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Exceptional points in a non-Hermitian topological pump
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We investigate the effects of non-Hermiticity on topological pumping and uncover a connection between a
topological edge invariant based on topological pumping and the winding numbers of exceptional points. In
Hermitian lattices, it is known that the topologically nontrivial regime of the topological pump only arises in
the infinite-system limit. In finite non-Hermitian lattices, however, topologically nontrivial behavior can also
appear, and we show that this can be understood as the effect of encircling a pair of exceptional points during a
pumping cycle. This phenomenon is observed experimentally in a non-Hermitian microwave network containing

variable-gain amplifiers.
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I. INTRODUCTION

The existence of topologically distinct phases of matter was
one of the most profound discoveries of theoretical physics in
recent decades [1]. The idea of classifying band structures
using topological invariants, such as the Chern number [2],
arose originally in the study of the quantum Hall effect [3]
and subsequently led to the discovery of two- and three-
dimensional topologically insulating materials. It has also
inspired numerous proposals and experiments for realizing
topologically nontrivial bands using light [4], sound [5,6], and
other types of waves [7]. According to the topological bulk-
edge correspondence principle [8], topologically nontrivial
band structures imply the existence of topologically protected
edge states, whose unique transport properties may have
applications in many fields.

Theories of band-structure topology typically assume that
the underlying lattice is Hermitian. Yet in settings such as
topological photonics, non-Hermitian effects—in the form of
gain and/or loss—are easily introduced, and may be both
substantial and unavoidable in practical implementations [9].
Broadly speaking, non-Hermiticity poses two problems for
standard theories. First, non-Hermitian bands can exhibit
exceptional points (EPs) [10,11], in which case bands cease
to be continuously single valued throughout k space, which is
conceptually troublesome for band invariants such as Chern
numbers. Second, standard formulations of the bulk-edge
correspondence principle rely on the existence of a real
spectral gap in the bulk. For instance, in Hatsugai’s well-known
derivation of the correspondence between quantum Hall edge
states and Chern numbers, it is crucial to assume that a lattice in
a strip geometry has a real point spectrum which converges, in
the large-system limit, to an integer number of real bands [12].

A number of recent works have started to explore how
band topological ideas might be extended to non-Hermitian
systems [13-19]. This includes efforts to generalize concepts
such as the Chern number to non-Hermitian lattices, both in

“yidong@ntu.edu.sg

2469-9950/2017/95(18)/184306(7)

184306-1

single-particle models [14] and in fermionic many-body
models that include an external reservoir [15,16]. On the
other hand, certain single-particle models have been found to
exhibit “intrinsically non-Hermitian™ topological invariants,
based on the integral winding numbers associated with EPs
of the complex band spectrum (i.e., branch point orders)
[17-19]. EPs constitute a natural class of discrete features tied
to non-Hermiticity and do not occur in Hermitian systems.
So far, it has been unclear whether these EP-based invariants
have any connection with the standard topological invariants
developed for Hermitian systems.

This paper demonstrates, theoretically and experimentally,
a relationship between a previously known Hermitian topo-
logical invariant and EP winding numbers. The topological in-
variant comes from a topological pump [20-24], in the form of
the winding numbers of scattering matrix eigenvalues during a
parametric pumping cycle [25]. In a Hermitian lattice, the bulk-
edge correspondence principle associates a zero (nonzero)
winding number with a topologically trivial (nontrivial) bulk
band gap. Strictly speaking, however, topologically nontrivial
behavior emerges only in the N — oo limit, where N is the
sample width (i.e., the limit where opposite edges of the sample
are decoupled). We show that when the topological pump is
continued into the non-Hermitian case, e.g., by applying both
gain and loss, topologically nontrivial behavior can arise under
the generalized condition

lyl = e, (1

where y parameterizes the non-Hermiticity (gain/loss) in
each unit cell. In the Hermitian case (|y| — 0), satisfying
(1) requires taking N — oo; in practical experiments, N
must be much larger than the penetration depth of the edge
states [26,27]. For a non-Hermitian lattice (y # 0), nonzero
windings can occur for finite N, and we show that these emerge
out of the winding numbers of a pair of EPs of the nonunitary
scattering matrix.

