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Using ideas from Landau’s Fermi-liquid theory, we apply irreversible thermodynamics to conducting and
insulating ferromagnets with magnetic variables M̂ for the quantization axis and for the spin accumulation
�m of the nonequilibrium excitations; thus the total magnetization is taken to be �M = �M + �m. The resulting
theory closely corresponds to the theory of Silsbee et al. [Silsbee, Janossy, and Monod, Phys. Rev. B 19, 4382
(1979)]. For the bulk, in addition to confirming the usual Landau-Lifshitz equation for M̂ and a Bloch-like
equation for �m (with a nonuniform precession term), there are two related cross-relaxation terms between the
transverse parts of the nonequilibrium �m and �M . Unlike the s-d model, where in a field �H the equilibrium
magnetizations �Ms and �Md are both nonzero, for this m-M model in a field �H , only the equilibrium magnetization
�M is nonzero. For the interface, the boundary condition for M̂ is given by micromagnetics, and that for �m is

given by irreversible thermodynamics, where the current of transverse spins crossing the interface is proportional
to the discontinuity in the transverse part of the vector spin chemical potential. M̂ , �m, and �H are coupled; in
the decoupled approximation, we find the wave vectors for the modes of M̂ and the transverse �m. We discuss
reciprocity between spin pumping ( �M driven out of the ferromagnet) and spin transfer torque ( �M driven into
the ferromagnet).
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I. INTRODUCTION

In 1979, Silsbee, Janossy, and Monod [1] (SJM) employed
a theory that was prescient relative to the modern field
of spintronics [2,3]. In addition to a d-spin magnetization
variable like the usual magnetization �M , it also included
an s-spin magnetization variable like the spin accumulation
�m of spintronics [4,5]. On the other hand, by considering
how the (tensor) spin current �jmi is driven through bulk and
across interfaces, it could explain the phenomenon that the
authors had observed, now known as spin pumping (SP) [6,7].
However, as we shortly show, it can also explain what was
the yet-to-be-predicted phenomenon of spin transfer torque
(STT) [8–13].

The relationship between these two reciprocal phenomena
can be seen in the boundary condition on �jmi for a conducting
ferromagnet F to the left and an ordinary conductor N on
the right [14]. With only transverse components �m⊥ and its
effective field �h∗

⊥, SJM took �jmi to be driven by the difference
in �h∗

⊥ across the interface. Since, as we show, the transverse
part of the vector spin chemical potential �μs⊥ = (γ h̄/2)μ0 �h∗

⊥,
the SJM form for �jmi is the spin analog of an ordinary electric
current (or heat current) being driven across an interface by
the difference across the interface in the ordinary chemical
potential μ (or temperature T ).

To discuss �h∗
⊥, consider a ferromagnet in a uniform

equilibrium with static field �H0 and equilibrium magnetization
�M0 along x̂, and consider only the transverse components of

various quantities.
Then, with dimensionless exchange constant λ and dimen-

sionless magnetic susceptibility χf for the ferromagnet, and
χn for the normal metal, the respective (spin-space) �h∗

⊥’s are
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given by

�h∗
f ⊥ =

(
�Hf + λ �M − �mf

χf

)
⊥
, �h∗

n⊥ =
(

�Hn − �mn

χn

)
⊥
. (1)

(Below we show that these forms are consistent with local
equilibrium.) Taking the �H ’s to be the same for adjacent ma-
terials, with L, a (surface) Onsager coefficient with dimension
of velocity (� of Ref. [1]), Ref. [1] took the equivalent of

�jmx = L(�h∗
n − �h∗

n)⊥ ≈ L
(

λ �M − �mf

χf

+ �mn

χn

)
⊥
. (2)

For spin pumping, ferromagnetic resonance (FMR) drives a
transverse d �M that is a source term for the unknown spin flux
�jmx crossing the F/N interface, as well as the unknown spin
accumulations �mf and �mn. These must all be determined by
the boundary conditions. SJM found each of these quantities,
with rightward �jmx leaving F to enter N [1].

For spin transfer torque, a known leftward spin current �jmx

leaves N and enters F. Then, �jmx in N serves as a source
term for �M , �mf , and �mn; these must all be determined by
the boundary conditions. Using an equivalent bulk theory and
special boundary conditions, in 2002, Zhang, Levy, and Fert
(ZLF) studied spin transfer torque [5]. The sample average of
the torque of the incoming �m yielded both the fieldlike and
dissipationlike torque that were expected.

A. Outline

The present work applies irreversible thermodynamics to
the bulk and surface dynamics of a conductor, using what we
call the m-M model, which is distinct from the s-d model. In
the m-M model, the total magnetization is

�M = �M + �m. (3)

2469-9950/2017/95(18)/184407(12) 184407-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.19.4382
https://doi.org/10.1103/PhysRevB.19.4382
https://doi.org/10.1103/PhysRevB.19.4382
https://doi.org/10.1103/PhysRevB.19.4382
https://doi.org/10.1103/PhysRevB.95.184407


WAYNE M. SASLOW PHYSICAL REVIEW B 95, 184407 (2017)

(Above we consider that �M = MM̂ , where M often equals
a fixed equilibrium value Meq in a field �H . A change
dM in | �M| may be thought of as M̂ · d �m. Except when
first-order terms in dM are important, in what follows we
rarely distinguish between M and Meq .) After discussing
the thermodynamic variables and their thermodynamics, we
write down their equations of motion with unknown flux
and source terms. By imposing the condition that the fluxes
and sources make the equations of motion consistent with
thermodynamics at all times, and imposing non-negativity of
entropy production and the appropriate symmetries, the form
of the fluxes and sources is found. Appendix A considers
the irreversible thermodynamics if �M and �m also apply
to insulating ferromagnets. Appendix B considers issues of
notation.

Irreversible thermodynamics largely yields agreement with
the equations of motion assumed by SJM. There are a few
differences: (1) There is a bulk precession term for �m when the
system is nonuniform. (2) Rather than Bloch-like damping of
�M , irreversible thermodynamics yields Landau-Lifshitz damp-

ing. (3) Both �M and �m have normally omitted cross-relaxation
terms. (4) In equilibrium in a field, �m = �0, whereas �M �= �0 in
equilibrium in a field. (5) Irreversible thermodynamics yields
boundary conditions for �m; the boundary conditions on �M
follow from micromagnetics.

The normal modes of �H , �M , and �m are coupled. Assuming
perturbation theory, the normal modes and their wave vectors
are found in zeroth order, and can be used to obtain the first-
order corrections to the normal modes. For the important case
ω = 0 (which is appropriate both to a dc spin current from N to
F, and the second-order dc part of an ac spin pumped current
from F to N), the �H mode decouples and the other coupled
modes can be more readily obtained.

