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Stability phase diagram of a perpendicular magnetic tunnel junction in noncollinear geometry
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Experimental measurements performed on MgO-based perpendicular magnetic tunnel junctions show a strong
dependence of the stability voltage-field diagrams as a function of the direction of the magnetic field with
respect to the plane of the sample. When the magnetic field is applied in-plane, systematic nonlinear phase
boundaries are observed for various lateral sizes. The simulation results based on the phenomenological Landau-
Lifshitz-Gilbert equation including the in-plane and out-of-plane spin transfer torques are consistent with the
measurements if a second-order anisotropy contribution is considered. Furthermore, performing the stability
analysis in linear approximation allowed us to analytically extract the critical switching voltage at zero temperature
in the presence of an in-plane field. This study indicates that in the noncollinear geometry investigations are
suitable to detect the presence of the second-order term in the anisotropy. Such higher order anisotropy term can
yield an easy-cone anisotropy which reduces the thermal stability factor but allows for more reproducible spin
transfer torque switching due to a reduced stochasticity of the switching. As a result, the energy per write event
decreases much faster than the thermal stability factor as the second-order anisotropy becomes more negative.
Easy-cone anisotropy can be useful for fast-switching spin transfer torque magnetic random access memories
provided the thermal stability can be maintained above the required value for a given memory specification.
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I. INTRODUCTION

Magnetic tunnel junctions (MTJs) based on perpendicular
magnetic anisotropy (PMA) systems are intensively studied
for the development of the next generations of spin transfer
torque magnetic random access memories (STT-MRAM). The
information is stored by the orientation of the magnetization
of the free (storage) layer relative to that of the reference layer.
The readout is performed by measuring the pillar resistance
which varies depending on the magnetic configuration due to
the MTJ tunnel magnetoresistance. Several key parameters
are of importance: first, stability against disturbances, i.e.,
thermal fluctuations and spurious magnetic fields, usually
characterized by the thermal stability factor �; second, the
critical current for writing Ic0, extrapolated at 1 ns from the
variation of Ic versus logarithm of pulse width measured in
the thermally activated regime; and finally, the corresponding
write voltage which directly influences the write endurance.
In the past few years, many research and development efforts
were devoted to material development aiming at the control
and optimization of the PMA arising from the magnetic
metal/oxide interfaces [1–6] since the use of materials with
strong interfacial perpendicular anisotropy allows combining
good thermal stability down to quite small lateral sizes (below
30 nm) together with relatively low Gilbert damping [7,8].
Out-of-plane magnetized MgO-based MTJs were identified
to be very promising candidates exhibiting magnetoresistance
values close to or above 200%, which is required to reduce
read access time and read error rates. Writing voltage of
about 0.75 V at 10 ns pulse width allowing one to reach a
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10−6 bit error rate was obtained on 11 nm diameter MTJ
pillars [9]. In STT-MRAM, the reversal between the two
stable states is enabled by spin transfer torque (STT) [10,11].
In the macrospin picture of conventional STT-MRAM, the
magnetizations of the free layer and reference layer are
parallel (P) or antiparallel (AP) to each other at equilibrium.
This makes the STT switching inherently stochastic since
a large enough thermal fluctuation is required to trigger
the magnetization reversal. As a result, higher voltage or
longer write pulses are needed to reach sufficiently low bit
error rates [12]. Reducing the write current remains one of
the most important requirements to achieve sub-10 ns and
quasi-infinitely enduring STT-MRAM suitable for static ran-
dom access memory (SRAM) type applications. Introducing
noncollinearity between the reference layer magnetization and
that of the storage layer is a way to reduce or suppress the
stochasticity of the switching. A geometry which received
a great deal of attention is that of the orthogonal polarizer
and storage layer (so-called OST-MRAM) in which sub-ns
switching was demonstrated [13–15]. Recently, it was shown
also that noncollinearity between the free layer and the
reference layer could be induced by introducing an easy-cone
anisotropy in one of the MTJ magnetic electrodes, preferably
the storage layer [16–18]. This easy-cone anisotropy results
from a higher order anisotropy term which may itself originate
from spatial fluctuations of first-order anisotropy [19]. This
canted equilibrium state is advantageous for spin torque driven
switching since the STT becomes immediately effective at the
very onset of the write current pulse which strongly attenuates
the stochastic character of the switching.

In general, stability field-voltage diagrams are useful tools
to study the mechanisms and the properties of STT-induced
magnetization reversal. However, these diagrams are usually
measured in a collinear geometry, i.e., with the external
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magnetic field H applied parallel to the easy-axis of MTJ
magnetic layers (free layer and polarizer) [20,21]. Considering
the rising interest for noncollinear geometries, it is also
interesting to study these phase diagrams in such geometry,
i.e., in situations where the field is applied at some angle
with respect to the normal to the layers, introducing thus
a noncollinearity in the static configuration of the storage
and polarizer layers. Noncollinear configurations of magnetic
electrodes influences the switching characteristics of the
storage layer and therefore the field-voltage phase boundaries
of the stability diagram.