The above ideas are realized and confirmed in an ex-
periment on a classical radio frequency (1f) electromagnetic
network in a topological pumping configuration [20-22].
Previously, we have shown that such a network, constructed
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FIG. 1. (a) Schematic of a periodic network of directed links and
nodes, with tunable gain and loss in two of the links in each unit
cell. (b) Schematic of the setup for the Laughlin-Brouwer topological
pump. The network is truncated to N unit cells in the y direction,
and twisted boundary conditions are applied in the x direction
with tunable twist angle k (corresponding to an infinite strip with
fixed wave number). (c) Plot of arg(o,) vs k, where {o,} are the
eigenvalues of the edge scattering matrix. The model parameters are
y = 0 (Hermitian network), 6, = 6, = 37/8, <Df = @‘3, = -7 /10,
and ¢ = 2m/5; these parameters are defined in Appendix A.

from rf cables, couplers, and phase shifters, can be used to
implement a topological pump [25]. The windings of the
scattering matrix eigenvalues, during a pumping cycle, were
found to match the underlying band structure of the network,
which could be topologically trivial or nontrivial. In that
experiment, the intrinsic losses were fixed [25]. Here, we
incorporate tunable amplifiers that can be used to control
the level of non-Hermiticity. This allows us to probe for
the theoretically predicted EPs and study their effects on the
topological pump.

II. EXCEPTIONAL POINTS AND
TOPOLOGICAL PUMPING

We begin with a theoretical analysis of a two-dimensional
(2D) square-lattice network of directed links joined by nodes,
shown in Fig. 1(a). Steady-state waves propagating in the links
are described by complex scalar amplitudes; at each node, the
input and output amplitudes are related by a 2 x 2 coupling
matrix. As shown in previous works [28], if all links have line
delay ¢, wave propagation in an infinite periodic network is
described by the Floquet equation

Uy k) = e~y (k). @

For a Bloch state with real crystal wave vector k, |y (Kk))
denotes a vector of wave amplitudes exiting the nodes of one
unit cell in the network and U (k) describes the “scattering” of
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the wave by the unit cell. Equation (2) thus describes a Floquet
band structure, with ¢(k) as a quasienergy.

The network is “Hermitian” if there is no gain or loss,
so that all propagation and scattering processes are unitary.
Then, U (K) is unitary and the Floquet Hamiltonian Hp(k) =
i In[U (k)] is Hermitian. Moreover, the quasienergies ¢(K)
are real and the band structure can be topologically trivial
or nontrivial, depending on system parameters such as nodal
coupling strengths. (The topologically nontrivial phase is an
“anomalous Floquet insulator”, with interesting properties that
have been studied in previous works [28-34].)

A topological edge invariant can be formulated for the
network by truncating it in the y direction to form a strip
N cells wide. Dirichlet boundary conditions are imposed on
the upper and lower edges, so that no waves enter or leave via
these edges. Translational invariance in x gives a conserved
wave number k, equivalent to taking one unit cell along x and
imposing twisted boundary conditions. One can then calculate
the band structure ¢(k) and count the net number of edge
states on each edge and in each band gap. This is a topological
invariant, independent of the choice of truncation direction for
the strip [12].

Another way to formulate a topological edge invariant is
the Laughlin-Brouwer topological pump [20-22]. As shown
in Fig. 1(b), instead of imposing Dirichlet boundary conditions
on the edges, we attach scattering leads. The wave amplitudes
incident on the two edges, |vi,), can be related to the output
amplitudes |Yoy) by

hbout) = Oedge | win> . 3

The derivation of Seqge is described in Appendix A. If the
network is Hermitian, Seqg. 18 unitary and its eigenvalues {0, }
lie on the complex unit circle. To perform topological pumping,
we set ¢ in a band gap and advance k by 27 and then count
the resulting winding number of the o,,’s along the unit circle
[21,22]. We emphasize that the topological pump is formulated
in terms of “single-particle” wave propagation, so it is equally
applicable to noninteracting fermionic systems and to classical
wave systems (as shall be seen in Sec. III).

Figure 1(c) plots arg(o,) versus k for various strip widths
N for the Hermitian network. All the other system parameters
are chosen so that the underlying bulk band structure is
topologically nontrivial and ¢ € R lies in a band gap. For
small N, the individual eigenvalues have zero winding around
the origin during one cycle of the pumping parameter k.
For larger N, the points of nearest separation between the
eigenvalues appear to shrink. To study this in greater detail,
Fig. 2(a) plots A = min|arg[o, (k)] — arg[o,(k)]|, where the
minimum is calculated over k € [—m,7], for various finite
N. This quantifies the minimum separation between the two
eigenvalue trajectories and must vanish if the eigenvalues cross
somewhere in k € [—m,m] (which is required for nonzero
windings). These numerical results show that A ~ exp(—N),
reaching zero only for N — oo. Physically, this reflects the
fact that topological protection is spoiled by the coupling of
edge states on opposite edges of the sample; since edge-state
wave functions decay exponentially into the bulk, the coupling
strength decreases exponentially with N.