Besides ω, the equations of motion include two resonance
frequencies, three independent decay times, a diffusion time,
three dimensionless nondissipative parameters (λ,χf ,χ⊥), and
the surface transport coefficient L—a total of ten parameters.
(This omits the new bulk nonuniform precession term and its
surface analog.) Of these, at fixed temperature, only H and ω

can be varied, but if T is permitted to vary (so M can vary),
then three quantities are under experimental control.

Nevertheless, seven parameters are not under experimental
control. For permalloy (Py), one can estimate all of these
quantities, although the cross-relaxation times are relatively
unknown. Although Ref. [14] obtained many of their param-
eters for a simpler theory involving electron spin resonance
(ESR) of Li on Cu, it was achieved only through great effort
in the data analysis.

In addition to its contributions to applied magnetics, by
extending the idea of spin accumulation �m from nonmagnets
to ferromagnets F, spintronics has brought attention to a more
complex description of magnetic dynamics in the presence of
collisions:

(1) The phenomenology for �m can be understood at the
kinetic theory level as being associated with the out-of-
equilibrium spinor distribution function for the electron states
of the band theory [15]. Ultimately, �m is attributable to the spin
excitations in Landau’s Fermi-liquid theory when one includes
collisions, which lead to the near-equilibrium phenomena of

diffusion and drift [16–19]. Although transverse excitations of
the spin-density matrix, which lead to �m⊥, are not eigenstates
of a static Hamiltonian, they are nonzero when driven out of
equilibrium, as in spin pumping and spin transfer torque.

(2) �M has a phenomenology [20] that can be understood
at the energy band level by taking M̂ to be associated with
the quantization axis, and M with the different occupations
of the magnetic bands. Fermi-liquid theory has been used to
determine the bending energy associated with nonuniform M̂ ,
from which the nonuniform exchange coefficient A can be
determined (see below) [21].

(3) Even treating the total magnetization �M as the relatively
complex quantity �M = �M + �m is a simplification, as we now
argue. For each momentum �p, let a uniform nonequilibrium
magnetization density �M( �p) be given, whose sum over �p gives
the full �M. The time development of �M( �p) is determined by
the collision operator and precession in the exchange field,
with a spectrum of times that quickly eliminates all but the
parts of �M( �p) that contribute to �m and �M . The subsequent
time development determines the amounts of �m and �M , with
�m decaying much more rapidly than �M [22]. From �m and �M ,
one then obtains (3).

(4) Inclusion of a driving field at the relatively low
frequency of ferromagnetic resonance will not change this
general picture, and the resulting theory will be based on the
response of M̂ and �m to the driving field, as described by
irreversible thermodynamics.

II. VARIABLES, THERMODYNAMICS,
AND CONSTITUTIVE RELATIONS

We now consider the irreversible thermodynamics for a con-
ducting system with, in equilibrium, a uniform magnetization
�M associated with a quantization axis M̂ , a longitudinal spin

accumulation dMM̂ , and a transverse spin accumulation �m⊥.
dM = M̂ · d �m and �m⊥ are, by definition, zero in equilibrium.
We will employ

�m = �m⊥ + M̂dM. (4)

Consider a two-band conducting magnet with electrons of
charge −e and gyromagnetic ratio −γ , where γ = |g|μB/h̄ >

0 and μB = eh̄/2m (for free electrons, we take g = −2). It is
characterized by temperature T , up and down number densities
n↑,↓ (with n↑ < n↓), equilibrium magnetic moment direction
M̂ , and magnetization

M = −(γ h̄/2)(n↑ − n↓) ≡ −(γ h̄/2)nz. (5)

Note that the spin density �S = − �M/γ .
Clearly the total number density n is given by

n = n↑ + n↓. (6)

When we later consider the equations of motion, we will
employ n↑ and n↓, but for other purposes we will employ M

and n. The longitudinal spin accumulation is

dM = −(γ h̄/2)(dn↑ − dn↓); (7)

and

dn = dn↑ + dn↓. (8)
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Because for equilibrium in a field �H , �m = �0, the m-M model
differs from the s-d model. There the analogous quantity �Ms

is nonzero in equilibrium for a field �H .
Thermodynamics. Irreversible thermodynamics requires

that if a system initially satisfies thermodynamics, then it
satisfies thermodynamics at all future times.

We thus consider the differential of the thermodynamic
energy density ε (including the interaction with the static field
�H0), which must hold at all times. With V the voltage and −e

the charge on the electron, the electrochemical potentials μ̃↑,↓
are given in terms of the chemical potentials μ↑↓ as

μ̃↑↓ = μ↑↓ − eV . (9a)

The differential dε includes terms involving the entropy
density s and the temperature T , and the energy of interaction
of the magnetizations with appropriate fields. Let the field �H ∗

couple to �M [23], and the field �h∗
⊥ couple to �m⊥. In terms of

these and previously defined quantities, and the definitions

μ∗
↑,↓ = μ̃↑,↓ ± μ0(γ h̄/2) �H ∗ · M̂, (9b)

we take (in SI units, where �H and �M are in A/m)

dε = T ds + μ̃↑dn↑ + μ̃↓dn↓ − μ0 �H ∗ · d �M − μ0 �h∗
⊥ · d �m⊥

= T ds + μ∗
↑dn↑ + μ∗

↓dn↓

−μ0M �H ∗ · dM̂ − μ0 �H ∗ · M̂dM − μ0 �h∗
⊥ · d �m⊥.

(10)

This use of �m as a thermodynamic variable—even though it is
zero in equilibrium—is implicit in Ref. [1].

Constitutive relations for �H ∗ and �h∗. Both �H ∗ and �h∗
include the true magnetic field �H , which is the sum of the
applied field �Ha and the dipole (or demagnetization) field �HD .
In addition, they include uniform exchange fields coupling one
another, with interaction energy density

εMm = −μ0λ �M · �m, (11)

and susceptibility fields proportional to the respective mag-
netization deviations. Here the “molecular field coefficient” λ

is a dimensionless measure of the uniform exchange between
�M and �m. This exchange term has the same structure as in

Refs. [21,24].
Form for �H ∗. With χ‖ dimensionless, we take

H ∗
‖ = �H ∗ · M̂ = �H · M̂ − M − M0

χ‖
≡ −dM

χ‖
, (12)

so that in equilibrium both H ∗
‖ = 0 and the longitudinal spin

accumulation dM = 0.
�H ∗ is taken to include a nonuniform exchange field

(2A/μ0M)∇2M̂ , where A has units of J/m. Permitting �M
to tip slightly from the equilibrium direction (which can be
taken to be along ẑ), we take

�H ∗
⊥ =

(
�H + λ �m + 2A

μ0M
∇2M̂

)
⊥

− H

M
�M⊥ ≡ −H

M
δ �M⊥,

(13)

so that in equilibrium �H ∗
⊥ = �0. In uniform equilibrium, �M

rotates if the field rotates, giving a transverse susceptibility

χ⊥ ≡ M

H
. (14)

It is convenient to rewrite (13) as

δ �M⊥ = −χ⊥ �H ∗
⊥ = �M⊥ − χ⊥

(
�H + λ �m + 2A

μ0M
∇2M̂

)
⊥
.