In this study, the voltage-field (V-H) stability diagrams were
investigated experimentally and by simulations as a function of
the applied field orientation from easy-axis (perpendicular to
the plane of the layers) to hard-plane (in-plane). Experimental
measurements were performed on MgO-based magnetic
tunnel junctions with various diameters ranging from
50 nm to 150 nm. We found that the shape of the stability
field-voltage diagrams depends strongly on the direction of
the applied field while the bistable parallel/antiparallel (P/AP)
region preserves its symmetry around the origin.

We have found also a quite noticeable difference in the
shape of measured and simulated hard-axis V-H diagrams,
H in the hard plane, when considering that the anisotropy is
only of uniaxial form. However, a good agreement between
experiments and simulations is recovered when a second-
order anisotropy contribution is introduced in the model. The
signature of this higher order anisotropy term is not always
visible in the collinear geometry but clearly shows up once
the field is applied away from the normal to the plane of the
sample. Such second-order anisotropy contribution is similar
to that reported previously [17,18,22–25].

The paper is organized as follows. The first part provides
the description of the samples, protocol of measurement, and a
summary of the experimental results. The phenomenological
model used for the simulation is introduced in the second
part followed by a discussion on the stability diagrams
predicted under different conditions. The analytical model
developed for in-plane configuration allows us to easily derive
the phase boundaries and confirms the role of the second-
order contribution to the anisotropy on the observed shape
of the stability diagrams. The impact of this second-order
contribution on the magnetic thermal stability and on the STT
efficiency of the magnetization switching is analyzed at the
end from the write energy point of view.

II. EXPERIMENTAL STABILITY DIAGRAMS

Perpendicular MTJ (pMTJ) pillar arrays with nominal
diameters ranging between 50 nm and 150 nm were fabricated
from a MTJ stack grown by dc and rf magnetron sputtering
on a thermally oxidized Si substrate. The stack has a bottom
reference pMTJ structure with the polarizer layer fixed by
a synthetic antiferromagnet. The free layer is sandwiched
between two MgO layers. Saturation magnetization of the
free layer was measured to be 1030 kA/m. Current in-plane
magnetotransport measurements yielded RA = 5.7 �μm2 and
tunneling magnetoresistance ratio (TMR) = 126%. A second
MgO barrier was introduced on top of the storage layer to
increase the perpendicular anisotropy of the free layer. Its

FIG. 1. Experimental stability V-H diagrams of 80 nm diameter
MTJ at room temperature for θH = 0◦, 40◦, 70◦, and 90◦. Voltage
pulse length was 100 ns. The color scale is related to the resistance
of MTJ.

resistance-area (RA) product is much lower than that of the
main tunnel barrier. Additional information on these samples
can be found in Ref. [18]. The procedure for V-H stability
diagram measurements is similar to that described in Ref. [20].
A single pMTJ pillar was wire bonded and placed in a physical
properties measurement system (PPMS) on a sample rotator. In
this work, instead of measuring the device resistance–magnetic
field (R-H) loops at constant writing pulse amplitude, as
in Ref. [20], we measured device resistance–writing pulse
voltage (R-V) loops at each magnetic field point. Within each
R-V loop, a sequence of writing pulses with continuously
changing amplitude was applied and after each writing pulse
the resistance of the pMTJ pillar was measured by applying a
small bias current (∼1 μA). Considering the stochasticity of
the switching, at each H point, the measurement of an R-V
loop was repeated 30 times and then averaged. For a magnetic
field applied along the easy axis, i.e., in the out-of-plane
direction, a final diagram is constructed from R-V loops at
different H field points, as in Fig. 1 for θH = 0◦. The figure
shows three main resistance states: the high-resistance region,
where only the antiparallel (AP) configuration is stable, the
low-resistance region, with only the parallel (P) state being
stable, and the bistable P/AP region with the resistance equal
to half the sum of the resistances in AP and P states for a given
H field point. In the case of noncollinear configuration of the
magnetic electrodes, introduced here by the tilted magnetic
field, high and low resistance values become field-dependent,
so that color gradients representing variable resistance states
appear in all three regions (see, for example, Fig. 1, θH = 90◦).

Upon varying the orientation of the magnetic field, the
shape of the V-H diagram is evolving. For the easy-axis case
(θH = 0◦), the V-H stability diagram exhibits the parallelogram
shape already reported in Ref. [26]: two vertical field-driven
phase boundaries corresponding to the coercive fields (positive
and negative) and two parallel voltage-driven phase boundaries
with linear voltage-field variation corresponding to the STT-
induced magnetization switching. When increasing the field
angle with respect to the normal to the layers, the coercive
field decreases up to 45◦ and then increases back for higher
angles. This variation follows the common variation of the
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Stoner-Wohlfarth model [27]. However, the voltage-driven
phase boundaries are not following a linear V-H variation,
developing a flying seagull shape once the magnetic field is
applied close to the hard plane and the switching voltage al-
ways increases with increasing applied in-plane field modulus.
Nevertheless, the bistable region still keeps a rough central
symmetry whatever the magnetic field angle. In Fig. 1, one
may note however a more pronounced resistance variation
at large negative fields than at large positive fields for the
measurements performed with field applied at 70◦ or 90◦.
This can be ascribed to a slight dipolar field exerted by the
reference layer on the storage layer. This dipolar coupling is
visible on the stability diagram measured at 0◦ from the shift
of the bistable region along the field axis (see Supplemental
Material [28]).

