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Acoustic waves undetectable by transient reflectivity measurements
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A free-standing GaAs membrane is investigated by pump-probe reflectivity measurements with femtosecond
laser pulses of 400-nm wavelength. It is found that the detected wide spectrum of laser-generated coherent
strain waves in the membrane does not contain a specific hypersonic frequency. Theoretical analysis reveals
that this effect is related to zero sensitivity of the acousto-optic detection at a particular frequency defined by
the wavelength of the probe laser pulse on the mechanical free surface of the GaAs membrane. We predict that
a similar behavior is expected in Si and Au membranes and films, indicating that the presence of zeros in
the spectral transformation function of acousto-optic conversion is a rather general phenomenon in picosecond
ultrasonics that has so far been neglected.
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I. INTRODUCTION

Nanometer-thick planar phonon cavities have attracted
much attention for investigating high-frequency acoustic
phonons in the GHz to THz frequency range. Using time-
resolved pump-probe laser spectroscopy, out-of-plane con-
fined longitudinal coherent acoustic phonon (CAP) modes
have been excited and detected in planar phonon cavities, such
as supported films [1,2] and free-standing membranes [3–5].
For supported films, the laser-generated acoustic modes are
coupled to a heat reservoir, thus the dynamics of the phonons
in the film also depends on the acoustic parameters of the
substrate. As a free-standing membrane is decoupled out of
plane from any solid-state material, it has been proven to be
a preferential model system for studying phononic properties
of the individual materials. The membrane geometry has been
employed to study the dynamics of coherent acoustic phonons
in various semiconductors. In free-standing Si membranes, the
mechanism for the generation and detection processes has been
analyzed [3,4,6]. In addition, the relaxation of confined CAP
modes has been investigated and the lifetime of the fundamen-
tal mode was obtained. Previously, confined CAP modes in
a free-standing cubic GaN membrane were also investigated
by femtosecond spectroscopy, and the ultrafast thickness
oscillation of the membrane is observed and analyzed in the
time domain [7]. As for GaAs, we published a first account on
the observation of confined CAP modes in the free-standing
GaAs membrane earlier in a review [5]; however, no detailed
studies of the coherent acoustic pulses and vibrations in GaAs
membranes have been reported until now.

In this paper, we describe the details of the preparation of
the GaAs membranes, of the conducted experiments, and of
the theoretical analysis, which provides an explanation of the
“invisibility” of CAP at a specific hypersonic frequency in our
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experiments. We also analyze and discuss the generality of
the revealed phenomenon of zero sensitivity of the transient
optical reflectivity to CAP in picosecond laser ultrasonics of
semiconductors and metals.

II. EXPERIMENTAL RESULTS

A free-standing [100] oriented GaAs membrane was
prepared by cutting two trenches on the front side of the
sample (GaAs epilayer/Al0.5Ga0.5As/GaAs substrate) using
a focused ion beam and then immersing the sample in
hydrofluoric acid (HF) solution to underetch the Al0.5Ga0.5As
layer with a thickness of 1 μm. The nominal thickness of the
membrane is 200 nm. Figure 1 shows SEM images of as-
fabricated membranes. Confined longitudinal CAP modes of
the membrane are excited and detected by femtosecond pump-
probe spectroscopy based on asynchronous optical sampling
(ASOPS) [8,9]. All the measurements were performed in
reflection geometry. The wavelength of 400 nm for both pump
and probe laser pulses was obtained by frequency doubling of
the initial pulses of 800 nm. The average powers for the pump
and probe were 9 and 2 mW, respectively. Both beams were
collinearly focused onto the sample at nearly normal incidence
with a spot size of around 20 μm.

After subtracting the background unrelated to acousto-optic
contribution to the reflectivity signal [Fig. 2(a-i)], the echo
signals of the GaAs membrane, where a series of equally
spaced echoes is seen, are shown in Fig. 2(a-ii). The back-
ground was subtracted by smoothing using the Savitzky-Golay
method, where the points of window used is 800 and the
polynomial order used is 2. Since the absorption depth of
the light at 400 nm in GaAs is around 14 nm [10], the CAP
pulse is generated and detected close to the surface of the
GaAs membrane. The area illuminated by the laser beam,
which determines the cross section of the generated acoustic
beam, significantly exceeds the characteristic wavelengths of
the CAPs, thus making diffraction effects negligible in the
CAPs propagation. Hence, for the subsequent analysis of the
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FIG. 1. SEM images of the GaAs membrane. Top: Array of nine
membranes. Bottom: Single membrane with two trenches used for
underetching of the GaAs film.