(15)

We interpret δ �M⊥ as the deviation of �M⊥ from instantaneous
local equilibrium. When the system has wave vector k,
so ∇2 → −k2, it is convenient to employ the nonuniform
exchange wave vector kA,

kA =
√

μ0MH

2A
. (16)

Then, (15) may be rewritten as

δ �M⊥ = �M⊥

(
1 + k2

k2
A

)
− χ⊥( �H + λ �m)⊥. (17)

Form for �h∗. Since we have already considered equilibrium
of the longitudinal spin accumulation in Eq. (12), we do not
have to consider all three components from the viewpoint of
equilibrium. However, we now endow �h∗ with a nonzero lon-
gitudinal component h∗

‖ = �h∗ · M̂ about which �m precesses:

�h∗
‖ = �h∗ · M̂ = �H · M̂ + λM. (18)

Moreover, the transverse component of �h∗ is given by

�h∗
⊥ =

(
�H + λ �M − �m

χf

)
⊥

= −δ �m⊥
χf

, (19)

so that in equilibrium �h∗
⊥ = 0 and δ �m⊥ = �0. We later show

that the λ �M⊥ term in �h∗
⊥ is responsible for spin transfer torque

and spin pumping. It is convenient to rewrite (19) as

δ �m⊥ = �m⊥ − χf ( �H + λ �M)⊥. (20)

We interpret δ �m⊥ as the deviation of �m⊥ from instantaneous
local equilibrium [1,25–29].

Spin chemical potential �μs from �h∗
s . Associated with the

spin accumulation, we define

�h∗
s ≡ �h∗

⊥ + ( �H ∗ · M̂)M̂, d �m = d �m⊥ + M̂dM. (21)

Thus, �h∗
s⊥ = �h∗

⊥ and �h∗
s‖ = H ∗

‖ , which uses (12) [not �h∗
s‖ = h∗

‖,
which would use (18)].

We now rewrite the last two terms of (10) as −μ0 �h∗
s · d �m,

so that (10) becomes

dε = T ds + μ̃↑dn↑ + μ̃↓dn↓

−μ0M �H ∗ · dM̂ − μ0 �h∗
s · d �m. (22)

In equilibrium, both �m and �h∗
s are zero.

Further, by defining a vector spin chemical potential

�μs ≡ γ h̄

2
μ0 �h∗

s , �m ≡ −(γ h̄/2)�n, (23)
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so �μs · d �n = −μ0 �h∗
s · d �m, we can rewrite (22) as

dε = T ds + μ̃↑dn↑ + μ̃↓dn↓ − μ0M �H ∗ · dM̂ + �μs · d �n.

(24)

�μs also has been called the spin accumulation. However,
�μs does not have the same dimensionality as the true spin
accumulation �m. Moreover, because of the λ �M term in �h∗, �μs

and �m are not even proportional to one another. We present (22)
and (24) for completeness; we do not employ them further [30].

III. EQUATIONS OF MOTION, “FLUXES”

For each of the thermodynamic densities, we assume an
equation of motion that is first order in time, with associated
fluxes and source terms to be determined. (We sometimes lump
fluxes and sources together as “fluxes.”) For the magnetic vari-
ables, we include appropriate precession terms. We linearize
about equilibrium, so that when M appears with terms in dM ,
dM̂ , or �m⊥, it is shorthand for its equilibrium value. Moreover,
�m will be used for �m⊥.

We take, for the energy and entropy densities, both of which
have fluxes j ,

∂tε + ∂ijεi = 0, (25)

∂t s + ∂ijsi = Rs � 0. (26)

The fluxes jεi , jsi and the entropy source term Rs � 0 are to be
determined. ε includes the Zeeman energy. For a static field, as
here, we may neglect any energy changes from the field, and
include the field-interaction energy with the internal energy of
the magnetic system.

For the number densities, which have both fluxes and
sources, we take

∂tn↑ + ∂ij↑i = R↑, (27)

∂tn↓ + ∂ij↓i = R↓ = −R↑. (28)

We have R↓ = −R↑ because up and down spin together are
conserved. The fluxes j↑i , j↓i and the source term R↑ are to
be determined.

Equations for ∂tM̂ and ∂t �m⊥. As a unit vector, the
quantization axis M̂ is subject only to rotation, and therefore
has no flux term. On the other hand, �m is due to excitations
and has both a flux term and a source term. Since for electrons
the spin angular momentum and magnetization are oppositely
directed, we take

∂tM̂ = −γ M̂ × μ0 �H ∗ − M̂ × �
M, (29)

∂t �m + ∂i
�jmi = −γ �m × μ0 �h∗ + �Rm. (30)

For M̂ , the dissipative “rotation rate” �
M must be determined.
For �m, the flux term �jmi (which leads to spin diffusion) and
the source term �Rm (which leads to spin decay) must be
determined. To make the equations of motion for M̂ and �m
more symmetrical, we use the fact that �m is normal to M̂ , so
we may rewrite �Rm as

�Rm ≡ − �M × �
m, M �
m ≡ M̂ × �Rm, (31)

thus introducing the “rotation rate” �
m.

Derived equations for ∂tn and ∂tM ≡ ∂tm‖. The equations
for ∂tM̂ and ∂t �m follow from (27) and (28). For n, we have

∂tn = ∂tn↑ + ∂tn↓ = −∂ij↑i − ∂ij↓i , (32)

from which we deduce that

∂tn + ∂iji = 0, ji ≡ j↑i + j↓i . (33)

Further, in �H ∗ · d �M , the �H ∗ · dM term requires that

∂tM = −(γ h̄/2)∂t (n↑ − n↓) = (γ h̄/2)∂i(j↑i − j↓i − 2R↑).

(34)

Introducing the longitudinal magnetization current jMi (or
spin current) and the longitudinal magnetic source RM via

jMi ≡ −(γ h̄/2)(j↑i − j↓i), (35)

RM ≡ −γ h̄R↑, (36)

we rewrite (34) as

∂tM + ∂ijMi = RM. (37)

Neither n nor M is relevant to the magnetic response transverse
to M̂ .

IV. ENTROPY PRODUCTION, “FLUXES”

We now rewrite T Rs following a well-established pro-
cedure from irreversible thermodynamics [31–33]. Equa-
tions (25) and (27)–(30) placed in the time derivative of (26),
on using (10), yield

0�T Rs =T (∂t s + ∂ijsi)

=−∂i[jεi − Tjsi − μ∗
↑j↑i − μ∗

↓j↓i + μ0 �h∗ · �jmi]

+ [−jsi∂iT − j↑i∂iμ
∗
↑ − j↓i∂iμ

∗
↓ + μ0 �jmi · ∂i

�h∗]

+ [−R↑(μ∗
↑−μ∗

↓)+μ0 �
M · ( �M× �H ∗)+μ0 �Rm · �h∗].

