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Ab initio lattice thermal conductivity of MgO from a complete solution
of the linearized Boltzmann transport equation
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Lattice thermal conductivity κlat of MgO at high pressures P and temperatures T up to 150 GPa and 4000 K are
determined using lattice dynamics calculations and the linearized phonon Boltzmann transport equation (BTE)
beyond the relaxation time approximation (RTA) from first principles. It is found that the complete solution
of the linearized BTE substantially corrects values of κlat calculated with the RTA by ∼30%, from ∼42 to
∼54 W m−1 K−1 under ambient conditions. The calculated values of κlat are in good agreement with those from
the existing experiments. At conditions representative of the Earth’s core-mantle boundary (P = 136 GPa and
T = 3800 K), κlat is predicted to be ∼32 and ∼40 W m−1 K−1 by RTA and the full solution of BTE, respectively.
We report a detailed comparison of our study with earlier theoretical studies.
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I. INTRODUCTION

Lattice thermal conductivity κlat is one of the fundamental
physical parameters in controlling the activity of heat transfer
in a solid, and it attracts researchers from wide-ranging
fields such as materials science, engineering, and Earth and
planetary science [1–4]. The determination of κlat of Earth’s
constituent materials is key to understanding the dynamics and
thermal evolution of the Earth’s interior [5–7]. Despite their
importance, studies on the measurement of κlat of the Earth’s
lower mantle minerals at high pressure (P ) and temperature
(T ) have, so far, been limited, most likely due to technical
difficulties in carrying out these experiments [8–11]. There-
fore, extrapolation of κlat measured at much lower P and/or T

than at the Earth’s deep mantle and core conditions are often
made to discuss physical properties at the Earth’s deep interior
[8,9,12–17].

In recent years, computational studies based on density
functional theory (DFT) [18,19] have proved to be applicable
in determining κlat under ambient conditions for many
materials [20–25]. The techniques have also been applied
to κlat of lower mantle minerals such as MgO (periclase)
[26–29] and MgSiO3 (bridgmanite) [30–32]. However, the
earlier studies for MgO employed different techniques:
de Koker applied equilibrium molecular dynamics (MD)
simulations to extract phonon lifetimes by calculating the
phonon spectral density [26,27], and Stackhouse et al. applied
a nonequilibrium MD simulation technique, which directly
determines heat flux Q in a temperature gradient ∇T where
κlat was estimated using Fourier’s law Q = −κlat ∇T [29].
Unlike these two MD-based methods, Tang et al. applied
anharmonic lattice dynamics (ALD) to extract harmonic and
anharmonic force constants (AFCs) [28]. Although these
three approaches have determined values of κlat of MgO
that are in good agreement with the available experimental
data at low P , a quantitative mismatch in κlat among these
studies exists at a high P (100 GPa) and T (2000 K) that is
representative of deep lower mantle (e.g., ∼40 W m−1 K−1

[27], ∼30 W m−1 K−1 [29], and ∼60 W m−1 K−1 [28]).
Consequently, this variation in the calculation of κlat along a

single geotherm renders κlat of MgO under the Earth’s lower
mantle conditions a current topic of debate.

The thermal transport properties of minerals in the Earth’s
interior are not clearly understood due to the limited number
of studies available. For a better understanding of the physical
behavior of κlat of minerals in the Earth’s lower mantle, further
theoretical and experimental investigations are required. Upon
reviewing the ab initio computational methods applied to MgO
[26–29], the method of Tang et al. has room for improvement
from our point of view. They applied the relaxation time
approximation (RTA) [1,33] to the linearized Boltzmann
transport equation (BTE) for the variation in the phonon
nonequilibrium distribution function, which drastically sim-
plifies the original BTE. The RTA appears to substantially
underestimate κlat (e.g., by ∼39% in AlSb [23] and by ∼50%
in diamond [20] at room T and P ). If κlat in MgO is also
substantially underestimated, the correction by fully solving
the BTE should be taken into account to better describe κlat

of the Earth’s lower mantle. In this paper, we calculated κlat

of MgO by employing an iterative approach to fully solve
the linearized BTE [34,35]. In this approach, the change in
the phonon distribution functions due to the phonon-phonon
scattering was taken into account. This method was found
to work very well and provide a more rigorous description
of anharmonic phonons and therefore of κlat [23,35]. We
calculated P and T dependences of anharmonic phonon
lifetimes and determined κlat of MgO for T and P up to
150 GPa and 4000 K, covering the entire lower mantle
conditions based on ab initio ALD. We find that the correction
to the RTA values of κlat is considerable, and thus, the full
solution of BTE is a necessary requirement for determining
thermal properties at Earth’s deep mantle conditions.