signals only the membrane motion perpendicular to its surface,
i.e., in the z direction, is considered. Thus, the spacing between
the adjacent echoes corresponds to the round-trip time, τ , of
the strain pulse in the membrane and equals 80.4 ± 0.2 ps.
Using this pulse-echo method and a speed of sound for GaAs
of 4730 m/s in the [100] direction [11], the thickness of the
membrane, d, is determined to be 190.1 ± 0.5 nm. Accounting
for the fact that in the process of substrate etching the thickness
of the layer is usually reduced relative to its grown thickness,
this value is within 5% less compared to the nominal growth
thickness of the membrane.

The fast Fourier transform (FFT) of the echoes is given in
Fig. 2(b), where nearly equally spaced peaks are observed.
These peaks correspond to the vibrational modes of the
membrane. Due to the strong absorption of the light, both even
and odd modes are generated and detected [5]. Figure 2(b) also
compares the FFT results of the first and second echoes, which
are indicated by solid and dashed gray lines, respectively. Both
FFT spectra exhibit a double peak structure with two maxima
at ∼60.0 and 120.0 GHz and a minimum at ∼93.6 GHz. In
order to explain the discovered double peak structure of the
detected pulse spectrum, we have taken into consideration
the processes of generation, propagation, and detection of
the CAPs by applying the theoretical methods developed in
picosecond laser ultrasonics.

III. THEORY

The theoretical foundation of picosecond laser ultrasonics,
a domain of research pioneered in the publications [12,13]

FIG. 2. (a-i) Transient background contribution to the reflectivity
changes, which stems from the relaxation of photoexcited carriers,
dynamics of the lattice temperature, and also contributions within the
electronic circuit in phase with the repetition rate of the laser. (a-ii)
Transient reflectivity change of the GaAs membrane after subtracting
the background. The inset shows the first echo. The gray dots are
the actual data, while the solid line is the smoothed curve shown
for the purpose of better illustration of the pulses. (b) The FFT result
of the echo signals and the comparison of the FFT results of the first
(solid gray line) and second (dashed gray line) echo.

and dealing with application of all-optical generation and
detection of hypersonic CAPs for fundamental studies and
nondestructive testing of materials, was initially formulated
in the time domain. Because in picosecond laser ultrasonics
the generation of the acoustic waves through, for example, the
thermoelastic effect is not delta localized at the surface of the
materials but is distributed in depth near the laser-irradiated
surface, generally an integral-type relation between the time
profile of the pump laser pulse intensity envelope, f (t), and
the time profile of the emitted strain pulse, ηemit(t), can be
established [13,14]. Similarly, the detection of the strain waves
through the acousto-optic effect takes place in the complete
volume of probe light penetration and, as a consequence, in
the time domain the acoustically induced changes in intensity
of the reflected probe pulse, dR(t)/R, are also related to the
time profile of the strain pulse, ηinc(t), incident on the probed
surface by an integral transformation [13,15].
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Note that the time profile ηemit(t) of the emitted pulse,
which is by its definition propagating from the laser-irradiated
surface, is introduced in laser optoacoustics from physical
considerations at the shortest distance from the surface, z =
zemit, where the photoinduced stress is negligible [14]. The goal
of this consists in splitting the description of the acoustic wave
photoinitiation spatially into the domains of wave generation
and of wave propagation. From the mathematics points of view
the problem of solving the inhomogeneous wave equation
in the full space is divided into two successive problems.
The first one, the “generation problem,” is to solve the
inhomogeneous wave equation in the domain 0 < z < zemit.
The second one, the “propagation problem,” is to solve the
homogeneous wave equation, i.e., neglecting photoinduced
stress in the rest of the space using as a boundary condition
the solution of the first problem at z = zemit. This approach
provides important simplifications for the description of most
of the experimental situations (including our experiments
described above), because in the picosecond laser ultrasonics
experiments the characteristic lengths of the acoustic wave
attenuation and dispersion are commonly much longer than the
depth of the photoinduced stress localization. This separation
of spatial scales provides the opportunity (i) to neglect the
attenuation and dispersion, when solving the inhomogeneous
wave equation in the domain 0 < z < zemit, and (ii) to replace
approximately its solution at z = zemit by the formal solution
of the same simplified equation at infinitely large distances.
In other words, the emitted acoustic pulse at z = zemit is
found as the solution at infinite distances from the surface
of the inhomogeneous equation for the nondispersive and
nonattenuated waves in a half space [14,16]. Similarly, in
many experimental configurations, including our experiments
described above, the penetration depth of the probe laser
light can be much shorter than the characteristic lengths of
attenuation and dispersion of the photogenerated acoustic
pulses. In this case, it is advantageous to determine the
profile of the acoustic strain pulse approaching the optically
probed surface, ηinc(t), at the minimal distance from this
surface, z = zinc, where the probe laser field is negligible.
The strain pulse at z = zinc can be found from the solution
of the propagation problem, defined above, while in the
region probed by the optical radiation its propagation can
be considered as nonattenuated and nondispersive. In this
case, the profile of the pulse approaching the optically probed
surface is the same at z = zinc and 0, and ηinc(t) can be
equivalently defined at z = 0. Note that in our experimental
configuration the propagation path of the photogenerated
pulse from z = zemit to z = zinc includes its reflection at the
mechanically free surface of the membrane.