What is the effect of the topological pumping process
on a non-Hermitian network? To study this, we focus on
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FIG. 2. (a) The gaps between arguments of scattering matrix
eigenvalues, A = min(|arg(o;) — arg(o,)|), in the Hermitian limit
y = 0. Circles represent gaps for different N. (b) Scattering matrix
eigenvalues of the non-Hermitian 2D network, at k., >~ 0.5727 and
N = 2. The left and right axes show the arguments and amplitudes of
the eigenvalues, respectively. The other model parameters are the
same as in Fig. 1(c): 6, =6, =37/8, ®} = &) = —7x/10, and
¢ =2m/5.

non-Hermitian networks with a specific distribution of gain
and loss, shown in Fig. 1(a): in each unit cell, link 2 has
gain factor exp(y), link 3 has loss factor exp(—y), and the
other links are unitary. Thus, y simultaneously tunes gain
and loss in links 2 and 3. This arrangement of gain and loss is
chosen so that exceptional points (EPs) of the system are easily
accessible, and affect the behavior of the topological pump.
Note that it is not P7 (parity-time) symmetric [35-39]; in
Appendix B, we show that in an alternative P7 -symmetric
version of the network, the gain/loss do not affect the
topological pump.

We can fix ¢ and y, and carry out the “pumping” procedure
as before: the parameter k is advanced by 2, and we examine
how the trajectories of {0, }—the eigenvalues of the nonunitary
Seqge matrices—wind in the complex plane. Note that the
variation of k is a parametric evolution, not a time evolution, so
the breakdown of adiabaticity in non-Hermitian systems [40]
is not an issue. We now observe an interesting feature of the
non-Hermitian pump: nonzero windings can occur for finite
N, due to the existence of exceptional points (EPs) of Sege.

An EP is a point in a 2D parameter space where a
matrix becomes defective and its eigenvectors become linearly
dependent [10,11]. Due to the spectral theorem, EPs only
appear in non-Hermitian systems. In Fig. 2(b), we plot arg(o;,)
and |o,| against the gain/loss parameter y, for N =2 and
k = 0.572x. The two eigenvalues exhibit bifurcative behavior
characteristic of an EP, coalescing at ¥ = 0.071. In this case,
Sedge POssesses a pair of EPs in the 2D parameter space formed
by k and y; one EP is located at (k = 0.572m,y = 0.071),
as seen in Fig. 2(b), while the other EP is located at (k =
—0.17317,y = 0.1132).

Figure 3 illustrates how the EPs give rise to the topologically
nontrivial regime of the topological pump. Figure 3(a) shows
the 2D parameter space, with the gain/loss parameter y serving
as the radial coordinate and the cyclic pumping parameter k
serving as the azimuthal coordinate. The two EPs of Segee
are labeled EP1 and EP2 (these EP positions depend on N,
which is set here to N = 2). In Figures 3(b)-3(d), we plot
the trajectories of {o,} in the complex plane, as the system
proceeds along the different parametric loops indicated in
Fig. 3(a). For a parametric loop at small y, not enclosing
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FIG. 3. Relationship between topological pumping and excep-
tional points, calculated for a network model of width N = 2. The
underlying band structure is topologically nontrivial, with ¢ in a
band gap (6, =6, =3xn/8, &} =P} =—-0.7r, and ¢ = 27/5).
(a) Parametric loops in the 2D parameter space formed by the
gain/loss parameter y (radial coordinate) and pumping parameter k
(azimuthal coordinate). Exceptional points (EPs) of S, are indicated
by stars. (b)—(d) Complex plane trajectories of {o,}, the eigenvalues
of Sedge, corresponding to the parametric loops shown in (a). The two
distinct eigenvalue trajectories are plotted as solid and dashed curves,
and the unit circle is plotted as dots for comparison. The trajectories in
(b) have zero winding around the origin, like the Hermitian finite- N
limit; the trajectories in (c) join each other under one cycle because
the parametric loop encloses one exceptional point; the trajectories
in (d) have nonzero windings, similar to the Hermitian large- N limit.
(e),(f) Plots of the gain/loss parameter y at the two EPs [as labeled in
(a)] for different N.