The experimental investigation was carried out systemati-
cally for pillars with diameters ranging between 50 nm and 150
nm. The evolution of the stability diagrams with the orientation
of the external field was found to be similar to that reported
in Fig. 1 whatever the lateral size and it is qualitatively the
same at lower temperatures (at least for T < 190 K). Some
shifts of the boundaries are observed but without changing the
shape of the curves. This behavior seems to be generated by
a mechanism independent of the size of the sample and most
probably intrinsic to the pillar pMTJ stack structure.

In order to obtain a better understanding on the experimental
results, a phenomenological macrospin model based on the
Landau-Lifshitz-Gilbert equation was used. It is described in
the next section.

III. NUMERICAL STABILITY DIAGRAMS

The response of the magnetization of the free layer to the
simultaneous action of the static applied field and spin transfer
torques due to the injection of a voltage pulse was simulated
using the Landau-Lifshitz-Gilbert equation (LLG) [29,30]
including two additional terms related to the STT (damping-
like and field-like). The phenomenological equation of the
magnetization dynamics is written as

dm
dt

= −γ (m × μ0Heff) + α

(
m × dm

dt

)

− γ a‖V [m × (m × p)] + γ a⊥V 2(m × p), (1)

where m is a unit vector along the free layer magnetization,
α is the Gilbert damping constant, γ is the gyromagnetic
ratio of free electrons, μ0 is the vacuum permeability, and
p is a unit vector along the current spin polarization. The
damping-like STT torque is supposed to vary linearly with
the applied voltage V while the field-like STT torque has
a quadratic voltage dependence in the case of symmetric
MTJs. The phenomenological transport parameters a‖ and
a⊥ can be evaluated from free-electron, tight-binding, or
first-principles [31–39] models of the MTJ. The effective field
Heff is derived from the Gibbs free energy density functional
which in macrospin approximation reads

E = −K1(uK · m)2 − μ0MsHext · m

+ 1

2
μ0M

2
s

(
Nxxm

2
x + Nyym

2
y + Nzzm

2
z

)
, (2)

FIG. 2. Geometry of the noncollinear MTJ system. OZ is along
the uniaxial anisotropy axis uK (perpendicular to the MTJ x-y plane);
m, free layer magnetization; θ , angle between magnetization and z
axis; p, unit vector along current spin polarization; Hext, external
applied field; and θH , angle between applied field and z axis.

where Hext is the external magnetic field, uK is the magne-
tocrystalline axis, K1 is the first-order uniaxial anisotropy
constant (K1 > 0), Ms is the saturation magnetization of
the free layer, and (Nxx , Nyy , Nzz) the diagonal terms
of the demagnetizing tensor assuming the sample can be
approximated with an ellipsoidal shape.

The geometry of the noncollinear pMTJ system is shown
in Fig. 2. The uniaxial anisotropy is directed along the z axis,
i.e., uK = (0,0,1), the external magnetic field Hext is in the x-z
plane tilted away from z axis with the polar angle θH , and the
current spin polarization points along the z axis, p = (0,0,1).

To compute the numerical V-H diagrams, a procedure
similar to the experimental one is followed. The free layer
magnetization is relaxed under a given applied field and a
writing pulse is applied for 100 ns. The state of the free layer
is measured after twice the pulse length. The amplitude of
the voltage is gradually changed in the loop in the sequence
0 → Vmax → Vmin → 0. The LLG solver uses time steps
shorter than 2 fs. The average value of the mz component
of magnetization for a given voltage in the loop is plotted as a
point on the diagram.

The V-H stability diagrams were computed for several
orientations of the applied field and are shown in Fig. 3(a). For
the collinear case (θH = 0◦), the numerical and experimental
diagrams are very similar in shape. The switching V (H )
boundaries are linear and parallel for the P to AP and
AP to P transitions. Varying the polar angle θH gradually
changes the shape of the stability diagrams. The slope of
the V (H ) switching boundaries gradually decreases and these
boundaries acquire some curvature. At θH = 90◦ the switching
boundaries become flat over a large range of field around
zero field. However, close to the in-plane saturation field, the
switching voltage increases sharply.