(38)

The bracket associated with the divergence terms contains
products of various intensive (i.e., volume-independent) ther-
modynamic quantities and their respective fluxes. The second
bracket contains products of the four to-be-determined thermo-
dynamic fluxes (jsi , j↑i , j↓i , �jmi) with the corresponding gra-
dients of their respective intensive thermodynamic quantities
(∂iT , ∂iμ

∗
↑, ∂iμ

∗
↓, ∂i

�h∗). The third bracket contains products
of the three to-be-determined thermodynamic sources (R↑,
�
M , �Rm) with their respective intensive thermodynamic forces
[(μ∗

↑ − μ∗
↓), �M × �H ∗, �h∗

⊥]. Because the divergence term can
have either sign, we set it to zero, thus yielding jεi in terms of
the other fluxes, once they are determined.

Each of the seven nondivergence terms in Eq. (38) has a
clear physical interpretation as a means to produce entropy:
jsi to thermal conduction, j↑i and j↓i to (spin-dependent)
electrical conduction, �jmi to diffusion of transverse spin accu-
mulation (excitations), R↑ to longitudinal spin flip (from one
energy band to another), �
M to transverse magnetic damping
(of M̂), and �Rm to decay of transverse spin accumulation �m.
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A. Diagonal terms in the flux-force matrix

We consider first the contributions to the rate of entropy
production that are diagonal (d) in what we will call the
thermodynamic “flux-force” matrix. (Thus the entropy flux
jsi is driven only by the temperature gradient.) Recall that
�Rm and �jmi are all taken to have only the two components

transverse to M̂ . Then, defining the projector in spin space
that is transverse to M̂ as 1⊥ ≡ 1 − M̂M̂ , we have

j
(d)
si = − κ

T
∂iT , (39)

j
(d)
↑i = −σ↑

e2
∂iμ

∗
↑, (40)

j
(d)
↓i = −σ↓

e2
∂iμ

∗
↓, (41)

�j (d)
mi = L1⊥ · ∂i

�h∗ + LRM̂ × ∂i
�h∗, (42)

R
(d)
↑ = −G(μ∗

↑ − μ∗
↓), (43)

�
(d)
M = αγμ0M̂ × �H ∗, (44)

�R(d)
m = Km1⊥ · �h∗, or �
(d)

m = αmγμ0M̂ × �h∗. (45)

Many of these Onsager coefficients are already familiar.
(i) κ is the thermal conductivity.
(ii) σ↑ and σ↓ are electrical conductivities.
(iii) L is a susceptibility times a diffusion coefficient, or

L = χf Df . (46)

(iv) LR , also a susceptibility times a diffusion coefficient,
introduces a term that, from its time-reversal signature, is
nondissipative.

(v) G has units of number density per energy (e.g., ∂n/∂μ)
times the inverse of a longitudinal spin-flip time τsf , so we
write

G ≡
(

∂n↑
∂μ↑

+ ∂n↓
∂μ↓

)
1

τsf

. (47)

(vi) α is the dimensionless Gilbert constant. Although irre-
versible thermodynamics inevitably leads to Landau-Lifshitz
damping rather than Gilbert damping, we employ α [34]
because it is useful as the rotational analog of the inverse
Q factor of a linear oscillator.

(vii) αm also is a dimensionless constant, relating to
damping of �m. It is related to Km of (45) by

Km ≡ αmμ0γM. (48)

Because Km is associated with relaxation of �m, we introduce
the relaxation rate τ−1

f via

Km ≡ χf

τf

. (49)

B. Off-diagonal terms in the flux-force matrix

In addition, there are terms that are off-diagonal (od) in the
thermodynamic forces. They give rise, among other things, to
the spin Seebeck effect and the spin Peltier effect. For a non-

spin-orbit-active material and a uniform equilibrium, we have

j
(od)
si = −Ls↑∂iμ

∗
↑ − Ls↓∂iμ

∗
↓, (50)

j
(od)
↑i = −L↑s∂iT − L↑↓∂iμ

∗
↓, (51)

j
(od)
↓i = −L↓s∂iT − L↓↑∂iμ

∗
↑, (52)

�j (od)
mi = 0, (53)

R
(od)
↑ = 0, (54)

�
(od)
M = αMhγμ0M̂ × �h∗, (55)

�R(od)
m = KmH1⊥ · �H ∗, �
(od)

m = αmH γμ0M̂ × �H ∗. (56)

Many of these Onsager coefficients are already familiar.
(a) L↑s and L↓s imply separate up- and down-spin Seebeck

effects, and Ls↑ and Ls↓ imply separate up- and down-spin
Peltier effects. They all have dimensionality of s−1 m−1 K−1

[diffusion constant/(number density-K)]. The spin Seebeck
effect was observed and explained by Uchida et al. [35]. The
spin Seebeck and spin Peltier effect terms in Eqs. (50)–(52)
also appear in Eqs. (A14)–(A16) of Ref. [23].

(b) The cross-conductivity terms L↑↓ and L↓↑ have dimen-
sionality of conductivity/charge2.

(c) αMh is a dimensionless cross-damping term. A term
like (55) has appeared in the spintronics literature [36]; as
we show below, Onsager reciprocity on (55) then leads to the
cross-damping term in Eq. (56).

(d) αmH is related to αMh by an Onsager relation (see
below).

All of these off-diagonal Onsager terms are dissipative
because their time-reversal signatures are opposite those of
their primary quantities: entropy flux has odd time-reversal sig-
nature, but j (od)

si is even under time reversal; ∂t M̂ has even time-
reversal signature, but M̂ × �
(od)

M is even under time reversal;
etc. The cross-damping coefficients αMh,αmH introduce two
distinct but related relaxation rates, as we show below.

Onsager reciprocity ensures that each pair of even-in-time
off-diagonal terms in Eq. (38) has the same coefficient, and
thus leads to conditions on the spin Seebeck and spin Peltier
coefficients that

Ls↑ = L↑s , Ls↓ = L↓s , (57)

and that

L↑↓ = L↓↑, KmH ≡ γμ0MαmH , αmH = αMh. (58)

Thus there is only one truly distinct damping coefficient,
αmH = αMh. The requirement for positivity of entropy pro-
duction, which leads to non-negativity of κ,σ↑,σ↓,L,α,αm,G,
and L2

↑↓ − L↑↑L↓↓, includes the important constraint that

α2
Mh � ααm. (59)

We will see that requiring positive cross-relaxation times
further gives αMh � 0.

V. FULL EQUATIONS OF MAGNETIC DYNAMICS

It is convenient to define two frequencies:

ωH ≡ γμ0H, (60)
ωX ≡ γμ0h

∗
‖ = γμ0(H + λM) ≈ γμ0λM. (61)
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Using Gaussian units, Ament and Rado define five dimen-
sionless quantities that have been employed in interpreting
ferromagnetic resonance experiments [37]. Reference [38]
converts to SI units in the supplemental material. See our
Appendix B.