II. PHONON TRANSPORT PROPERTIES

Heat conduction in MgO is predominantly due to phonons,
and not electrons, because MgO is a pure insulator. ∇T

induces heat flux Q = ∑
λ h̄ωλvλnλ through a sample [1]. The

summation is over all phonon modes λ = {s,q}, where q is the
phonon wave vector and s is the labeling index of the phonon
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branch, ωλ and vλ = ∇qωλ are the phonon frequency and
phonon group velocity, respectively, in mode λ. The phonon
distribution function nλ in the steady state obeys the BTE [33]

− vλ · ∇T

(
∂nλ

∂T

)
+

(
∂nλ

∂t

)
scatt

= 0. (1)

The first term on the left-hand side represents the diffusion
of nλ due to the temperature gradient, and the second
term is determined by the various scattering events, such
as phonon-phonon scattering and phonon-defect scattering.
The BTE normally leads to complicated simultaneous non-
linear differential and integral equations, which makes the
task of solving the BTE formidable. However, for a small
∇T , the BTE can be linearized in ∇T , and hence, the
equation becomes easier to solve. For a small ∇T , nλ is
perturbed from its equilibrium state: nλ = n

(0)
λ + n

(1)
λ , where

n
(0)
λ = 1/{exp(h̄ωλ) − 1} is the Bose-Einstein function. The

fluctuation of the distribution function is linear in ∇T , n
(1)
λ =

−(∂n
(0)
λ /∂T )Fλ · ∇T . When only phonon-phonon scattering

disturbs the distribution function, the resulting solution to the
linearized BTE can be expressed as [34]

Fλ = τRTA
λ (vλ + �λ), (2)

where τRTA
λ is the phonon lifetime in phonon mode λ, which

is commonly obtained using the RTA and regarded as the
zeroth-order solution to the linearized BTE. The term �λ,
with dimensions of velocity, is an indicator of how well the
full solution corrects the RTA prediction. In the framework
of iterative method for solving the BTE, �λ is iteratively
determined by the following set of coupled equations [34,35]:

�λ ≡ 1

N

+∑
λ′,λ′′

�+
λλ′λ′′ (ξλλ′′ Fλ′′ − ξλλ′ Fλ′)

+ 1

2N

−∑
λ′,λ′′

�−
λλ′λ′′(ξλλ′′ Fλ′′ + ξλλ′ Fλ′), (3)

where N is the number of unit cells, which is equivalent to
that of q points sampled in the first Brillouin zone, and ξλλ′ ≡
ωλ′/ωλ. �λλ′λ′′ represents the phonon scattering rate due to
the phonon-phonon interaction, which is calculated based on
second-order perturbation theory for the three-phonon process
[33]. In Eq. (3), the sums are over the phase space of λ′ and λ′′
that satisfy the phonon energy and momentum conservation
condition for the difference (−) or summation (+) process in
the three-phonon scattering [21,36]: h̄ωλ ± h̄ωλ′ = h̄ωλ′′ and
h̄q ± h̄q ′ − h̄q ′′ = G, where G is the reciprocal vector, which
is a zero vector for Normal (N ) process or nonzero vector for
resistive umklapp (U ) processes [1]. Here, τRTA

λ is given by

(
τRTA
λ

)−1 = 1

N

( +∑
λ′,λ′′

�+
λλ′λ′′ + 1

2

−∑
λ′,λ′′

�−
λλ′λ′′

)
, (4)

where the mathematical form of �±
λλ′λ′′ is [33]