Changing the amplitude of the anisotropy constant shifts
the phase boundaries but the shape of the diagrams remains
the same. At this point, the numerical investigation is in
disagreement with the experimental observations. Full 3D mi-
cromagnetic simulations, not shown here, were also carried out
and the results were similar to the present macrospin results.
Therefore, the shape of the experimental diagrams could not be
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(a) (c)

(b) (d)

FIG. 3. Calculated stability diagrams at T = 0 K with field applied at 0◦, 40◦, 70◦, and 90◦ away from the z axis. Simulation parameters:
K1 = 778 kJ/m3, Ms = 106 A/m, Nxx = Nyy = 0.04, Nzz = 0.92, α = 0.01, a‖ = 16 × 10−3 T/V, a⊥ = 10−3 T/V2, a second-order term of
the form −K2 cos4 θ in the anisotropy (a) K2 = 0 J/m3, (b) K2 = −50 kJ/m3, (c) K2 = −100 kJ/m3, and (d) K2 = −150 kJ/m3.

explained under the present model assumptions even by taking
into account possible nonuniform magnetization dynamics.

Several recent publications have reported the possible
presence of an additional second-order anisotropy term of the
form −K2 cos2 θ [18,22] in structures similar to ours. Under
this assumption, the anisotropy contribution to the free energy
density (2) is modified as follows:

Ea = −K1(uK · m)2 − K2(uK · m)4. (3)

Uniaxial magnetocrystalline anisotropy in hexagonal crys-
tals along the c axis, for instance, is usually described as
a power series of sine, K̃1 sin2 θ + K̃2 sin4 θ (see Eq. (1)
in Ref. [24]). In our case, as well as in several other
works related to perpendicular anisotropy study in STT-
MRAM [18,23,40,41], it was found to be more convenient to
express the anisotropy as a cosine series expansion in Eq. (3).
Both notations can be mathematically transformed into one
another but the derived constants differ in magnitudes and/or
signs. In the first case (sine series expansion), a continuous
increase of −K2/K1 ratio with K2 < 0 and K1 > 0 will
describe emergence of an easy-cone state from the basal
plane with the cone angle shrinking. In contrast, the second
notation (cosine expansion) yields emergence of the easy-cone
state from the film normal with further cone angle increase.
The latter case corresponds to our experimental observations
reported in Ref. [18]: upon decreasing the temperature, the
easy-cone starts developing from the out-of-plane direction

which in the second notation (cosines expansion) gives a
continuous increase of K2/K1 ratio versus temperature. On
a contrary, the first notation would yield a discontinuity of this
ratio when the magnetization starts departing from the normal
to the plane.

Based on this modified model, Figs. 3(b)–3(d) summarize
the V-H stability diagrams computed with three different values
of K2. In the collinear case θH = 0◦, the shape of the diagrams
is unchanged. Only the size of the bistable region shrunk.
Almost parallel linear switching boundaries are observed as in
the case K2 = 0. However, once the symmetry is broken by
the field direction, several changes arise. Assuming a stronger
second-order contribution (i.e., increasing |K2|), we find a
better correlation with the experimental diagrams.

This systematic numerical study points out the importance
of the second-order anisotropy term and shows that the
collinear configuration alone does not allow us to identify
its role. In contrast, investigating the switching behavior in
the noncollinear configuration allows elucidating the presence
and role of higher anisotropy terms.

Due to this second-order term, when the condition K1 −
μ0(Nzz − Nxx)M2

s /2 + 2K2 < 0 is fulfilled, the magnetiza-
tion of the magnetic layer is no longer along the normal to the
layers at zero field, but rather lies on an easy-cone surface [22].
Both values of K2 considered in Figs. 3(b) and 3(c) are not
sufficiently negative to allow the onset of the easy-cone state
since the K2 threshold is −112.7 kJ/m3. Nevertheless, close to
the threshold for the onset of the easy-cone regime, the shape
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FIG. 4. Numerical stability diagrams at 300 K with K2 =
−150 kJ/m3, � = 1.96 × 103 nm3, a‖ = 6 × 10−3 T/V using 100
events per point. Other parameters are the same as in Fig. 3.

of the diagrams for θH = 90◦ is significantly affected by the
presence of the second-order anisotropy term. Therefore, to
obtain the “seagull” shape of the V-H stability diagram, it is
not necessary to be in an established easy-cone regime.

The presence of a second-order anisotropy also explains the
difference in slopes dV/dH of the critical lines at positive and
negative fields at intermediate angles of application of the field
(see the diagram at, e.g., 40◦ in Fig. 1). If one considers the
energy surface defined by the anisotropy and the z component
of the applied field, the application of the field in the positive
direction yields a reduction in the easy-cone opening angle. In
contrast, if the field is applied in the negative direction, this
results in an increase in the easy-cone opening angle. In the
former case, the critical voltage for magnetization switching
tends to increase whereas in the latter one, it tends to decrease
thus explaining the asymmetry seen in Fig. 1 at 40◦. Conversely
in the AP state, the situation is reversed so that the slope
dV/dH is larger at positive fields than at negative fields.