A. ∂t M̂

∂tM̂ follows from (29), with �
(d)
M from (44) and cross-term

term �
(od)
M from (55),

∂tM̂ = −γμ0M̂ × �H ∗ − αγμ0M̂ × (M̂ × �H ∗)

−αMhγμ0M̂ × (M̂ × �h∗). (62)

Except for the cross-relaxation term involving αMh, this is
basically the Landau-Lifshitz equation.

For purposes of interpretation, following the form em-
ployed previously in a related context [39], it is useful to
rewrite the above equation. We multiply (62) by M and use
�H ∗
⊥ = −χ−1

⊥ δ �M⊥, �h∗
⊥ = −χ−1

f δ �m⊥ and (14) to obtain

M∂tM̂ = γμ0HM̂ × δ �M⊥ − αγμ0Hδ �M⊥

− αMhγμ0M

χf

δ �m⊥. (63)

Because an excess δ �m⊥ should in part decay to �M⊥, the
coefficient of δ �m⊥ should be positive, meaning that

αMh = αmH < 0. (64)

We now define

1

τML

+ 1

τMm

≡ αωH ,
1

τmM

≡ −αMhγμ0
M

χf

, (65)

where τ−1
ML is the decay rate from �M to the lattice, and τ−1

Mm is
the decay rate from �M to �m; only the sum is specified at the
moment. τ−1

mM is the decay rate from �m to �M; (64) implies that
τmM > 0. Then (63) becomes

∂t
�M⊥ = ωHM̂ × δ �M⊥ −

(
1

τML

+ 1

τMm

)
δ �M⊥ + 1

τmM

δ �m⊥.

(66)

Physically speaking, �M⊥ decreases by decay both to the lattice
(L) and to �m⊥ in proportion to the disequilibrium δ �M⊥, and it
increases by decay from �m⊥ in proportion to the disequilibrium
δ �m⊥. Not only is there a new “source” due to decay from
δ �m⊥, there is also a new “sink” due to decay to δ �m⊥; the
latter requires a reinterpretation of the Gilbert parameter α as
including decay to the lattice and to �m⊥ [40,41]. In the context
of magnetic alloys, such cross relaxation has been known for
many years [24].

B. ∂t �m⊥

∂t �m⊥ follows from (30), with �R(d)
m from (45) and cross term

�R(od)
m from (56). With �h∗

⊥ from (19), we find

∂t �m⊥ = −γ �m⊥ × μ0M̂h∗
‖ − χf Df ∇2 �h∗

⊥ − LRM̂ × ∇2 �h∗
⊥

+Km
�h∗

⊥ + αmH γμ0M �H ∗
⊥. (67)

We now use �H ∗
⊥ = −χ−1

⊥ δ �M⊥, �h∗
⊥ = −χ−1

f δ �m⊥. Then,

∂t �m⊥ = −γμ0h
∗
‖ �m⊥ × M̂ + Df ∇2δ �m⊥ + LRM̂ × ∇2 �h∗

⊥

− (Km/χf )δ �m⊥ − αmH γμ0Hδ �M∗
⊥. (68)

To put this in more familiar form we define

1

τmL

+ 1

τmM

≡ 1

τf

≡ Km

χf

,

1

τMm

≡ −αmH γμ0H = −αmHωH , (69)

where τmL is the decay rate from �m to the lattice, τmM of (65)
is the decay rate from �M to �m, and τMm of (69) is the decay
rate from �m to �M; (64) implies that τMm > 0.

By (61), (65), and (69), and the Onsager relation αmH =
αMh, we find that τMm and τmM are related by

χ⊥
τMm

= χf

τmM

. (70)

Then (68) becomes, on using (61) for ωX,

∂t �m⊥ = −ωX �m⊥ × M̂ + Df ∇2δ �m⊥ − LR

χf

M̂ × ∇2 �m⊥

−
(

1

τmL

+ 1

τmM

)
δ �m⊥ + 1

τMm

δ �M⊥. (71)

Except for the distinct cross-relaxation term, this equation for
∂t �m is basically the Bloch equation with diffusion [25,42,43].
In this form, the physical interpretation is that �m⊥ decreases
by decay both to the lattice (L) and to �M in proportion to
the disequilibrium δ �m⊥, and it increases by decay from �M in
proportion to the disequilibrium δ �M .

Equations (66) and (71) may be compared to Eq. (1) of
Ref. [39] when the two types of spin have equal γ ’s. For
comparison, we rewrite τ−1

ML of (65) and τ−1
mL of (69) and τmM .

Using (64) and (48), we find that

1

τML

= ωH (α − |αMh|), 1

τmL

= γμ0
M

χf

(αm − |αMh|).

(72)

Clearly |αMh| � α,αm, and this implies (59).

C. ∂t M

The longitudinal spin accumulation satisfies (37) with jMi

given by (35), (40), and (41), and RM given by (36), (43),
and (47). We find that

∂tM + (γ h̄/2)(σ↑∇2μ∗
↑ + σ↓∇2μ∗

↓)

= γ h̄

(
∂n↑
∂μ↑

+ ∂n↓
∂μ↓

)
1

τsf

(μ∗
↑ − μ∗

↓), (73)

so M decays both by spin flip and by spin diffusion.

VI. TRANSVERSE RESPONSE

The transverse normal modes couple �M⊥, �m⊥, and �H⊥. We
assume a dependence ei(ωt±kz), corresponding to leftward (L)
and rightward (R) waves. For simplicity, we set LR = 0.
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A. ∂t �M⊥

In ∂t
�M⊥, on substituting for δ �M⊥ and δ �m⊥ in terms of �M⊥, �m⊥, and �H⊥, and using (70), (66) becomes, with kA from (16),

iω �M⊥ =
{
ωHM̂ × �M⊥

(
1 + k2

k2
A

)
− �M⊥

[(
1 + k2

k2
A

)(
1

τML

+ 1

τMm

)
+ λχf

τmM

]}
+

{
−ωH χ⊥M̂ × �H⊥ + 1

τML

χ⊥ �H⊥

}

+
{
−ωHχ⊥M̂ × λ �m⊥ + �m⊥

[
λχ⊥

(
1

τML

+ 1

τMm

)
+ 1

τmM

]}
. (74)

B. ∂t �m⊥

In ∂t �m⊥, on substituting for δ �M⊥ and δ �m⊥ in terms of �M⊥, �m⊥, and �H⊥ and using (70) and (71) becomes

iω �m⊥ =
{
ωXM̂ × �m⊥ − �m⊥

[
Dk2 +

(
1

τmL

+ 1

τmM

)
+ λχ⊥

τMm

]}
+

{
�H⊥χf

(
Dk2 + 1

τmL

)}

+
{

�M⊥

[
λχf

(
Dk2 + 1

τmL

+ 1

τmM

)
+ 1

τMm

(
1 + k2

k2
A

)]}
. (75)

Recall that (75) omits the LR term from (71).