The method of spectral transformation functions, initially
developed for laser ultrasonics [14], was first applied in
picosecond laser ultrasonics in Refs. [16,17] and later proved
its efficiency for the analysis of various experimental config-
urations [16,18–21]. In the frequency domain the spectrum
of the emitted acoustic pulse, η̃emit(ω), and the spectrum of
the pump laser pulse intensity envelope, f̃ (ω), have a linear
relationship and can be written as follows:

η̃emit(ω) = KOA(ω)Ipumpf̃ (ω) ∼= KOA(ω)Fpump, (1)

where KOA(ω) is the spectral transformation function of
the optoacoustic conversion while Ipump and Fpump are the
peak intensity and the fluence of the pump laser pulse,
respectively. KOA(ω) describes the efficiency of conversion
of each particular frequency from the laser pulse intensity
envelope into the same frequency of the acoustic pulse
spectrum. KOA(ω) depends not only on the parameters of the
material and of the pump laser radiation but also on the acoustic
boundary conditions at the laser irradiated surface/interface
[14]. Since the approximate relation in Eq. (1) is independent
of the laser pulse intensity envelope spectrum and contains
only the constant pump laser fluence, it is very precise
for the sub-picosecond and femtosecond pump laser pulses
with the negligible variations of f̃ (ω) below 1 THz, i.e., in
the hypersound frequency range of interest here. Although
the opportunity to describe the detection of CAPs in the
frequency domain had been noticed already in Ref. [15], it
was applied for the first time to the analysis of the experiments
quite recently [20] and only for a particular case of CAPs
detection near the interface of transparent and opaque solids.
In general, in the frequency domain the relation between the
spectrum of the transient reflectivity, dR̃(ω)/R, detected by
probe pulse of sub-picoseconds-femtoseconds duration and the
spectrum of the acoustic strain pulse incident on the probed
surface/interface, η̃(ω), is a linear algebraic one:

dR̃(ω)/R = KAO(ω)η̃inc(ω) (2)

where the spectral transformation function of the acousto-
optic conversion, KAO(ω), depends on the parameters of the
material, on the parameters of probe laser radiation, and
also on the acoustic boundary conditions at the laser probed
surface/interface [15,20]. KAO(ω) characterizes the efficiency
of conversion of each particular frequency from the spectrum
of a coherent strain pulse into the spectrum of a transient
reflectivity.

Likewise, the transformation of the acoustic pulse caused by
its propagation can be conveniently described in the frequency
domain by

η̃inc(ω) = KAA(ω)η̃emit(ω). (3)

Here the spectral transformation function of acousto-acousto
conversion, KAA(ω), associates with the potential effects that
accompany acoustic pulse propagation, such as attenuation
(including absorption and scattering), dispersion, diffraction,
and reflections at surfaces/interfaces [14,16]. Combining
Eqs. (1)–(3) we derive the following relation:

dR̃(ω)/R = KAO(ω)KAA(ω)KOA(ω)Fpump. (4)

This relation indicates that the experimentally revealed zero in
the detected spectrum, dR̃(ω)/R, of the transient reflectivity
could be potentially related to the zero in one of the defined
spectral transformation functions.

In theory, neither dispersion nor diffraction phenomena can
completely eliminate a particular finite frequency component
in the spectrum of the propagating strain pulse. Potentially
a formation of a pronounced minimum in KAA(ω) could be
caused by some resonant processes of absorption or scattering
in the bulk or at the surfaces/interfaces. However, the absence
of any resonant CAPs attenuation in the frequency range
around 100 GHz of interest here has been theoretically
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previewed based on the experimental results for hypersound
absorption in GaAs [22,23], thus the presence of zero in
KAA(ω) at some finite hypersonic frequency can be excluded.