any EP, the eigenvalue trajectories do not wind around the
origin, as shown in Fig. 3(b). This behavior extends down to the
previously discussed Hermitian limit (y = 0). For a parametric
loop at large y, enclosing both EPs, the eigenvalue trajectories
have nonzero windings, as shown in Fig. 3(d), which is
similar to the large-N limit of the Hermitian topological
pump. Between these two regimes, there are two points in
the parameter space where the eigenvalue trajectories cross,
which are EPs of Seqe. Figure 3(c) shows the intermediate
regime where only one EP is enclosed by the parametric loop.
In this case, one pumping cycle induces a continuous exchange
of the two eigenvalues, along with their eigenvectors [11].

184306-3



HU, WANG, SHUM, AND CHONG

(a)  Tm(2)y, (b) 4

FIG. 4. Behavior of the multivalued function o(z) given by
Eq. (4), illustrating how branch points can produce winding and
nonwinding trajectories. Here, we take o = 0.1. (a) Plot of the
parameter space formed by the complex variable z, with the branch
points of o(z) indicated by stars, along with three parametric loops
corresponding to (i) |z| = 0.5, (ii) |z| = 1, and (iii) |z| = 1.5. (b) The
corresponding complex plane trajectories of the two branches of o (z).

We can use a simple model to illustrate how such a math-
ematical relationship between EPs and eigenvalue windings
might arise. Consider the multivalued function

c@)=z—a+/z—a+1)iz—a—1). 4)

The two branches of o (z), arising from the square root, could
represent solutions to a secular equation for the eigenvalues of
a2 x 2 matrix, parameterized analytically by a variable z; the
branch points, z = o &= 1, are EPs of that matrix. Figure 4(a)
shows three different loops in the parameter space, centered
at z =0 and enclosing zero, one, and two branch points,
similar to Fig. 3(a). In Fig. 4(b), we plot the trajectories of
o(z) corresponding to those parametric loops and observe
winding behaviors very similar to Figs. 3(b)-3(d). In particular,
for |z] — 0, branches of Eq. (4) reduce to 04(z) ® —a £+
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~/a? — 1, exhibiting zero winding during one cycle of arg(z);
whereas for |z| — oo, the branches reduce to o+(z) = (22)*!,
which wind in opposite directions around the origin.

These findings imply that the topologically nontrivial
regime of the Hermitian topological pump [20-22] emerges
from the general behavior of the non-Hermitian topological
pump, via an appropriate order of limits. For given finite N,
nonzero windings require sufficiently large y, as expressed
in Eq. (1). Figures 3(e) and 3(f) show the values of y at the
EPs for different N. With increasing N, the required level
of non-Hermiticity decreases exponentially, reaching zero for
N — oo.

III. EXPERIMENT

In order to realize the non-Hermitian topological pump,
we implemented the model described in Sec. II using a
classical electromagnetic network operating at microwave
(900 MHz) frequencies. The basic setup is shown in Fig. 5 and
is conceptually similar to the experiment previously reported in
Ref. [25]. The network is designed according to the topological
pumping configuration shown in Fig. 1(b). It corresponds to
a “column” of the periodic network of width N, composed of
identical unit cells each containing four links and two nodes.

Each directional link consists of five low-loss handflex
coaxial rf cables (086-10SM-+/086-15SM+-, Mini-Circuits),
a bandpass filter (CBC-893+, Mini- Circuits), an isolator
(SO091IAD, Nova Microwave), a phase shifter (SPHSA-152+4,
Mini-Circuits), and a digitally controlled variable-gain ampli-
fier (DVGA1-242+, Mini-Circuits). The link’s transmission
coefficient, t = B exp(i¢), can be independently tuned in both
phase and amplitude. The phase ¢ € [0,27) is controlled by
the phase shifter with £1° precision and is used to set the
network model quasienergy ¢ and the pumping parameter k.
The gain/loss factor S is tunable in the range [—8, 24 dB] with
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FIG. 5. (a) Experimental setup. Each of the identical units, labeled Cell 1, Cell 2, and Cell 3, corresponds to one cell in the topological
pump geometry. The twisted boundary condition is applied by tuning the phase shifter (pink boxes) in lower links. The couplers (blue rods) are
depicted in the strong-coupling configuration. The weak-coupling configuration is achieved by swapping each coupler’s outputs. The overall
input and output amplitudes are % and wgl;%. Their scattering parameters are measured with a network analyzer. (b) Each cell is composed of
four links (j = 1,2,3,4) and two couplers (S, Sy). (c) Every link in our system is exactly the same and contains one phase shifter, one isolator,
one digital controlled variable-gain amplifier, one bandpass filter, and five low-loss handflex interconnect coaxial rf cables.