C. �E and �H
�M and �m couple to �H , and �H couples to �E. Therefore, a

complete discussion should include the appropriate equations
for �E and �H .

Vacuum H response. Maxwell’s equations in a conductor
are

�∇ × �H = ε0
∂ �E
∂t

, �∇ × �E = −μ0
∂ �H
∂t

. (76)

From these, we can show that in vacuum

�E = ∓μ0cẑ × �H. (77)

Conductor H response. Maxwell’s equations in a conductor
with conductivity σ are

�∇ × �H = �jfree + ∂ �D
∂t

≈ σ �E,

�∇ × �E = −μ0
∂

∂t
( �H + �M + �m). (78)

In writing this, we take the ordinary electric current due to free
carrier �jfree = σ �E, which thus omits complications associated
with up- and down-spin conductivities. Using ± for R and L
waves, by �∇ × �H ≈ σ �E we have, for all three modes,

�E = ± ik

σ
ẑ × �H. (79)

�E can reflect the presence of the M and m variables in their
contributions to �H . Taking the curl of (78), for �∇ · �H = 0,
leads to

−∇2 �H = −μ0σ
∂

∂t
( �H + �M + �m). (80)

With an eiωt±kz dependence, this leads to

(k2 + iμ0σω) �H = −iμ0σω( �M + �m). (81)

D. Decoupled transverse modes

Consider a film geometry where the applied field and the
equilibrium point normal to the plane, with M̂ = ẑ. Then,

with M+ ≡ Mx + iMy , it follows that (M̂ × �M)+ = iM+,
and similarly for the other vectors in the problem. Because
the demagnetization field for this geometry is isotropic in
the plane, these variables are useful for solving the above
equations.

(i) When �H and �m are neglected, (74) leads to a normal
mode of �M with wave vector kM satisfying

iω = iωH

(
1 + k2

k2
A

)

−
[(

1 + k2

k2
A

)(
1

τML

+ 1

τMm

)
+ λχf

τmM

]
. (82)

Solving for k2
M then yields the zeroth-order result,

k2
M

k2
A

=
ω − ωH − i

(
1

τML
+ 1

τMm
+ λχf

τmM

)
ωH + i

(
1

τML
+ 1

τMm

) . (83)

(ii) When �H and �M are neglected, (75) leads to a normal
mode of �m with wave vector km satisfying

iω = iωX −
[
Df k2 + 1

τmL

+ 1

τmM

+ λχ⊥
τMm

]
. (84)

With

τ−1
D ≡ Df k2

A, (85)

solving for k2
m then yields the zeroth-order result,

k2
m

k2
A

= τD

[
−i(ω − ωX) −

(
1

τmL

+ 1

τmM

+ λχ⊥
τMm

)]
. (86)

When LR is included, (85) for τ−1
D should have Df → Df +

iLR/χf .
(iii) When �M and �m are neglected, (81) leads to a normal

mode of �H , with

k2
H = −iμ0σω (conductor) (87)

corresponding to the usual skin depth. For an insulating
magnet, such as yttrium iron garnet (YIG), with index of
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refraction n (c is the speed of light),

k2
H = nω2

c2
(insulator). (88)

E. On resonances

Near the usual resonance ω ≈ ωH , the damping terms
dominate �M+. On neglecting m+, the leading term in �H⊥
in Eq. (74) gives M+/H+ ≈ −iχ⊥/α, which is of the order
of 103.

Near the high-frequency resonance, ω ≈ ωX, where the
damping terms dominate �m+. On neglecting M+, the leading
term in �H⊥ in Eq. (75) gives m+/H+ ≈ χf , which is of
the order of 10−5. Moreover, for this mode, M+ + m+ ≈ 0.
Therefore, although in principle there is a resonance of m+ at
ωX, even if it were possible to drive m+ without driving M+ ≈
−m+, this mode seems unlikely to be detectable without great
effort.

Similarly, the s-d model of Hasegawa [24] for Mn in Cu,
where γMn ≈ γCu, has two resonances, and the high-frequency
exchange-driven resonance has ( �Ms + �Md )⊥ = �0. On the other
hand, in a study of Er (d) in Ag (s), where γEr ≈ 6.8 and
γAg ≈ 2.0–2.6, the theory gives two resonances, both with
�Ms + �Md �= �0 and both observed [39].

Note the large number of materials- and experiment-related
parameters that appear in the bulk theory:

(a) the frequencies ωH and ωX;
(b) the rates τ−1

ML, τ−1
mL, τ−1

Mm, and τ−1
D [τ−1

mM and τ−1
Mm are

related by (70)];
(c) the dimensionless parameters λ, χf , and χ⊥; only H

and ω can be controlled by the experimentalist;
(d) LR .

VII. SURFACE EFFECTS AND BOUNDARY CONDITIONS

This section applies irreversible thermodynamics to obtain
the boundary conditions on �m in the absence of spin-orbit
scattering. It also discusses the boundary conditions on M̂ ,
which follow from micromagnetics in the continuum limit.
The boundary conditions on �E and �H are, as usual, that their
components transverse to the normal are continuous.

A. Boundary conditions from irreversible thermodynamics

For simplicity, we have not included spin-orbit effects
in bulk, so that the anomalous Hall effect (AHE) and
anisotropic magnetoresistance (AMR) are not included [44].
Correspondingly, in the present section we neglect spin-orbit
scattering at surfaces and interfaces [45]. For simplicity, as
boundary conditions we take the continuity of various fluxes
across an interface,

jsi ,j↑i ,j↓i , �jmi (continuity across interface). (89)

Other than the truly conserved number flux ji = j↑i + j↓i , the
fluxes jsi , �jmi , and jMi = −(γ h̄/2)(j↑i − j↓i) are due to the
excitations of the adjacent systems.

Beyond continuity, in irreversible thermodynamics a full
statement of the boundary conditions relates the fluxes across
the interfaces to differences in the various intensive thermo-
dynamic quantities across the interface. Typically, the fluxes

are proportional to the difference across the interface (such
as �T ) of various intensive quantities. We now derive these
boundary conditions using irreversible thermodynamics.

Consider Eq. (38) for T Rs , which holds for each side of
an interface. Integrate it over an atomic distance across the
interface between the two materials. Because jεi is chosen to
make the term in parentheses zero, this term will not contribute.
If we assume that the terms R↑, �
M , and �Rm in the last
(third) bracket remain finite at the interface, then for these
terms integration over an atomic distance gives a negligible
contribution. However, the terms from the middle bracket,
involving products of (continuous fluxes) and gradients of
intensive thermodynamic quantities, do contribute.

From the discussion above, integration of Eq. (38) across
the interface, along surface normal N̂ , then gives, for the
surface rate of entropy production,

0 � TRs = N̂i[−jsi�T − j↑i�μ∗
↑ − j↓i�μ∗

↓ + �jmi · ��h∗].