At high fields near the saturation, there is an unstable region
in which thermal fluctuations may affect the shape of the stabil-
ity diagram. To check the impact of the thermal fluctuations,
at finite temperature, a fluctuating term corresponding to a
Gaussian distributed thermal field HTR was added to the total
effective field Heff in LLG equation (1). This fluctuating field
has the following properties [42]:

〈HTR(t)〉 = 0,

〈HTR(t)HTR(t ′)〉 = 2αkBT

γμ0Ms�
δ(t − t ′), (4)

where kB is the Boltzmann constant and � is the sample
volume. The time integration is based on the Heun predictor
corrector scheme [43] using a time step lower than 2 fs. The
stability diagrams were recomputed with temperature, each
point being the average of 100 events. The updated diagrams
are plotted in Fig. 4 for a constant value of K2 = −150 kJ/m3.
One might notice that the temperature leads to smoother
boundaries on the diagram at high fields, the similarity with
the experimental diagrams is improved, and the increase
of threshold voltage with applied field remains in the case
θH = 90◦. Again, we find that the noncollinear geometry is
required to reveal the influence of the second-order anisotropy
term.

Regardless of its origin [19], this second-order anisotropy
contribution has a significant impact on the static and dynamic
properties of the magnetic layer and should be considered
in the optimization of the pillar stack composition and
nanofabrication.

IV. ANALYTICAL SOLUTION FOR IN-PLANE
FIELD CONFIGURATION

The extreme case where the magnetic field is applied
in the plane of the free layer θH = 90◦ is very interesting
since the signature of the second-order contribution to the
anisotropy is most evident in this case. Finding an analytical
expression for the critical V (H ) switching boundary would
allow a straightforward characterization of the sample. Thus
we have developed hereafter an analytical approach to predict
the behavior of the magnetic free layer with a given set
of material parameters when the field is applied in the
x-y plane.

The approach comprises two steps. First, the equilibrium
angle θ0(Hx) between the magnetization of the free layer and
the normal to the layers plane is found for a given value
of the in-plane magnetic field Hx with no applied voltage.
Second, the LLG equation with spin torque terms Eq. (1) is
linearized near the initial equilibrium angle θ0(Hx) and the
stability conditions are derived following a similar procedure
to that reported in Ref. [26].

In spherical coordinates, for a continuous thin film
N = (0,0,1). Assuming θH = 90◦ and considering only
the damping-like term due to the out-of-plane polarizer
p = (0,0,1), the LLG equation Eq. (1) reads

θ̇ = γ

1 + α2

[
Hx(α cos θ cos ϕ − sin ϕ) − sin θ

(
α cos θ

2(K + 2K2 cos2 θ )

μ0Ms

+ a‖
μ0

V

)]
,

ϕ̇ = − 1

sin θ

γ

1 + α2

[
Hx(cos θ cos ϕ + α sin ϕ) − sin θ

(
cos θ

2(K + 2K2 cos2 θ )

μ0Ms

− α
a‖
μ0

V

)]
, (5)

where K = K1 − μ0M
2
s /2 is an effective uniaxial anisotropy

constant and Hx is the x component of the external field vector
Hext = (Hx,0,0).

At equilibrium, the time derivative of the polar angle θ

vanishes and thus the left part of the first equation in Eq. (5)
has to be zero. Without applied voltage, since the field is

supposed to be along the x axis, the azimuthal angle ϕ0 = 0◦
and the problem is reduced to the following cubic equation:

2K sin θ0 + 4K2(sin θ0 − sin3 θ0) − μ0HxMs = 0. (6)

The equation has three solutions for sin θ0 but only one is
suitable and has a real value. The equilibrium polar angle θ0 is
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FIG. 5. Dependence of equilibrium mx = sin θ0 versus Hx for
different values of K2 according to Eq. (7) and Eq. (8). Colored circles
are results issued from the LLG integration for the same parameters.

thus uniquely determined. There are two regimes depending
on the strength of the K2 constant with respect to the effective
K and the solution is expressed as follows:

(1) if K + 2K2 < 0:

sin θ0(Hx) = 2

√
1 − 	

3
cos

(
arccos ξ

3

)
, (7)

(2) if K + 2K2 > 0:

sin θ0(Hx) = 2

√
1 − 	

3
sin

(
arcsin ξ

3

)
, (8)

where 	 = K/(2|K2|), EH = μ0HxMs , and

ξ = − 27EH

8K2[3(1 − 	)]3/2
. (9)

In the limit case of zero applied field, the equilibrium polar
angle θ0 is given by

sin θ0(0) =
{√

1 − 	, K + 2K2 < 0,

0, K + 2K2 > 0.
(10)

One might note that the above case (a) corresponds to the
situation of the existence of an easy-cone state as recently
reported in Ref. [44] while the case (b) is the common
perpendicular state (“up” or “down”).

The relations given by Eqs. (7) and (8) are used to find the
equilibrium value mx = sin θ0 upon varying the Hx field. The
corresponding magnetization curves are plotted in Fig. 5 for
several values of K2.