The spectral transformation function KOA(ω) for sound
generation by a femtosecond laser pulse at 400 nm in GaAs
was derived in Ref. [21], and it was successfully applied
to explain the experimental observations afterwards. For
our experimental conditions, it is possible to demonstrate
analytically that KOA(ω) does not contain zeros or pronounced
minima at finite hypersonic frequencies, and this can also
be confirmed by direct numerical evaluation. Moreover, we
verified that the inclusion of the surface recombination of the
photogenerated charge carriers [14,16] and the optoacoustic
conversion via the thermoelastic mechanism [16,21] does not
introduce zeros or pronounced minima in KOA(ω) at finite
hypersonic frequencies. Theoretically, for the disappearance
of a particular frequency in optoacoustic conversion, the
materials and structures of at least two optoacoustic conversion
mechanisms operating in antiphase are advantageous, such as
the deformation potential and thermoelasticity both operating
in silicon [14,15,24] and the deformation potential in a silicon
membrane combined with thermoelasticity of metallic thin
film deposited on it [5,25]. In these cases the photoexcitation
of electron-hole pairs near the lowest indirect energy gap of
silicon causes its contraction, while heating of either silicon or
metal usually leads to its expansion. However, in GaAs the de-
formation potential of electron-hole pairs near the fundamental
energy gap operates in phase with thermoelasticity [16,26],
and furthermore at the low pump laser fluence compared to
those in Ref. [21] the thermoelastic contribution to the total
photogenerated strain pulse is largely negligible [16,17,21,26].

The zero efficiency in optoacoustic transformation could
also take place in materials with a single physical mechanism
of the conversion, which operates with different phases through
several channels. In our case, where the pump laser pulse with
a wavelength of 400 nm incidents on the GaAs surface, the
initially photoexcited electrons first relax at sub-pico-second
time scale to higher-energy conduction valleys X and L and
later relax to the lowest conduction valley in the � point
[27–30]. There are indications in the literature that the sign
of the electron phonon deformation at least in a part of the
higher-energy valleys could be opposite to its sign in the �

valley [11]. Thus, the electrons in the higher and in the
lowest valleys could potentially generate CAPs in antiphase.
However, it is well established that the relaxation of the
electrons from the higher valleys to the lowest one takes
place faster than in τrel � 1 ps [27–30]. Because of this finite
lifetime of the nonequilibrium electrons in higher conduction
bands, the spectrum of CAPs generated is expected to have a
low-frequency cutoff at around f = ω/(2π ) � 1/(2πτrel) ∝

160 GHz [14,24]. This preliminary and qualitative theoretical
analysis indicates that hypothetical compensation of two
different channels of the deformation potential mechanism
cannot lead to zero in KOA(ω) at the frequency of ∼93.6 GHz
[see Fig. 2(b)], because the generation of the CAPs by higher
valley electrons is strongly suppressed at this frequency.
Although the quantitative analysis of possible compensation
of two deformation potential mechanism channels in GaAs
is of general interest in our opinion, we are not developing
it in this paper because we have found the main reason for
the zero in the detected spectrum of the transient reflectivity
as discussed below. In the following paragraph we will prove
that the pronounced minimum at ∼93.6 GHz in the detected
spectrum of the transient reflectivity of 400-nm probe light
is caused by the zero in the sensitivity of the acousto-optic
conversion in GaAs, i.e., by the zero in KAO(ω).

To derive the spectral transformation function of the
acousto-optic conversion, KAO(ω), we started by rewriting
the theoretical formula for the transient reflectivity, dR(t)/R,
in the time domain from Ref. [13], where the probe light is
incident on the interface of the material with air (vacuum), in
terms of the material dielectric function:

dR(t)

R
= −4k0Re

{
i
∂ε/∂η

ε − 1

∫ ∞

0
η(z,t)e2ik0

√
εzdz

}
, (5)

where R is the reflection coefficient for optical intensity,
k0 = 2π/λ0 is the probe wave in vacuum, Re stands for the real
part of the complex function, ε = ε′ + iε′′ is the complex di-
electric function, ∂ε/∂η = ∂ε′/∂η + i∂ε′′/∂η is the complex
acousto-optic coefficient, and η(z,t) is the coherent strain field
distribution in the sample region, along the z axis normal to
the surface, detected by the probe laser field. The theoretical
formula in Eq. (5) is valid near a mechanically free surface of
the material as the loading by air is negligible. Consequently
the probed strain field η(z,t) can be decomposed into two
strain pulses traveling with the acoustic velocity ca: the strain
pulse ηinc(t + z/ca) incident on the surface z = 0 from the bulk
and the reflected strain pulse ηref(t − z/ca) = −ηinc(t − z/ca),
where the sign “−” in front of the right-hand side accounts for
the strain sign inversion in reflection from the mechanically
free surface [15]:

η(t,z) = ηinc(t + z/ca) − ηinc(t − z/ca)

= 1

2π

∫ +∞

−∞
η̃inc(ω)e−iωt [e−ikaz − eikaz]dω, (6)

where ka = ω/ca is the wave number of CAP.
By substitution of Eq. (6) into Eq. (5) we can do the

integration over the spatial coordinate z:

dR(t)

R
= 1

2π

{
8k0Re

[
∂ε/∂η

ε − 1

∫ +∞

−∞

ka

(2k0)2ε − k2
a

η̃inc(ω)e−iωtdω

]}
. (7)

Taking into account that the strain field is real, thus η̃inc(−ω) = η̃∗
inc(ω), where “∗” denotes complex conjugation, also neglecting

CAPs attenuation in their propagation through the optically probed region, i.e., assuming real acoustical wave numbers, Eq. (7)
can be transformed to the following form:

dR(t)

R
= 1

2π

{
− 4i

∫ +∞

−∞
k̄a(ω)Im

[
∂ε/∂η

(ε − 1)[ε − k̄a(ω)]

]
η̃inc(ω)e−iωtdω

}
, (8)
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where k̄a(ω) = ka(ω)/(2k0) is the normalized acoustic wave
number. At the same time, using the definitions of the Fourier
transform and of the spectral transformation function of the
acousto-optic conversion, KAO(ω), in Eq. (2), dR(t)/R can be
presented as

dR(t)

R
= 1

2π

∫ +∞

−∞

dR̃(ω)

R
e−iωtdω

= 1

2π

∫ +∞

−∞
KAO(ω)η̃inc(ω)e−iωtdω. (9)

Comparing Eq. (8) with Eq. (9) provides the solution for
KAO(ω):

KAO(ω) = −4ik̄a(ω)Im

{
∂ε/∂η

(ε − 1)
[
ε − k̄2

a(ω)
]
}

. (10)

For evaluating the amplitude spectrum of transient reflec-
tivity, the modulus of the spectral transformation function
KAO(ω) can be written in the form

|KAO(ω)|

= 4|a|
(ε′ − 1)2 + ε′′2

{
k̄a(ω)

∣∣ε′ + (b/a)ε′′ − k̄2
a(ω)

∣∣[
ε′ − k̄2

a(ω)
]2 + ε′′2

}
,

(11)

where the following notations are introduced: a = ε′′∂ε′/∂η −
(ε′ − 1)∂ε′′/∂η and b = (ε′ − 1)∂ε′/∂η + ε′′∂ε′′/∂η. Note
that the dependence of |KAO(ω)| on the frequency of CAPs
is only due to the dependence on frequency of the CAP
wave number, k̄a(ω) ∝ ω. Because of this asymptotic behavior
of |KAO(ω)|, we have |KAO(ω)| ∝ |ω| and 1/|ω| at lowest
and highest frequencies, respectively. It is also worth noting
that Eq. (9) correctly predicts that in the case of a nearly
transparent material the highest efficiency of the acousto-
optic transformation is due to a synchronous process of
the Brillouin backscattering taking place for the acoustic
wave numbers satisfying the condition k̄2

a(ω) = ε′, a more
familiar form of which is ka(ω) = 2k0n, where n denotes
the optical refractive index. However, for our present research
the prediction by Eq. (9) of a possible zero in |KAO(ω)| at finite
acoustic frequency is of primary importance. The spectral
transformation function could be potentially equal to zero
only if the condition ε′ + (b/a)ε′′ > 0 is fulfilled. Under the
above condition, the acoustic frequency, which is undetectable
by transient optical reflectivity, has the following theoretical
expression:

f0 = cak0

π

√
ε′ + b

a
ε′′

= cak0

π

√
(2ε′ − 1)ε′′∂ε′/∂η − [ε′(ε′ − 1) − ε′′2]∂ε′′/∂η

ε′′∂ε′/∂η − (ε′ − 1)∂ε′′/∂η
.