(90)

The (assumed) continuous fluxes across the interface
satisfy, with surface transport coefficients defined by analogy
to their bulk symbols (and not retaining all the possible
off-diagonal terms),

N̂ijsi = −K
T

�T, (91)

N̂ij↑i = −�↑↑
e2

�μ∗
↑ − �↑↓

e2
�μ∗

↓, (92)

N̂ij↓i = −�↓↓
e2

�μ∗
↓ − �↓↑

e2
�μ∗

↑, (93)

N̂i
�jmi = L1⊥ · ��h∗ + LRM̂ × ��h∗. (94)

For the above equations,
(i) K has units of thermal conductivity.
(ii) The �’s have units of electrical conductivity per unit

length. Here we keep the off-diagonal conductivities in order
to represent the effect of scattering at the interface.

(iii) L and LR have units of susceptibility times velocity.
We note two works giving related longitudinal spin accu-

mulation results [46,47].
With the above equations for the fluxes crossing the

surface, (90) becomes

0 � TRs = K
T

(�T )2 + �↑↑
e2

(�μ∗
↑)2 + �↓↓

e2
(�μ∗

↓)2

+ �↑↓ + �↓↑
e2

(�μ∗
↑)(�μ∗

↓) + L(��h∗)2. (95)

By the Onsager condition that cross terms give the same
rate of entropy production, �↑↓ = �↓↑. Requiring Rs � 0 for
arbitrary values of �μ∗

↑ and �μ∗
↓ yields �↑↑�↓↓ � (�↓↑)2.

The boundary conditions on the number current ji =
j↑i + j↓i and the longitudinal magnetization current jMi =
−(γ h̄/2)(j↑i − j↓i) may be obtained by combining (92)
and (93). At a vacuum interface, in the absence of surface
spin-flip scattering, �jmi ∼ ∂i �m = 0. Reference [14] employed
MδM̂ for �m, and thus took ∂iM̂ = �0 at a vacuum interface [48].
The next section shows that M̂ satisfies a boundary condition
determined by micromagnetics.
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The term LRM̂ × ��h∗ of (94) in N̂i
�jmi is even under time

reversal, and thus is not dissipative. Mathematically, it gives
zero contribution to Rs because it is normal to ��h∗.

B. Boundary condition on M̂

The boundary conditions on M̂ are obtained from the
equation of motion for M̂ evaluated at each surface. We first
consider the case where, if anisotropy is present, it is the same
in bulk and at the surface. (This ensures that in the absence
of any degree of freedom other than �M , Landau-Lifshitz
dynamics holds.) Neglecting damping at the surface, and in
the continuum limit, if across the interface is a neighboring
magnetization �M ′, then

∂tM̂ = −γμ0M̂[ �H + λ �m + JSM̂
′ + Aa−1(N̂ · �∇M̂)].

(96)

Here, JS is the interface coupling (units of A/m), a is an atomic
length, and A is the nonuniform exchange constant (units of
A m).

Linearization of (96) gives the form one would expect in
the long-wavelength limit for a magnetics calculation,

∂tM̂ = −γμ0δM̂ × ( �H0 + JSM̂
′)

− γμ0M̂ × ( �Hrf + λ �m + JSδM̂
′)

− γμ0M̂ × [Aa−1(N̂ · �∇δM̂)]. (97)

We can make this look like the bulk equation for M̂ if we
impose the boundary condition

−AM̂ × ∇2δM̂ = −Aa−1M̂ × N̂ · �∇δM̂

− JS(δM̂ × M̂ ′ + M̂ × δM̂ ′). (98)

At a vacuum interface, JS = 0; in that case, (98) becomes

−AM̂ × ∇2δM̂ = −Aa−1M̂ × N̂ · �∇δM̂, (99)

which relates, at the interface, the first and second spatial
derivatives of M̂ .

However, as noted by Kittel, surface anisotropy can have
a significant effect on the boundary conditions, causing
pinning [49–51]. Consider uniaxial surface anisotropy Ks

(units of J/m2) that favors pinning of �M along or against
the surface normal. Neglecting the second derivative term
employed in the free boundary condition (99), one has

AN̂ · �∇M̂ − KsδM̂ = �0. (100)

The results of the present section, for the M mode and the
m mode, when appended by the H mode, enable one to solve
very general boundary conditions problems, including spin
transfer torque and spin pumping at any frequency for which
irreversible thermodynamics is valid.

VIII. HEAT PRODUCTION AND ENERGY ABSORPTION

We now derive two important relations associated with
heat flow and heat production. The first shows the relatively
well-known result that temperature gradients alone do not
contribute to the heat production, although they are associated
with entropy production. Although we do not show it, the
off-diagonal terms in the heat flux can lead to heating or

cooling due to either electric currents (Seebeck effect) or spin
currents (spin Seebeck effect). The second relation shows that,
on average, rf energy absorbed in a volume goes entirely into
heating that volume and/or to heat flow in or out of that volume.

A. Heat production

Defining

dq ≡ T ds, j
q

i ≡ Tjsi, (101)

we deduce from (26) that

∂tq = T ∂t s = −T ∂ijsi + T Rs. (102)

Thus,

∂tq + ∂ij
q

i = jsi∂iT + T Rs. (103)

If there is only a thermal gradient, so that T Rs = −jsi∂iT

by (38), then the right-hand side of the above equation is zero,
and the “heat” is conserved—as expected, heat simply flows
from hot to cold, without being produced or absorbed.

B. Time-averaged energy absorption

With dots referring to rate of changes of the nonentropic
part of the internal energy density, the energy conservation
equation (25) can be rewritten using (102) as

∂tε = −∂ij
ε
i

= (T ∂t s + · · · ) − �H · (∂t �m + ∂t
�M)

= ∂tq + (· · · ) − �H · (∂t �m + ∂t
�M). (104)

For an oscillating rf field, the time average of the term in dots
(the nonentropic part of the internal energy density) is zero.
Then,

∂tq = −∂ij
ε
i + �H · (∂t �m + ∂t

�M). (105)

This immediately leads to a physical interpretation. ∂tq

is the average volume rate of heating, and �H · (∂t �m + ∂t
�M)

is the rate of absorption of energy from the oscillating field
(rf heating). Without energy flow, these two are equal. With
energy flow, the rate of heating equals the rf heating less any
net energy flow from the volume in question, as can occur
when a charge current or spin current crosses the interface.
For a related discussion, see Ref. [52].

IX. ON RECIPROCITY OF SPIN TRANSFER TORQUE
AND SPIN PUMPING

Section I discussed the issue of reciprocity of spin transfer
torque and spin pumping, but some of it bears repeating with
some context. For two paramagnets, spin pumping—without
the current spintronics terminology [6,7]—was observed in
1976 and explained using irreversible thermodynamics [14].
This important but neglected work studied Li on Cu, where
there are slightly different but distinguishable g factors; at
fixed Cu thickness, a thin layer of Li gave a single common
resonance line, whereas a thicker layer of Li gave two
resonance lines. Attributing only a single magnetization to
each material, Eq. (1) of Ref. [14] had the spin flux across the
interface driven by the difference in �M/χ across the interface.
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For thin Li on Cu, the electron spin resonance in Cu “pumped”
a spin current into Li, and thus there was a spin transfer torque
from Cu to Li.

