to the Ornstein-Zernike
expression [55] ∼exp(−κd)/d, where d is the intersite dis-

tance and κ (Å
−1

) the inverse correlation length. A comparison
of the correlation length may not be elucidated directly from
Fig. 9, however, κ can be analyzed from the fitting of the
Ornstein-Zernike expression. In Table III, the summarized
inverse correlation length κ obtained for T/Tc = 1.25 is listed.
Ni is found having the longest correlation length in comparison
with the other systems. Compared with the previous theoretical
work [9], we obtained a good agreement in general. Despite
we have taken into account both contributions from the nearest
and the next-nearest shells, whereas it did not in Ref. [9], the
κ is proved to be insensitive to this aspect. The surprisingly
good agreement with the experimental value, however, should
not be overcredited. Due to small finite-size effects present
in the simulation data, we included a constant term in the
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FIG. 9. Real-space pair-correlation function 〈m0 · mj 〉, where
m0 = M0/|M0|, shown as a function of interatomic distance d relative
to the lattice constant a at T = 1.25Tc. The dots are the calculated data
points for Fe, Co, Ni, and Py, respectively, while the lines are plotted
from the data fitted to the Ornstein-Zernike expression [55]. Using
this expression, the inverse correlation length κ can be extracted.

least-square fitting procedure that shifts the entire function.
In addition, while the monotonous decease of the Ornstein-
Zernike expression is suitable for describing the long-range
tail of the correlation function, it is unable to describe the
oscillation noises due to the underlying crystal structure. The
cumulative effects from those factors give rise to an estimated
error bar of about ±10%.

G. Remarks of treatment of exchange, phase space measure,
and connection to previous works

In this section, we will discuss in more details about some
technical challenges and design choices in our implementation
and comparison with previous works. From the outset, our
implementation was designed to treat arbitrary number of
magnetic components which give us some freedom for single-
component systems such as Fe, Co, and Ni. These systems
could in our implementation be treated as binary alloys which
could slightly affect the energetics of the exchange and LSF
terms within each trial update in the Monte Carlo simulations.
As mentioned in Sec. II B, the parameters in the simulations

TABLE III. The averaged tilted angle between the nearest
neighbors θNN at Tc and at T = 1.25Tc and correlation length κ at
T = 1.25Tc. Our calculations including (without) LSF are denoted
LSF (N) and compared to previous theory (Ref.) and experiments
(Expt.).

θNN (deg.) κ (Å
−1

) at T = 1.25Tc

System Tc 1.25 Tc LSF N Ref. Expt.

Fe 70 81 0.40 0.36 0.38a 0.40b

Co 69 85 0.38 0.25 0.34a

Ni 78 86 0.24 0.28 0.28a 0.24c

Py 76 85 0.26 0.27

aReference [9].
bReference [56].
cReference [57].

depend on the magnitude of the trial moment as well as the
average magnitude of the surrounding moments of each of
the other components. If there is only a single component,
then it reduces to the local moment magnitude and the LSF
term is nothing else than the Landau-type expression that was
employed, for example, in [9] for Fe, Co, and Ni, in [19] for Fe,
and in [58] for FeRh. Using the rescaled exchange parameters
from LDA, we repeat calculations of Tc for Fe and Ni but
as treated as single component. We obtained 935 and 308 K,
respectively, compared to 926 and 432 K as from Table I
treated as binary. Fe is basically unaffected by the simplified
treatment due to the stable moments in which the LSF energy
has a deep minimum, whereas Ni is found to be even softer
than using the more advanced binary component treatment. If
instead the “bare” exchange interactions from the DLM state
without rescaling are employed, the values of Tc change to
1120 and 617 K for Fe and Ni, respectively. It is worth noting
that the total energy in the FM limit is, however, not correct in
this case. The value of Fe then becomes slightly overestimated
compared to experiments (1043 K), while for Ni, excellent
results that are remarkable close to the experimental value of
633 K are found. This rather good agreement can only be
considered as fortuitous where shortcomings of the energetics
from the underlying LDA (or GGA) calculations are balancing
out each other. The value of Ni is also remarkable close to what
was found in Ref. [10] where similar exchange interactions
from the DLM state were employed, but in that study a more
elaborate LSF energy term was employed which indeed may
improve the description of the high-temperature properties.

As pointed out in Sec. II C, the choice of PSM does matter
in models including longitudinal spin fluctuations. Using the
PSM including Jacobian weight instead of uniform put larger
statistical weight to states with larger moments and in general
that causes larger resistance to decreasing the moment. As a
consequence, for all systems, apart from Fe that shows minor
differences due to its stable moment, the critical temperature is
considerably higher with the Jacobian included. For instance,
the Tc of Ni (LDA) is increased from 432 to 613 K and in
Py from 482 to 708 K bringing the values much closer to
experiment (633 and 850 K, respectively). A more detailed
comparison of different choices of PSM in the simulations is,
however, left for a future study.

IV. SUMMARY

We have constructed a general framework for atomistic
simulations of multicomponent random alloys including longi-
tudinal fluctuations. The main ingredients consist of mapping
total energies from electronic structure calculations for a num-
ber of fixed magnetic moments in both the low-temperature
ferromagnetic limit and the high-temperature paramagnetic
limit. The model is then “exact” in the both limits and
interpolating between the two at intermediate temperatures.
Within the model, each magnetic moment magnitude is
allowed to change in a fashion that approximately corresponds
to Stoner excitations in real materials and the model is
constructed in such a way that the strength of the exchange
energy is independent on the starting reference state of the
mapping, which is typically not the case found in previous
studies. However, the model is not limited to ferromagnetic
systems as performed in this study but can also be applied to
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noncollinear and antiferromagnetic systems by using different
choices of the reference states.

The computational framework has been implemented in
Monte Carlo simulations and applied to the elemental transi-
tion metals Fe, Co, and Ni, together with the binary random
alloys Py and Fe-Co alloys. Regarding Curie temperatures,
with the exception of Fe, the calculated values in general are
slightly underestimated compared to experiments. However,
the values are rather insensitive from the starting reference
state which is an attractive feature lacking in “normal” sim-
ulations for most materials. The simulations do qualitatively
describe rather well the high-temperature magnetic properties
such as the correlation where excellent results compared to
experiments are found.
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[13] M. Ležaić, P. Mavropoulos, G. Bihlmayer, and S. Blügel, Phys.

Rev. B 88, 134403 (2013).
[14] L. M. Sandratskii, R. Singer, and E. Şaşıoğlu, Phys. Rev. B 76,
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