(12)

In order to evaluate the theoretically predicted f0 under our
experimental conditions (GaAs with the z axis oriented along
[100], λ0 = 400 nm) we have used the dielectric constant
ε ∼= 14.5 + i18.8 from Refs. [10,31], estimated the photoe-
lastic constants P11

∼= (7.1 + i3.1) GPa−1 and P12
∼= −(3.8 +

i0.029) GPa−1 using Fig. 3 from Ref. [31], and derived the
required acousto-optic constants ∂ε/∂η ∼= −278.0 + i162.5
using the relation ∂ε/∂η ∼= P11C11 + P12(C11 + C12) and real
elastic moduli of GaAs, C11

∼= 119.0 GPa and C12
∼= 53.4

GPa [32]. The CAPs in our experimental geometry contain a
single component of the strain tensor εzz ≡ ε33 and propagate
with the velocity ca

∼= 4730 m/s. Substituting the above
listed parameters in Eq. (10) provides the theoretical estimate
for the undetectable frequency, f theor

0 (GaAs,400 nm) ≈ 95.5
GHz, which is in a very good agreement with the position
of the experimentally observed pronounced minimum in the
amplitude spectrum of the detected CAPs [Fig. 2(b)]. In
the next section we will demonstrate that the existence of
the acoustic frequencies undetectable by transient reflectivity
measurements in picosecond laser ultrasonics is a rather
general and widely spread phenomenon. This should be
taken into consideration when choosing a material and an
optical probe wavelength for monitoring CAPs in a particular
frequency range.

IV. DISCUSSION

Using Eqs. (11) and (12) and the parameters of GaAs
available in the literature [10,31,33] the dependences of f 2

0
and |KAO(ω)| on the probe optical wavelength are shown in
Figs. 3(a) and 3(b), respectively. Obviously, the undetectable
frequencies exist only for positive values of (f0)2. Figure 3(a)
demonstrates that the undetectable frequencies exist in the
large bands of probe wavelengths, while all CAP frequencies
can be potentially detected only in narrow bands of the
wavelengths near the well-known critical points E1, E1 + 
1,
and E2 of the joint density of states associated with the
optical transitions in GaAs [11,34–36] at probe wavelengths
around 429 nm (2.9 eV), 397 nm (3.13 eV), and 264 nm
(4.7 eV), respectively [35]. Figure 3(b) demonstrates that
in GaAs the detection of hypersound in large frequency
bands extending up to several hundreds of GHz is possible
using short optical wavelengths (� 440 nm), although it can
be importantly distorted by the effect of zero acousto-optic
sensitivity [see KAO(ω) for the 400-, 395-, and 302-nm probe
wavelengths in Fig. 3(b), for example]. At longer probe
wavelengths the detection becomes more and more narrow
band and concentrated around the Brillouin frequency [see
Fig. 3(b) for 495 nm as an example].

Silicon is another semiconductor with the documented
photoelastic parameters. Accounting for Eqs. (11) and (12)
and using the parameters of Si from the literature [10,37], the
dependences of f 2

0 and |KAO(ω)| on probe optical wavelength
are evaluated and presented in Figs. 4(a) and 4(b), respec-
tively. These figures confirm the presence of the undetectable
frequency in an extremely large band of probe wavelengths in
Si. It is to note that using acousto-optic constants documented
in Refs. [10,37,38] for the probe wavelength around 440 nm,
the undetectable acoustic frequencies could exist (red dot,
Ref. [38]) or do not exist (dot shaded by the gray square,
Ref. [37]). The increase of the f0 in Si and its transition
to the THz region at probe wavelengths approaching 290–
277 nm could be correlated to the optical critical point E2

in the band structure at 4.27–4.49 eV [39]. The features
similar to those illustrated in Figs. 3 and 4 in semiconductors
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FIG. 3. (a) The dependence of the square of the acoustic fre-
quency, f 2

0 , on the optical wavelength of probe light from 248 to
620 nm in GaAs. The positive values of f 2

0 provide real valued unde-
tectable frequencies f0. The areas shaded in gray correspond to the
probe wavelengths at which all acoustic frequencies are detectable.
The inset shows the dependence of the positive values of f 2

0 on the
optical wavelength. (b) The modulus of the spectral transformation
function of acousto-optic conversion at the mechanically free surface
of GaAs for different wavelengths of probe light, varying from 248 to
620 nm. All the local minima in the modulus of KAO(ω) correspond to
undetectable acoustic frequencies. With increasing wavelength of the
probe beam the detection sensitivity is progressively concentrating
around the Brillouin frequency in backscattering configuration.