184306-4



EXCEPTIONAL POINTS IN A NON-HERMITIAN ...

40.25 dB precision. The —8 dB lower bound corresponds to
turning off the amplifier and comes from the intrinsic losses
of the components (which are substantially lower than in
Ref. [25], due in part to the lower operating frequency of
900 MHz rather than 5 GHz).

Each node consists of an 1f coupler (BDCN-7-254-, Mini-
Circuits) with ~1 : 7 coupling ratio. At 900 MHz, its measured
S parameters are

0.914¢ 10627
Scoupler = |:0348€l0 1277

By swapping the order of the output ports, we can realize
both topologically trivial and nontrivial phases of the network
model’s underlying band structure [25]. In terms of the
coupling parameter 6 defined in Appendix A, this means
we can set 6 &~ 0.127 (weak-coupling/trivial) or 6 ~ 0.38x
(strong-coupling/nontrivial), where & = 0.5x is the topologi-
cal transition point.

To measure the edge scattering matrix Seqge, We attach the
inputs and outputs at the ends of the “column” to a vector
network analyzer (Anritsu 37396C). Figure 6 shows the results
when 8 & 1 (i.e., where the amplifiers are tuned so that there
is no net gain or loss in each link). In this case, Segge 1S
approximately unitary and, as expected, the eigenvalues lie
very close to the complex unit circle. Under one cycle of
k, we observe no winding in the weak-coupling case. In the
strong-coupling case, nonzero windings appear only when the
system size is sufficiently large, as shown in Fig. 6(d). This is
consistent with the results reported in Ref. [25] and with the
theoretical discussion of Sec. II.

Next, we implement the explicitly non-Hermitian topologi-
cal pumping configuration discussed in Sec. II. We selectively
apply amplification to some of the links, according to the
gain/loss distribution shown in Fig. 1(a). The results, for
N = 2, are shown in Fig. 7. The parameter space is depicted in
Fig. 7(a); our calculations, based on the measured S parameters
of the individual network components, indicate that there are
two EPs very close to B = 0.4 dB. We take three different
parametric loops, with results shown in Figs. 7(b)-7(d). In
Fig. 7(c), the parametric loop passes very close to both EPs
and we observe the two eigenvalue trajectories nearly meeting
attwo bifurcation points, similar to Fig. 2(b). In Fig. 7(d), when
both EPs are enclosed by the parametric loop, the eigenvalue
trajectories acquire nonzero windings.

0.3486_i0']27”
0_914ei0.622n:| : (5)

IV. SUMMARY

We have performed a theoretical and experimental study
of a non-Hermitian topological pump. We have based our
study on a network model, which has previously been
shown to be a convenient and experimentally feasible way
to realize a topological pump using classical microwaves
[25]. When gain and loss are added to the network, we
find that topologically nontrivial behavior (nonzero windings)
requires the pumping process to encircle two exceptional
points in the parameter space of the non-Hermitian system.
This criterion is a generalization of the N — oo limit, which
is necessary for topological protection to emerge in Hermitian
topological pumps [20-22]. These theoretical ideas were
demonstrated experimentally, using a microwave network
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FIG. 6. (a)—(d) Experimentally measured scattering matrix eigen-
values over one pumping cycle, with approximately zero gain/loss.
Results are shown for (a),(b) N = 1 and (¢),(d) N = 3. The weak-
coupling regime corresponds to a topologically trivial phase of
the underlying network band structure, while the strong-coupling
regime corresponds to a topologically nontrivial phase. Directly
measured data are plotted with dots and calculations using measured
network-component S parameters are shown as solid and dashed
curves. The unit circle is indicated by dotted curves. (e) Arguments
of the measured scattering matrix eigenvalues arg(c,) vs pumping
parameter k. The network is in a topologically nontrivial phase. Inset:
behavior near a crossing point; solid curves show theoretical results
calculated using the network components’ measured S parameters,
which predict an avoided crossing for N =1 and a crossing for
N =3.