�±
λλ′λ′′ = h̄π

4ωλωλ′ωλ′′

(
n

(0)
λ′ − n

(0)
λ′′

n
(0)
λ′ + n

(0)
λ′′ + 1

)

× |ψ±
λλ′λ′′ |2δ(ωλ ± ωλ′ − ωλ′′). (5)

In Eq. (5), the three-phonon matrix element ψλλ′λ′′ , is
expressed as

ψλλ′λ′′ =
∑

kk′k′′

∑
αβγ

∑
�′�′′ �

αβγ

ijk (0k,�′k′,�′k′′)

× eλ
αke

λ′
βk′e

λ′′
γ k′′√

MkMk′Mk′′
ei(q ′ ·R�′ +q ′′ ·R�′′ ), (6)

where �
αβγ

ijk = ( ∂3E

∂rα
i ∂r

β

j ∂r
γ

k

)0 is the third-order internal AFC.

Here, E is the adiabatic potential of the system calculated
using DFT. The atomic indices are i, j , and k, and the Cartesian
components are α, β, and γ . rα

i is the αth component of the
equilibrium position of the ith ion. Also, eλ

αk represents the
αth component of the phonon eigenvector of the kth atom
in the unit cell with an ionic mass Mk in λ. At the initial
conditions, the second term on the right-hand side of Eq. (2)
was set to zero. The nth iterative solution �

(n)
λ was calculated

iteratively using Eq. (3) from the set of the (n−1)th solution
of {F(n−1)

λ ,�±
λλ′λ′′ }. The sequence was considered to converge

when |�(n)
λα/�

(n−1)
λα | ≈ 1 was achieved. Then Fλ and nλ were

completely determined for all λ. The lattice thermal conduc-
tivity tensor καβ is defined as a response of the heat current
along α, Qα , to the first-order temperature gradient along β

[33], i.e., Qα = −∑
β καβ(∂T /∂xβ), where καβ is defined as

καβ = 1

kBT 2�N

∑
λ

n
(0)
λ

(
n

(0)
λ + 1

)
(h̄ωλ)2 vλαFλβ, (7)

where � is the crystal volume of the unit cell. The cubic
symmetry ensures that καβ is of the diagonal form [37]: καβ =
κ̄δαβ , where κ̄ ≡ (κxx + κyy + κzz)/3 is the scalar quantity of
καβ averaged over the crystallographic axes. Therefore, in this
paper, we denote κ̄ as κlat. We have used the ShengBTE pack-
age [38] in solving the BTE using the iterative scheme [34].

In this paper, we carried out ab initio electronic and lattice
dynamics simulations for NaCl-type MgO. The adiabatic
potential (total energy) and thermal equation of states (EoS)
were calculated based on the DFT and density functional per-
turbation theory (DFPT) [39] using the Quantum ESPRESSO
package [40]. We applied the local density approximation
[41] for both the DFT and DFPT calculations using norm-
conserving-type, and ultrasoft-type pseudopotentials for Mg
and O, respectively. These potentials have been well tested
in our previous research [42–44]. The Kohn-Sham eigenfunc-
tions were expanded with a 50 Ry of kinetic cutoff energy on
a 6 × 6 × 6 Monkhorst-Pack k-point mesh [45]. A 6 × 6 × 6
uniform mesh was used to sample q points for which the
phonon calculations were performed using DFPT. Here, �

αβγ

ijk

were calculated using a finite difference method [46] in real
space following approaches of Refs. [25,47]:

�
αβγ

ijk =
(

∂3E

∂rα
i ∂r

β

j ∂r
γ

k

)
0

≈ 1

2δu

⎡
⎣(

∂2E

∂r
β

j ∂r
γ

k

)
rα
i =δu

−
(

∂2E

∂r
β

j ∂r
γ

k

)
rα
i =−δu

⎤
⎦

≈ 1

4δu2

[−f
γ

k {rα
i =δu, r

β

j =δu} + f
γ

k {rα
i =δu, r

β

j =−δu}

+ f
γ

k {rα
i =−δu, r

β

j =δu} − f
γ

k {rα
i =−δu, r

β

j =−δu}
]
, (8)
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where δu is a small displacement from the equilibrium posi-
tion, and f