could be also expected in the vicinity of the so-called
parallel band optical interband absorption regions in metals.
In Fig. 5, as an example, we present the results of the
evaluation of the zero sensitivity frequency in Au, using the
data on the optical and acousto-optical parameters of this
metal reported in Refs. [40,41], respectively. The analysis
of the results presented in Fig. 5 demonstrates that, similar
to the cases of semiconductors, GaAs and Si, presented
above, the principle changes in the spectral transformation
function of the optoacoustic conversion, from the viewpoint
of existence/inexistence of undetectable acoustic frequencies,
are taking place in the vicinity of the maxima in the electron
density of states (DOS) for the optical transitions. In the case
of Au, these transitions are from three local maxima in the

FIG. 4. (a) The dependence of the square of the acoustic fre-
quency, f 2

0 , on the optical wavelength of probe light from 317
to 620 nm in Si. The positive values of f 2

0 provide real valued
undetectable frequencies f0. The areas shaded in gray correspond
to the probe wavelengths at which all acoustic frequencies are
detectable. The inset shows the dependence of the positive values
of f 2

0 on the optical wavelength. For the probe wavelength around
440 nm, the undetectable acoustic frequencies could exist (red dot,
Ref. [38]) or do not exist (dot shaded by gray square, Ref. [37])
depending on the acousto-optic constants used. (b) The modulus of
the spectral transformation function of acousto-optic conversion at
the mechanically free surface of Si for different wavelengths of probe
light, varying from 317 to 620 nm. All the local minima in the modulus
of KAO(ω) correspond to undetectable acoustic frequencies. With
increasing wavelength of the probe beam the detection sensitivity
is progressively concentrating around the Brillouin frequency in
backscattering configuration.

density of the states in the broad electron d band towards
the nonoccupied levels in the vicinity of the Fermi level
of the electron conduction s/p band [42,43]. However, the
theoretical prediction for Au in Fig. 5 is drastically different
from those for GaAs and Si in Figs. 3(a) and 4(a), respectively.
In semiconductors the zero sensitivity frequency disappears in
the vicinity of the maxima in the joint DOS associated with the
optical transitions, while in Au the zero frequency appears only
near the maxima in the joint DOS associated with the optical
transitions and does not exist in most parts of the analyzed
probe light spectrum.
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FIG. 5. The dependence of the square of the acoustic frequency,
f 2

0 , on the optical wavelength of probe light from 248 to 620 nm
in Au. The positive values of f 2

0 provide real valued undetectable
frequencies f0. The areas shaded in gray correspond to the probe
wavelengths at which all acoustic frequencies are detectable.

From the theoretical analysis and the discussion above it
follows that the presence of the nondetectable hypersonic
frequency is a rather common effect in CAPs detection by
transient reflectivity technique, while its absence corresponds
to particular probe wavelengths in the vicinity of the specific
critical points of the materials band structure. However,
it should be kept in mind that the theoretical expression
for the zero sensitivity frequency f0 in Eq. (12) has been
derived assuming a mechanically free surface of the tested
samples. In general, similar to the spectral transformation
function of optoacoustic conversion [14], KOA(ω), the spectral
transformation function of acousto-optic conversion, KAO(ω),
depends on the boundary conditions for the CAPs transmission
through and reflection from the optically probed interface
[20]. Below, to illustrate this point, we evaluated the zero
sensitivity frequency, for the interface between the probed
opaque material and an absolutely elastically rigid and abso-
lutely optically transparent one. In this hypothetical situation
the dielectric parameter of the opaque material, ε, should

FIG. 6. The dependence of the square of the acoustic frequency,
f 2

0 , on the optical wavelength of probe light in the case of the
acousto-optic detection of hypersound in GaAs substrate loaded by
the media with different acoustic and electromagnetic properties.
Triangles stand for loading by a hypothetical absolutely rigid material
with electromagnetic properties of vacuum. Circles correspond to the
case where the optical properties of the absolutely rigid material
are those of diamond. Squares depict the results for loading of the
GaAs surface by air. Undetectable real valued acoustic frequencies
f0 exist at such wavelengths of probe light for which f 2

0 is positive.
The existence or inexistence of the acoustic frequencies undetectable
through the acousto-optic effect for a particular wavelength of probe
light, incident on the interface between the transparent and opaque
media, depends both on the mechanical and electromagnetic boundary
conditions at the interface.