Once the equilibrium magnetization is found without
any applied voltage and fixed in-plane field, one might
proceed to the linearization of the system of equations (5)
with the following substitution of variables: θ → θ0 + δθ ,
ϕ → ϕ0 + δϕ, and keeping just the first-order terms in the
developments. The polar angle θ0 is an equilibrium angle given
by Eqs. (7) or (8) depending on the K2 constant value while
the azimuthal angle ϕ0 is found from the first equation in (5)
if θ̇ = 0 under applied voltage. In case of small deviations of
ϕ0 angle cos ϕ0 ≈ 1 and

sin ϕ0 = − a‖
μ0Hx

V sin θ0. (11)

This expression imposes a restriction on some parameters of
the system such that the following condition is satisfied:

∣∣∣∣ a‖
μ0Hx

V sin θ0

∣∣∣∣ � 1. (12)

This restriction is intrinsically valid for the weak K2 case
for any value of the Hx . In contrast, it fails for very small
Hx (<1 mT, planar saturation field ∼300 mT) and small
voltages in the case of the strong K2 since there is not any
static equilibrium in such condition as previously reported by
Jang et al. [44] for Hx = 0. Using (7) and (8) we can express
this condition in the limit Hx → 0:

a‖V � lim
Hx→0

μ0Hx

sin θ0(Hx)

=
{− 4(K+2K2)

Ms
, K + 2K2 < 0,

2(K+2K2)
Ms

, K + 2K2 > 0.
(13)

The relation given by Eq. (13) is valid above and below
the threshold but not in the vicinity of K + 2K2 = 0 (i.e.,
crossover from easy axis to easy cone). The linearization of
the system of equations (5) around the existing equilibrium
state at some field Hx and applied voltage V allows us to
deduce the following set of two equations:

δ̇θ =A0 + A1δϕ + A2δθ,

˙δϕ =B0 + B1δϕ + B2δθ,
(14)

where the coefficients Ai , Bi are given in the Appendix. The
solution δθ (t) and δϕ(t) of this system of equations contains
an exponential time dependence such that

δθ (t), δϕ(t)

∼ exp

[
1

2
(A2 + B1 ±

√
(A2 − B1)2 − 4A1B2)t

]
, (15)

where
√

(A2 − B1)2 − 4A1B2 is a term always imaginary,
so that the critical line (between increasing and decreasing
solutions) is derived from the expression A2 + B1 = 0:

2a‖Vcr cos θ0 + αμ0Hx

×
(

sin θ0 + 1

sin θ0

)√
1 −

(
a‖Vcr

μ0Hx

sin θ0

)2

+ 2α

Ms

[(K + K2) cos 2θ0 + K2 cos 4θ0] = 0, (16)

where Vcr is a critical voltage. It is important to note that this
critical voltage corresponds to the voltage at which the solution
of the LLG equation becomes unstable indicating that the
magnetization starts entering into a precession regime. But this
does not mean it is going to switch to the opposite hemisphere
and therefore this critical voltage is not the switching voltage.
The latter can have slightly larger values than Vcr. In the case
a‖Vcr � (K + 2K2)/Ms and according to Eqs. (12) and (13),
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FIG. 6. Comparison of analytical result (black dotted line) with
result of numerical simulations. T = 0 K, K1 = 778 kJ/m3, K =
150 kJ/m3, α = 0.01, Ms = 106 A/m, Nxx = Nyy = 0, Nzz = 1,
a‖ = 16 × 10−3 T/V, a⊥ = 0, K2,cr = −75 kJ/m3.

expression (16) can be simplified allowing us to express Vcr as

2a‖Vcr cos θ0 + αμ0Hx

(
sin θ0 + 1

sin θ0

)

+ 2α

Ms

[(K + K2) cos 2θ0 + K2 cos 4θ0] = 0. (17)

The relation given by Eq. (16) is the major result of our
analytical model since it provides the dependence of the
critical voltage on the applied field for any set of material
parameters. In Fig. 6, the critical voltage given by Eq. (16) is
plotted (black dotted line) for different values of the anisotropy
constant K2. The analytical results are superposed on the
numerical diagrams obtained from the time integration of the
full LLG equation (1) with the same parameters. One can note a
very good agreement between the analytical model and the
numerical model.

Figure 7(a) shows critical voltage Vcr as extracted from
Eq. (16). For a better visualization, only one quadrant of the
full V-H diagram is shown for weak K2 and negative field and
strong K2 and positive field, respectively. The critical lines
are evolving progressively with the K2 variation; the biggest
change is expected close to the threshold.

V. ENERGETIC EFFICIENCY OF
THE MAGNETIZATION SWITCHING

One important parameter for the application is the esti-
mation of the critical current with no applied field. This is
straightforward for our analytical model. Using Eqs. (10)
and (17) we can find a critical voltage in the limit of zero
field:

Vcr,0 =
{

2α
a‖Ms

(K + 2K2), K + 2K2 > 0,

0, K + 2K2 < 0.
(18)

The first expression is similar to the result obtained recently
(see Eq. (19) in Ref. [26]) if K2 = 0 and for this case the
critical voltage coincides with the switching voltage at zero
field Vsw,0. In the easy-cone regime, Vcr,0 equals zero since
once the voltage is applied the magnetization precesses around
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0.00

0.04

0.08

0.12

0.16

0.20

K2

0 J/m3

-70 kJ/m3 -80 kJ/m3

K+2K2 > 0 K+2K2 < 0

-150 kJ/m3

V
cr
(V
)