γ

k is the γ component of the force acting on the kth
ion. A number of self-consistent field calculations to determine
the AFCs got drastically reduced due to the space group sym-
metry and permutation symmetry in �

αβγ

ijk . In the calculation,

we have used δu = 0.01 Å in a 3 × 3 × 3 rhombohedral su-
percell (54 atoms). The phase space of three-phonon scattering
rates �±

λλ′λ′′ [see Eq. (5)] were computed on a 16 × 16 × 16
uniform q-point mesh, both for the N and U processes. For the
energy conservation described as the delta function in Eq. (5),
we used an adaptive broadening scheme [48].

The convergence of �λλ′λ′′ [Eq. (5)] with respect to a
cutoff distance (Rc) for the AFCs in real space must be
carefully examined because insufficiently small Rc leads to
underestimation of �λλ′λ′′ , which in turn leads to overesti-
mation of κlat. Here, κlat with respect to Rc were checked
from nearest-neighbor (NN) to seventh NN at 300 K at the
static zero-pressure density of 3.62 g cm−3. The calculated
κlat was found to vary greatly from 274 W m−1 K−1 (first
NN), 92 W m−1 K−1 (third NN), 67 W m−1 K−1 (fifth NN),
and 64 W m−1 K−1 (seventh NN) W m−1 K−1. This clearly
indicates that at least the fifth NN AFCs have to be considered
in order to obtain good convergence. All the AFCs up to the
seventh NN were therefore included in all the calculations of
κlat of MgO in this paper.

At an even more stringent condition with a 4 × 4 × 4
supercell (128 atoms) with AFCs up to eighth NN shells and
a 24 × 24 × 24 q-point mesh, we observed that κlat differs
by only 3%. In addition, we find that, for δu = 0.012 Å, κlat
varies up to 10 and 3% for 0 and 100 GPa, respectively. These
conditions ensure numerical accuracy in the computations
performed in this paper.

III. RESULTS AND DISCUSSION

We calculated phonon lifetimes determined using the RTA
(τRTA

λ ). Figure 1 shows τRTA
λ as a function of the phonon

frequencies ωλ, at 300 K at 0 and 100 GPa. We observed
that τRTA

λ tends to diverge as ωλ decreases to zero, which
may be a typical phenomenon at relatively low T [22,25,49].
In the midrange frequencies, τRTA

λ has a small frequency
dependence, while a substantial decrease in τRTA

λ is observed
at higher frequencies corresponding to optical phonons. These
behaviors may be understood in terms of variations of
three-phonon anharmonic decay channels. To account for the
decay channels, we calculated the two-phonon density of
states (TDoS) defined for difference D− and summation D+
processes given by

D±(ωλ) = 1

N

∑
λ′,λ′′

δ(ωλ′ ± ωλ′′ − ωλ). (9)

The difference process clearly dominates the three-phonon
scattering at low frequencies, whereas the summation process
becomes dominant at high frequencies. The TDoS is found
to decrease as P increases, as shown in Fig. 1(b), indicating
that phonon scattering decreases at high P . This is consistent
with our observation that τRTA

λ of each mode increases with
increasing P . The T dependence of τRTA

λ can be understood
in terms of the Bose factor n

(0)
λ in Eq. (5). At T much higher

(b)

(a)

FIG. 1. (a) Anharmonic phonon lifetimes τ of MgO obtained
using the RTA at 300 K. (b) Two-phonon densities of states (TDoSs)
calculated for difference (D−) and summation (D+) processes at 0
and 100 GPa. The total TDoSs (= D− + D+) are also shown.

than the Debye temperature θD, the three-phonon scattering
rate � ∝ τ−1

RTA is linear in T , resulting from the T dependence
of the Bose factor, which results in a reciprocal T dependence
in τRTA ∝ �−1 ∝ T −1.