As noted in Sec. I, for a ferromagnet F against a paramagnet
N, in 1979 spin pumping was observed and explained using a
more phenomenological form of irreversible thermodynamics
than in the present work [1]. The authors attributed to F
the equivalent of M̂ and �m, with the ferromagnetic spin
resonance driving M̂ in bulk F; then they used the irreversible
thermodynamics boundary conditions, where the tipped M̂

causes a nonzero �h∗
⊥ (or, equivalently, �μs⊥) to drive a spin

flux across the interface to N, possessing only an �m. (This
mechanism is independent of frequency, as opposed to the
mechanism of Ref. [6], where the driving term dM̂/dt is
proportional to the resonance frequency.)

One might expect spin pumping (SP) and spin transfer
torque (STT) to be reciprocal phenomena in the Onsager
sense, just as the Seebeck effect and the Peltier effect have
related transport coefficients. Indeed, for a single magnetic
conductor with a nonuniform texture, there are such Onsager
relationships between SP and STT, and they are local [23].
(Consideration of time-reversal properties further shows that
the so-called adiabatic STT and SP are dissipative and the
so-called nonadiabatic STT and SP are nondissipative [23].)
However, for an F1/N/F2 system with only F1 driven into
resonance, the two effects occur at different places, with spin
pumping at F1/N and spin transfer torque at N/F2. Therefore,
spin transfer torque and spin pumping satisfy a nonlocal
relationship, as shown explicitly in Sec. I.

X. SUMMARY AND CONCLUSIONS

The present work has given the foundations for an ir-
reversible thermodynamics approach to spin pumping and
spin transfer torque in the framework of what we have
called the m-M model. Although it is closely related to
the s-d models of Refs. [1,5], the m-M model is distin-
guishable from these s-d models in part because �m = �0
in equilibrium. This work also finds that in bulk, there
are previously neglected relaxation times associated with

cross relaxation between M and m, that there is a new
precession term for �m in nonuniform systems, and that at
surfaces there are distinct boundary conditions for M and m.
A qualitative analysis has been given of spin pumping and spin
transfer torque for an F1/N/F2 system: the spin pumped M

in the F1 drives a spin current across the F1/N interface, and
a spin current in the N drives an M on the F2 side of the N/F2

interface.
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APPENDIX A: IRREVERSIBLE THERMODYNAMICS
OF MAGNETIC INSULATORS

The irreversible thermodynamics of magnetic insulators is
similar to but distinct from that for magnetic conductors. For
magnetic insulators, we consider that spin waves, as in the
Heisenberg model, can be out of equilibrium and therefore
produce a spin accumulation �m. We therefore treat this electric
current-free case separately.

The thermodynamic differential is taken to be

dε = T ds − μ0 �H ∗ · (MdM̂) − μ0 �H ∗ · M̂dM − μ0 �h∗ · d �m.

(A1)

For �H ∗ and �h∗, we continue to employ (13) and (19).
Likewise, for the equations of motion, for ε and s we continue
to employ (25) and (26). For M̂ and M , we continue to
employ (29) and (37), although in the latter we dispense with
the band-related definitions of jMi and RM . We use (30) for
�m, but we combine (30) and (31) to yield

∂t �m + ∂i
�jmi = − �m × (μ0γ �h∗ + �
m). (A2)

The approach of the text then yields

0 � T Rs = T (∂t s + ∂ijsi)

= −∂i[jεi − Tjsi + μ0 �H ∗ · M̂jMi + μ0 �h∗ · �jmi] + [−jsi∂iT + μ0jMi · ∂i( �H ∗ · M̂) + μ0 �jmi · ∂i
�h∗]

+ [μ0 �
M · ( �M × �H ∗) + μ0 �
m · ( �M × �h∗) + μ0RM
�H ∗ · M̂]. (A3)

The diagonal terms in the thermodynamic “flux-force”
matrix are

j
(d)
si = − κ

T
∂iT , (A4)

j
(d)
Mi = LM∂i( �H ∗ · M̂), (A5)

�j (d)
mi = L1⊥ · ∂i

�h∗ + LRM̂ × ∂i
�h∗, (A6)

R
(d)
M = αMγμ0 �H ∗ · M̂, (A7)

�
(d)
M = αγμ0( �M × �H ∗), (A8)

�
(d)
m = αmγμ0( �M × �h∗). (A9)

All of these are dissipative. The L’s have units of susceptibility
times diffusion constant. The α’s are all dimensionless.

The off-diagonal terms (again, all dissipative) are

j
(od)
si = LsM∂i( �H ∗ · M̂), (A10)

j
(od)
Mi = LMs∂iT , (A11)

�j (od)
mi = 0, (A12)

R
(od)
M = 0, (A13)

�
(od)
M = αMhγμ0( �M × �h∗), (A14)

�
(od)
m = αmHγμ0( �M × �H ∗). (A15)
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There are no separate up- and down-spin Seebeck/spin Peltier
effects (described by the coefficients LsM and LMs). The off-
diagonal Onsager coefficients satisfy

LsM = LMs, αMh = αmH . (A16)

APPENDIX B: ON NOTATION

In an early work, Ament and Rado (AM) established a
dimensionless notation in Gaussian units that is often fol-
lowed [37]. More recently, Li and Bailey (LB) have converted
this to SI units [38]. Below we compare their definitions
and ours (S). Reference [37] employs λ for the dimensional
Landau-Lifshitz damping constant, whereas we employ λLL,
with λ reserved for the dimensionless mean-field exchange
constant (which determines how effectively the tipped M̂ at
the F/N interface drives a spin current). Normally, δ denotes
the skin depth, but LB employ δ0.

Notation of Ament-Rado (Gaussian).

η = Hz

4πMs

→ η = H

M
= 1

χ⊥
· (AM→S), (B1)


 = ω

4πMsγ
→ 
 = ω

ωM

, ωM ≡ γμ0Ms · (AM→LB),

(B2)

L = λLL

Msγ
→ α = λLL

γMs

· (AM→S), (B3)

εδ =
√

A

2πM2
s

→ εδ =
√

2A

μ0M2
s

= δex · (AM→LB), (B4)

K = kεδ → κ = kδex · (AM→LB). (B5)

Notation of Li-Bailey.

δex =
√

2A

μ0M2
s

, δ0 =
√

2

μ0σω
(= δ). (B6)

κ = kδex, ε = δex

δ0
, 
 = ω

ωM

, ωM ≡ γμ0Ms. (B7)

Notation of present work.

k2
H = −iμ0σω = −2i

δ2
, χ⊥ = M

H
. (B8)

k2
A = μ0MH

2A
= H

M

μ0M
2

2A
= 1

χ⊥δ2
ex

. (B9)
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