μ0H (T)

K2

(a)

(b)

V
cr
(V
)

K2 (kJ/m
3)

K+2K2 > 0K+2K2 < 0

μ0H (T)
0.001
0.005
0.010

FIG. 7. (a) Critical voltage dependence versus in-plane applied
field for several values of K2 varying by step of 10 kJ/m3. Parameters
are the same as in Fig. 6. (b) Critical voltage dependence versus K2 for
several values of in-plane applied field. The colored curves are given
by relation (17). The black curve for μ0H = 1 mT ends up at the limit
defined by expression (12). The circles and triangles are the numerical
values from full LLG integration for different in-plane fields. The
dotted line shows the switching voltage Vsw,0 from the expression (19).

the easy cone [44]. For this very symmetric configuration it is
possible to estimate the switching voltage using the approach
from Ref. [24] and the Vsw,0 reads as follows:

Vsw,0 = α

a‖Ms

√
(2K)3

27|K2| . (19)

The variation of the critical voltage given by Eq. (17) versus
K2 value is plotted in Fig. 7(b). If K + 2K2 > 0, the presence
of K2 allows reducing linearly this critical voltage Vcr,0 upon
reinforcing the second-order anisotropy, the smallest value
being reached close to the easy-axis to easy-cone transition
given by K + 2K2 = 0. Once the easy-cone anisotropy starts
increasing, the critical voltage increases also. In the case of
strong K2 and in the limit of very small applied field, one
might notice that the analytical lines become shorter and the
numerical values are not following anymore the analytical
prediction. This discrepancy is due to the fact that before the
switching in a very symmetric geometry, the magnetization
oscillates on the easy cone as predicted by [44]. This is
an illustration of the difference between Vcr and switching
voltage Vsw mentioned earlier and pointed out in Fig. 7(b)
by the dotted black line (see details in the Supplemental
Material [28]). Nevertheless, as an intermediate conclusion for
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FIG. 8. (a) Energy barrier over switching current calculated from
analytics in the limit of small in-plane applied field at 0 K and static
dc voltage for variable K2. (b) The same ratio estimated numerically
at 300 K for different pulse durations, no applied field, and averaged
upon 500 events. Parameters are the same as in Fig. 6 and the free
layer has a volume � = 1.96 × 103 nm3.

practical application one can state that a way to reduce the write
power consumption is to design the MTJ stack to be close to
the condition K + 2K2 = 0. However, other parameters must
be taken into account as explained in the following.

From a practical point of view one parameter of importance
often considered as the figure of merit in STT-MRAM is the
ratio between the thermal stability and the switching current.
This ratio is plotted in Fig. 8(a) as predicted analytically from
Eq. (17) in the case of an infinite voltage pulse (dc). We sup-
posed that the MTJ has a TMR of 100% varying between 5 k�

and 2.5 k� and the temperature was set at 300 K. The analytical
model predicts a large increase of the ratio in the vicinity of
the K2 threshold. However, the numerical results extracted
from the full LLG integration at 300 K and averaged over
500 measurements show a peak less pronounced in Fig. 8(b).
Moreover upon reducing the pulse duration the maximum of
the curve is disappearing, the curve becomes flatter, and a
change of regime is observed for pulses below 10 ns.

The explanation of this behavior is related to the switching
distribution evolution with the K2 strength. Upon reinforcing
K2, the switching voltage distributions progressively move
towards smaller values and their width becomes narrower as
depicted in Fig. 9. In the inset of Fig. 9, the switching voltage
variation with the pulse duration is shown. As one can see, there
are two regimes: above 30 ns, the voltage is almost constant

0.0 0.1 0.2 0.3 0.4
0

50

100

150

200

250

N

Voltage (V)

0 25 50 75 100
0.0

0.1

0.2

0.3

0.4

K (kJ/m )
0

-37
-75
-113
-140

V
(V
)

pulse duration (ns)

FIG. 9. Number of switching operations versus voltage pulse
amplitude after 500 loops at T = 300 K for a pulse length of 10 ns
for different values of K2. Inset: Dependence of switching voltage
versus writing pulse duration for the same K2 values.

while a sharp increase is observed for very short pulses
below 5 ns.

The pulse duration for STT memory application such as
embedded-FLASH replacement is in the range of 10 ns.
Taking as a reference this pulse duration, the switching voltage
dependence on K2 for two different temperatures 300 K and
30 K is represented in Fig. 10. In the easy-axis regime, the
thermal fluctuations are mandatory for the initiation of the
magnetization switching. Thus the two curves are clearly
separated. In contrast, in the easy-cone regime, the switching
voltage is independent of temperature. In addition, due to
the intrinsic tilt of the magnetization, the two curves are
superposed.