Using the calculated τRTA
λ combined with a dataset of ωλ

and vλ, κlat(ρ,T ) was computed as a function of density ρ and
T , as shown in Fig. 2. The full solution to the BTE is also
shown in Fig. 2. The density range here corresponds to the
static P from −10 to 150 GPa. Our results were found to fit
the following analytical function well, as shown in Fig. 2:

κlat(ρ,T ) = κ0x
q

(
1 − e−a3

Tref
T

1 − e−a3

)
, (10)

where x ≡ ρ/ρref and q ≡ a0 + a1 x + a2x
2. Here, κ0 and

a0 − a3 are the fitting parameters and were determined to
have the following values: κ0 = 53.7 ± 4.3 W m−1 K−1, a0 =
5.76, a1 = 5.18, a2 = −3.22, and a3 = −0.0938 for the full
solution and κ0 = 42.2 ± 3.8 W m−1 K−1, a0 = 5.90, a1 =
5.26, a2 = −3.34, and a3 = −0.0637 for the RTA. Here,
ρref = 3.56 g cm−3 is the density at 0 GPa and 300 K, and
Tref = 300 K is the reference temperature. We found that
this fitting produced a relative error of ∼8%. As discussed
in the subsequent paragraph, the full solutions (solid lines
in Fig. 2) substantially improve the RTAs (dashed lines in
Fig. 2). The obtained analytical representation of κlat(ρ,T )
was then converted into a representation dependent on P and
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FIG. 2. Density ρ dependence of lattice thermal conductivity
κlat calculated for temperatures between 300 and 4000 K. The full
converged solution is plotted with regression curves calculated using
Eq. (10) with a standard deviation of 8%, as indicated by the shaded
bands. The calculation results obtained using the RTA are also
provided (dashed lines).

T , κlat(P,T ), as depicted in Fig. 4, using the thermal EoS,
ρ(P,T ), determined in the framework of DFPT combined with
the quasiharmonic approximation (QHA) [42]. The behavior
of κlat(P,T ) will be discussed in the following paragraphs.

We first compared our results with those of previous
experimental and theoretical studies performed under ambient
P , as shown in Fig. 3. The red solid line corresponds to the RTA
results κRTA

lat , whereas the pink solid line represents the results
obtained by fully solving the linearized BTE κ full

lat . From Fig. 3,
it is evident that the RTA solution substantially underestimates
κlat for MgO. For example, at 300 K, κ full

lat ∼ 53.7 W m−1 K−1

is approximately 30% higher than the RTA value κRTA
lat ∼

42.2 W m−1 K−1. This modification is substantial compared
with κlat of other materials, which show much smaller

Full
RTA

FIG. 3. Comparison of our calculated lattice thermal conductivity
κlat of MgO with the results of existing experimental and theoretical
studies under ambient pressure. The results of this paper (solid lines)
with 1σ = 8% confidence bands (shaded region) obtained using the
RTA (red) and the full converged solution (pink) are compared with
those of experiments ((�) [53], (◦) [51], (
) [52], ( �) [50], (�) [13],
(+) [10]), ab initio studies based on nonequilibrium MD simulations
(dashed line) [29], and ab initio ALD simulations using the RTA with
the isotopic correction (dashed double-dotted line) [28].

deviations; that is, they deviate by less than ∼10% with
respect to the RTA values, e.g., in intrinsic semiconductors (Si
and Ge [21]) and compound semiconductors (AlP, GaN, GaP,
GaAs, GaSb, InP, InAs, InSb, and AlN [23]), but comparable
to diamond which has a ∼50% deviation at room T [20].
This large correction to the RTA may come from weak U

scattering. In the RTA, both the N and U processes are
independent and enter in a purely resistive manner in the total
three-phonon scattering rate, reflecting Mattheissen’s rule [21]
1/τRTA

λ = 1/τ
(N)
λ + 1/τ

(U )
λ . Since the phonon heat transfer is

principally carried out by phonons in the U scattering process
[33], the full solution to the linearized BTE corrects this
behavior. If the U process contribution is more considerable
than the N process, the RTA approaches the full solution, so
that the RTA well describes κlat [21]. On the other hand, if the
U scattering is considerably weaker than the N scattering due
to the smaller phase space for the three-phonon scattering rates
in simple systems, such as that in the case of diamond [20], the
contribution of the N scattering to the thermal resistivity using
RTA is suitably wiped out through the iterative procedure in
solving the linearized BTE. Then κRTA

lat is largely corrected
using the full solution. We assert that this is the case in our
system, and consequently, our solution to the linearized BTE
is important in accurately predicting κlat of MgO.