containing variable-gain amplifiers. In future work, we seek
to generalize this finding to a wider class of non-Hermitian
lattices that are not necessarily described by network models.
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FIG. 7. (a) Parametric loops in the 2D parameter space formed
by the logarithmic gain/loss factor 8 (radial coordinate) and pumping
parameter k (azimuthal coordinate). The gain/loss distribution is as
depicted in Fig. 5(a). Exceptional-point positions (stars) are calcu-
lated from the measured S parameters of the network components.
The system size is N = 2. (b)—(d) Eigenvalues of Scq, in the complex
plane. Directly measured data are plotted with dots and calculations
using measured network-component S parameters are shown as solid
and dashed curves. The unit circle is indicated by dotted curves.

APPENDIX A: SCATTERING MATRIX
OF THE 2D NETWORK

This appendix describes the derivation of the scattering
matrix for the network model discussed in Sec. II. The network
is truncated in the y direction to form a strip N cells wide. The
periodicity in x yields a wave number k. We can equivalently
regard this as a supercell of N unit cells, with twisted boundary
conditions along the x boundaries with twist angle k. The
supercell can be further divided into N identical subunits,
each composed of four links (j = 1,2,3,4) and two couplers
(8, Sy), as shown in Fig. 5(b).

At any given node in the supercell, the incoming and
outgoing wave amplitudes are related by a 2 x 2 unitary
coupling relation,

R yi+i¢
out e VY
o =S ( ) (A1)
<e b d’wb ) * iﬁ

The coupling matrices at the nodes have the simple form

sin 6, icoso,
Sy=1. . , (A2)
1 cos b, sin 6,

corresponding to couplers with 180° rotational symmetry,
where 6, is the coupling parameter in the x direction. The
discussion could also be generalized to arbitrary 2 x 2 unitary
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coupling matrices of the form

. . 1 2
o3 [ sin 0, (®ut P
S,=e

! Iz
—i(®)—P2)

. 1 2
i cos Qﬂe’(q’ﬂ_‘bu)
R B
i(®L+®2)

icosf,e sing,e

where {® ,CDg ,<I>‘3L} are additional Euler angles. Apart from
some phase shifts in the wave amplitudes, these additional
Euler angles may cause systematic shifts in k and ¢; however,
such shifts do not alter the topological properties of the
network’s band structure.

The coupling relation at the other node is given by

ik—yr—id) L i L
() =s (T @

We can use Egs. (A1) and (A3) to obtain an analytic relation

of the form
R L
(D))
in out

where M is the transfer matrix for one subunit. For a supercell
of N subunits, we have

2 1
(V) =m(J7) (AS)

where M = MV is the total transfer matrix for the supercell.

We can show that

)\‘N_)\-N )\'N—l _ 3y N-1
2 1 _ ™ 1 det (M),

)\2 — )\1 )\.2 - )\1

where A, are eigenvalues of the transfer matrix M:

2
Alp = Tr(2M) + \/[_Tr(zM)i| — det(M).

M=

The outgoing and incoming wave amplitudes can then be
related via the scattering matrix relation

;ut wlln
(i)-s=() oo

L (=M 1
Sedge - M_zz <det (M) MIZ) . (A7)

where

APPENDIX B: P7-SYMMETRIC 2D NETWORK

As mentioned in Sec. II, the non-Hermitian network that
we have studied has gain and loss in certain links, but
this gain/loss distribution is not P7 (parity-time reversal)
symmetric [35-39]. Alternatively, it is possible for us to
impose a P7 -symmetric gain/loss distribution on the network.
Referring to Fig. 1(a), this can be accomplished by adding
balanced gain and loss to links 1 and 3, and to links 2 and 4:
ie,y1 = —yzand yy = —s.

In that case, the topological pump’s Seqge matrix will satisfy

PT Seage(—k, — ¢, — VIPT = Syg. k.0, ¥), (B1)

where P is the first Pauli matrix (o,) and 7 is the complex
conjugation operator. Equation (B1) is closely analogous to
the symmetry relation obeyed by scattering matrices derived
from P7 -symmetric wave equations [38,39].
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For this P’T—sygnmetric network, it can be shown that M
exp(y1 + y4)and M o< exp[N(y1 + y4)]. The scattering matrix
eigenvalues {0, } are thus independent of y; and y4. The system

PHYSICAL REVIEW B 95, 184306 (2017)

behaves like a Hermitian topological pump, regardless of the
level of non-Hermiticity.
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