The easy-cone state is thus favorable for memory applica-
tions since the writing stochasticity is considerably reduced.
However, the K2 affects not only the switching voltage but

-140 -120 -100 -80 -60 -40 -20 0
0.0

0.1

0.2

0.3 K+2K2>0K+2K2<0

300K
30K

V
sw
(V
)

K2 (kJ/m
3)

FIG. 10. Switching voltage versus K2 for T = 300 K and
T = 30 K for a pulse duration of 10 ns. The vertical bars are the width
of the voltage distribution. Parameters are the same as in Fig. 8(b).
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FIG. 11. (a) Dependence of � (T = 300 K) and writing energy
on the constant K2 for several pulse durations. (b) Ratio EB/Ewr for
different pulse durations. Parameters are the same as in Fig. 6.

also the energy barrier as given by the following relation:

EB

�
=

{
K2

4|K2| , K + 2K2 < 0,

K + 2K2, K + 2K2 > 0.
(20)

The energy barrier over kBT is shown in Fig. 11(a) by the
gray line. The stability factor is continuously decreasing upon
reinforcing K2. At the onset of the easy-cone regime (K +
2K2 = 0), the stability factor � = EB/(kBT ) has decreased
already by 50% with respect to the situation K2 = 0. This
might be seen as a detrimental factor for memory application.
Nevertheless, the energy consumption of the memory [left axis
Fig. 11(a)] is also continuously decreasing approaching tens
of fJ for 5 ns pulses.

The ratio EB/Ewr is reported in Fig. 11(b). This ratio can
be considered as another figure of merit since it characterizes
the tradeoff between thermal stability of the storage layer
magnetization and the energy to switch it, which depends of the
write current but also on the pulse duration. Figure 11(b) shows
a significant increase of this ratio for short pulse duration for in-
creasingly large negative K2 values. This increase is observed

over the whole range of K2 values. In the easy-cone regime,
this is again due to the reduced stochasticity of the switching
due to the pre-existing initial angle between the storage layer
magnetization and the spin current polarization which allows
the triggering of the switching immediately after the onset
of the write pulse. But even in the easy-axis regime, when
K + 2K2 > 0, the presence of the second-order anisotropy
has a beneficial influence. This is due to the flatter shape of the
energy potential around the direction normal to the plane of the
layer. Because of this flatter shape, weaker thermal fluctuations
can produce larger angle fluctuations of the storage layer
magnetization thus reducing the incubation time preceding
the storage layer magnetization reversal.

As a result, the second-order anisotropy term appears to
be quite beneficial for fast STT-MRAM even in the easy-axis
regime as long as the thermal stability of the storage layer
magnetization can be maintained sufficiently large to cope
with the memory retention specification.

VI. CONCLUSIONS

We performed a systematic experimental investigation of
MTJ in noncollinear geometry. The experimental voltage-field
stability diagrams exhibit a strong dependence on the direction
of the external field with respect to the normal to the layers. By
employing numerical modeling based on the LLG integration,
we showed that an additional second-order uniaxial anisotropy
term of the form −K2 cos4 θ should be taken into account to
explain the experimental observations. Despite the fact that the
application of nonzero in-plane magnetic field Hx introduces
an initial noncollinearity, we have not found any noticeable
decrease of the threshold current with increasing of |Hx |.
This is mainly due to the fact that the noncollinearity has
two opposite impacts. On one hand, it helps the initiation of
the STT-driven dynamics. On the other hand, it decreases the
efficiency of the STT torque absorption since the precession
orbit axis becomes tilted with respect to the polarizer due to
the influence of the nonzero in-plane field Hx . This conclusion
is fully confirmed by macrospin simulations. Furthermore, an
analytical model for a critical line Vcr(H ) in field-in-plane
geometry was developed by linearization of the LLG equation
allowing us to straightforwardly characterize the free layer
state. For memory applications the second-order anisotropy
appears to be an interesting parameter to control and adjust,
since it allows us to write with lower energy and less
stochastically while preserving a reasonable thermal stability.
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APPENDIX

Coefficients of linearized LLG system of equations:

A0 = γ

μ0(1 + α2)

[
μ0Hx(α cos θ0 cos ϕ0 − sin ϕ0) − sin θ0

2α cos θ0

Ms

(K + 2K2 cos2 θ0) + a‖V
]
, (A1)
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A1 = − γHx

1 + α2
(α cos θ0 sin ϕ0 + cos ϕ0), (A2)

A2 = − γ

μ0(1 + α2)

{
αμ0Hx sin θ0 cos ϕ0 + 2α

Ms

[(K + K2) cos 2θ0 + K2 cos 4θ0] + a‖V cos θ0

}
, (A3)

B0 = − γ

μ0(1 + α2)

[
−2 cos θ0

Ms

(K + 2K2 cos2 θ0) + μ0Hx

sin θ0
(cos θ0 cos ϕ0 + α sin ϕ0) + αa‖V

]
, (A4)

B1 = − γHx

(1 + α2) sin θ0
(α cos ϕ0 − cos θ0 sin ϕ0), (A5)

B2 = γ

μ0(1 + α2)

[
−2 sin θ0

Ms

(K + 6K2 cos2 θ0) + μ0Hx

sin2 θ0
(cos ϕ0 + α cos θ0 sin ϕ0)

]
. (A6)
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