In Fig. 3, we found that our calculated values of κlat fall in
the range of the scattering experimental data, between ∼40 and
∼75 W m−1 K−1 [10,13,50–53]. A classical MD simulation
has resulted, based on the Green-Kubo method [54], in a
value of ∼110 W m−1 K−1, which is far from the experimental
values. This disagreement may arise from two factors: (a)
using empirical potentials, which may not easily describe
the anharmonic interactions sensitive to the calculations of
κlat, and (b) a fundamental limitation of the classical MD
approach in describing ion dynamics at a temperature of 300 K,
which is much lower than the θD of MgO (∼1000 K [55]),
where quantum effects strongly control dynamical properties,
including κlat. Compared with the ab initio MD simulations
[27,29], our calculated κ full

lat is also in good agreement with
previous studies within the numerical accuracy. On the other
hand, an ab initio study based on the ALD using the RTA
reported by Tang et al. [28] showed a κRTA

lat value substantially
larger than our values for κRTA

lat and κ full
lat . For example, at 300 K,

they reported κRTA
lat to be ∼100 W m−1 K−1, which is almost

twice that of κ full
lat of ∼50 W m−1 K−1. They calculated the iso-

topic scattering based on the static perturbation theory [56,57]
and included the effects to the total thermal resistivity using
Matthiessen’s rule, which takes into account mixing effects
[33], and finally obtained a value of κRTA

lat = 66 W m−1 K−1,
which shifted the value much closer to the experimental values.
Consequently, they argue that the disagreement in the phonon
thermal conductivity with experiments resulted from lack
of the isotopic scattering contribution. This seems, however,
disputable from a computational point of view. Tang and Dong
took into account only up to second NN AFCs to compute κlat

[28,58]. As mentioned in Sec. II, this is, however, insufficient
for the convergence and leads to a substantial overestimation
in κlat. The considerable discrepancy between our κlat and Tang
and Dong’s with no isotopic correction should be attributed to
the insufficient computational condition rather than to the lack
of isotopic correction.
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FIG. 4. Calculated κlat of MgO with the fully converged solutions
to the linearized BTE (solid lines) as a function of pressure P

at several T from 300 to 4000 K with 1σ = 8% confidence
bands (shaded regions). The results of previous studies based on
ab initio ALD calculations with the isotopic correction (dashed
double-dotted lines) [28], equilibrium (dash-dotted lines) [27] and
nonequilibrium MD (dashed lines) [29], and experiments conducted
using single-crystal samples (pink and green circles for 300 and
2000 K, respectively) [8,10] and polycrystalline samples (pink and
orange squares for 300 and 1000 K, respectively) [9,17] are provided.
The results of classical MD simulations (pink and green triangles for
300 and 2000 K, respectively) [54] are also depicted.

We now compare our results for κlat at high P and T

with previous studies. Figure 4 shows our calculated κ full
lat ,

alongside previous studies, as a function of P for several T

from 300 to 4000 K. We note that large corrections to κRTA
lat

of ∼30% from the full solution to the linearized BTE also
hold at high T . This indicates that the complete solution to
the linearized BTE for MgO is geophysically important when
discussing κlat using Earth’s lower mantle conditions to infer
its thermal transport properties.