be replaced in the equations starting Eq. (5) by its value
normalized to the real dielectric constant of the transparent
material, ε ⇒ ε̄ ≡ ε/εtransp, k0 ⇒ ktransp, and it is necessary to
account for the change of the CAPs reflection coefficients
at the interface by modifying the reflected strain wave as
follows: ηref(t − z/ca) = ηinc(t − z/ca). These modifications
lead to the solution for the zero sensitivity frequency at the
rigid interface, f

rigid
0 = f0[a(ε) ⇒ b(ε̄),b(ε) ⇒ −a(ε̄)], that

can be rewritten in the form

f
rigid
0 = cak0

π

√
[ε′(ε′ − εtransp) − ε′′2]∂ε′/∂η + (2ε′ − εtransp)ε′′∂ε′′∂/η

(ε′ − εtransp)∂ε′/∂η + ε′′∂ε′′/∂η
. (13)

In Fig. 6 we present the results of the evaluation of f
rigid
0 for

GaAs in the cases of εtransp = 1 (hypothetical absolutely rigid
optical vacuum, blue triangles) and εtransp = 5.84 (diamond,
red dots). For the convenience of comparison we also present
the results for the mechanically free surface from Fig. 3.
Figure 6 demonstrates that the predicted “invisible” frequen-
cies depend both on the reflection at the interface of the
CAPS and on transmission/reflection at the interface of the
probe light. The existence or inexistence of the acoustic
frequencies undetectable through the acousto-optic effect for a
particular wavelength of probe light, incident on the interface

between the transparent and opaque media, depends both
on the mechanical and electromagnetic boundary conditions
at the interface. These predictions also indicate that, in
general, the derived theoretical formulas cannot be applied
straightforwardly for the analysis of the experimental results
in the cases of free-standing membranes and thin films
deposited on the substrates at such optical wavelengths at
which the membranes/films are not completely opaque. For
these cases the theory should be modified by taking into
account multiple reflections of the probe light inside the
membrane/film.
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It is also worth discussing the application of the picosecond
laser ultrasonics for determining the ratio of the acousto-
optic constants ∂ε′/∂η over ∂ε′′/∂η. In the so-called colored
picosecond laser ultrasonics [44–48], where the transient
reflectivity measurements are conducted with wavelength-
tunable probe laser pulses, and in the experiments conducted
at a single probe wavelength [26,49–51] either the ratio of
∂ε′/∂η over ∂ε′′/∂η or the related ratio of ∂n′/∂η over ∂n′′/∂η

is commonly determined by fitting the detected profiles of the
strain pulses to the theoretically predicted ones. Our analysis
presented above indicates that potentially this ratio could be
obtained from the measured zero in the spectral transformation
function, KAO(ω). By inverting Eq. (12), we predict

∂ε′/∂η

∂ε′′/∂η
= (ε′ − 1)k̄2

a − [ε′(ε′ − 1) − ε′′2]

ε′′k̄2
a − (2ε′ − 1)ε′′ . (14)

In Eq. (14) the normalized acoustic wave number should
be evaluated for the experimentally detected frequency of the
zero in the acoustic spectrum. Equation (14) has been applied
to determine the ratio of the acousto-optic coefficient from our
experimentally determined f

exp
0 = 93.6 GHz. The obtained

ratio of −1.6 is in reasonable agreement with one, i.e., −2.2,
that could be derived at 400 nm from the data reported in
Ref. [31], taking into account that in Ref. [31] there are no data
precisely at 499 nm and the extrapolation of the data for other
wavelengths is necessary, which could be rather imprecise.

V. CONCLUSION

To summarize, a free-standing GaAs membrane is prepared
and investigated by femtosecond pump-probe spectroscopy
based on the ASOPS technique. Due to the short absorption
depth of the light at 400 nm, the excitation of the GaAs
membrane generates a strain pulse that propagates in the
sample. The detected echo signal has a double peak structure
in the frequency domain. Our analysis shows that this is
mainly caused by the double peak structure of the spectral
transformation function of acousto-optic conversion, KAO(ω).
This approach reproduces the main observations of our
experimental results. In addition, we extend the analysis to
other important materials, Si and Au. We find that the behavior
observed experimentally in GaAs is also expected in Si and Au.
We also present generalized analytical results for other mate-
rial systems, which allows us to predict the hardly detectable
frequencies. Furthermore, we show that this approach allows
access to the materials’ acousto-optic coefficients, which are
crucial for applications of picosecond ultrasonics.
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