In comparing κ full
lat at 300 K and P < 10 GPa with the values

reported previously, we found our results to agree well with
those obtained in experiments using single crystals [10] and
with ab initio calculations using nonequilibrium MD [29]
and ALD with the isotopic correction [28]. In contrast, large
discrepancies are evident between our predictions and the
experimental values measured using a polycrystalline sample
[17]. Imada et al. speculated that large discrepancies would
result from the effects of phonon-grain boundary scattering
on κlat [17]; however, they showed no direct evidence of
these effects. Although quantitative evaluation is required,
these effects may not have strong T dependence [49,53] and
therefore may become negligible at high T . Phonon-phonon
scattering is expected to dominate the thermal conduction in
the Earth’s lower mantle temperature conditions (T >∼ 1900 K
[59]). At higher P and 300 K, our calculated results deviate
from those of the experiments using single crystals [10].
Although the cause of this deviation is unclear, it may be due to
phonon scattering by crystal imperfections [33]. There could
be a breakdown of samples to polycrystalline states or increase
of dislocation density under the strong uniaxial stress [60]
expected in room T diamond anvil cell experiments, which
might result in thermal conductivity suppression at high P .

At T = 2000 K, the calculated κ full
lat values fall in the range

of available experimental data at up to P of ∼35 GPa [10],
ab initio predictions determined using MD simulations
[27,29], and ALD using the RTA [28]. However, as P

increases, the difference in values between those in this
paper and those of the previous studies [27,29] becomes
very large, as shown in Fig. 4. For example, at 100 GPa
and 2000 K, which is representative of Earth’s deep mantle
conditions, our value is found to be ∼60 ± 8 W m−1K−1,
whereas values of ∼33 W m−1K−1 [29], ∼40 W m−1K−1

[27], and ∼54 W m−1K−1 [28] were reported previously. The
classical MD simulation at 2000 K [54] yielded much higher
conductivities, particularly at P ∼ 130 GPa (Fig. 4), than this
paper and previous ab initio MD studies [27,29]. Although the
cause of these high conductivities is not clear, as mentioned
in the previous paragraph, the use of empirical potentials may
have affected the results. At Earth’s core-mantle boundary
(CMB) conditions (P = 136 GPa and T = 3800 K [61]), κ full

lat
is calculated to be 39.7 W m−1K−1, which corrects the RTA
value predicted to be κRTA

lat 31.6 W m−1K−1. Our calculated
κ full

lat is found to be larger than those obtained in previous
ab initio MD simulations [27,29]; however, it is close to
the value κRTA

lat = 35 W m−1 K−1 with the isotopic correction
reported by Tang et al. [28]. As the P dependence in κlat

obtained at high P and T is completely different from that
found in the data of Tang et al., as demonstrated in Fig. 4,
the agreement between the data of Tang et al. and our data
is most likely coincidental. Differences in κlat at high P and
T predicted by previous and present ab initio studies [27–29]
may have resulted from errors in, for instance, numerical setup.
Further studies, particularly experimental ones, are needed in
order to assess reliability of the predicted results.

We will now discuss some potential limitations in our
computations of κlat of MgO. Potential errors in κlat, par-
ticularly at high T , may be attributable to a breakdown of
the QHA in describing the T dependence of ωλ at high T .
Previous ab initio studies on the thermodynamics of MgO
(e.g., Ref. [62]), however, demonstrated that the QHA works
well in determination of the thermal properties under Earth’s
deep mantle conditions except at low P and high T . Also,
the four-phonon (and higher-order) anharmonic scattering
processes were ignored in the present calculations of the
decay rate of nλ. The reasonable agreements between the
present calculations and previous experimental results imply
that three-phonon scattering is dominant in MgO at lower
mantle T . However, recent classical MD simulations yielded
distinctive contributions of the four-phonon scattering by 15,
25, and 36% for diamond, Si, and Ge, respectively, which
are typical highly conductive materials, even at 1000 K [63].
It might be worth extending our methods to higher-order
anharmonic phonon scattering in the future.

IV. CONCLUSIONS

In conclusion, we calculated κlat for NaCl-type MgO
at high P and T , up to 150 GPa and 4000 K, using
ab initio ALD simulations. We solved the linearized BTE
and corrected the values of κlat that were determined using
the RTA. The full solution of the linearized BTE corrected the
RTA values substantially, by about 30%, which indicates that
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the anharmonic properties of MgO are governed by weak U

phonon scattering, similar to the case of diamond. Therefore,
a complete solution of the linearized BTE is essential to
determine κlat of MgO. The κlat values obtained for MgO in
this paper would help to model thermal transport properties of
the Earth’s deep interior.
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