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Critical behavior of the two-dimensional Coulomb glass at zero temperature
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The lattice model of the Coulomb glass in two dimensions with box-type random field distribution is studied
at zero temperature for system size up to 962. To obtain the minimum energy state we annealed the system
using Monte Carlo simulation followed by further minimization using cluster flipping. The values of the
critical exponents are determined using the standard finite size scaling. We found that the correlation length
ξ diverges with an exponent ν = 1.0 at the critical disorder Wc = 0.2253 and that χdis ≈ ξ 4−η̄ with η̄ = 2 for
the disconnected susceptibility. The staggered magnetization behaves discontinuously around the transition and
the critical exponent of magnetization β = 0. The probability distribution of the staggered magnetization shows
a three peak structure which is a characteristic feature for the phase coexistence at first-order phase transition.
In addition to this, at the critical disorder we have also studied the properties of the domain for different system
sizes. In contradiction with the Imry-Ma arguments, we found pinned and noncompact domains where most
of the random field energy was contained in the domain wall. Our results are also inconsistent with Binder’s
roughening picture.
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I. INTRODUCTION

Coulomb glass (CG) belongs to the class of disordered
insulators. The electronic states in the system are localized due
to disorder and are unable to screen the Coulomb interactions
effectively at low temperatures. Some examples of such a
system are amorphous semiconductors and impurity bands in
doped semiconductors where the Fermi level lies in the region
of localized states.

In the absence of disorder, Möbius and Rössler [1] have
given evidence of phase transition from fluid to the charge-
ordered phase (COP) in two- and three-dimensional CG. There
finite-size scaling (FSS) analysis predicts that the values of
the critical exponents are consistent with those of the Ising
model with short-range interactions. But at finite disorder,
such a transition was seen in three-dimensional (3D) CG [1–
4]. Later the phase diagram and the critical properties of 3D
CG were also investigated by Goethe and Palassini [5]. They
found fluid to COP transition consistent with random field
Ising model (RFIM) universality class. In our previous paper
[6] we provided numerical evidence of COP at finite disorder
in two-dimensional (2D) CG. The investigations were done
at zero temperature, where we found that the transition was
driven by rearrangement of domain wall in the metastable state
of COP as disorder was increased to give disordered phase.
On the basis of this a two valley picture was proposed and
phase coexistence was argued. This coupled with a jump in
the staggered magnetization at transition region was found as
an indication of first order transition.

In this paper we will investigate the critical properties
of 2D CG using finite size scaling at zero temperature. We
have used Monte Carlo (MC) annealing and a cluster-flipping
algorithm to obtain the minimum energy state. The aim of this
paper is to provide sufficient evidence that the transition is
indeed first order. The distribution of staggered magnetization
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was investigated around the transition region to confirm the
presence of coexisting phases. In addition to this, we have
also investigated the properties of domains in the system at
transition.

From the earlier studies done on RFIM one can extract some
useful conclusions about the phase transition and the properties
of domains. One of the pioneer works in this field was done
by Imry and Ma [7]. They proposed that, if the spins within
a domain of linear size L are reversed, then the energy cost
Ec ∼ JLd−1 where J is ferromagnetic interactions between
the nearest neighbor spins and d is the dimensionality of the
system. Reversing the spins yields gain in energy by an amount
hLd/2 where h is the root-mean square deviation of the random
fields. Hence the energy needed to form a domain of linear size
L in d dimensions is

E(L) ≈ JLd−1 − hLd/2. (1)

For d � 2, if h � J then E(L) is positive but for d < 2,
if L is large enough then E(L) becomes negative. So the
ferromagnetic ordering is unstable when d < 2. At d = 2, both
the terms in the r.h.s. of Eq. (1) are of the order of L so the
argument is inconclusive. Later, Binder [8] gave an argument
that, if one allows for roughening of the domain walls then
there exists a length scale Lb given by

Lb ∝ exp[C(J/h)2], (2)

where C is a constant O(1), for which E(L > Lb) becomes
negative. So no long range order can exist for d = 2. A rigorous
proof was later provided by Aizenman and Wehr [9], claiming
absence of ferromagnetic ordering in 2D RFIM. Seppälä et al.
[10,11] numerically confirmed Binder’s roughening arguments
and thus the absence of any phase transition in 2D RFIM.
The existence of ferromagnetic ordering in 3D RFIM was
confirmed at finite [12,13] as well as at zero temperature
[14–17]. From the standard picture [18–21] one finds that
the transition is second order, but there are a few arguments in
support of first order transition as well [22–25]. Recent work
on 2D RFIM [26–29] also claims presence of ordered state in
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the system at finite disorder, but the nature of transition is not
clear. In our previous work [6], we have given an argument
that for a compact domain, the energy of formation of domain
in the CG system also scales as Ld−1. We then used numerical
data to show that the argument also holds for noncompact
domains. We will here check whether the Imry-Ma arguments
(on domain structure and random field energy of the domain)
and the Binder’s argument (on domain wall roughening) are
valid for the CG system or not.

The rest of the paper is arranged as follows. In Sec. II we
will first discuss our model and then the numerical technique
used to reach the minimum energy state. In Sec. III results
are shown where first a detailed study is done to prove
discontinuity in magnetization and the critical exponent of
correlation length (ν) and magnetization (β) are computed.
Then the calculation of disconnected susceptibility is used
to prove that the condition for second-order transition is not
satisfied. We have then shown the distribution of staggered
magnetization where three peaks are present at the critical
disorder for all system sizes. The Lb scaling derived for RFIM
[8] is also discussed later for the CG system. We have then
studied the properties of the domains at transition where our
results are in contradiction with the Imry-Ma arguments [7].
Conclusions are presented in Sec. IV.

II. MODEL AND NUMERICAL SIMULATION

The lattice model of the CG was first discussed by Efros and
Shklovskii [30], where the states were assumed to be localized
around centers, on a regular lattice of Ld sites. For the case
where the number of electrons are half the total number of
sites in the lattice, the Hamiltonian can be considered as

H =
∑

i

niφi + 1

2

∑
j �=i

e2

κ|−→ri − −→
rj |

(
ni − 1

2

)(
nj − 1

2

)
,

(3)
where ni denotes the electron occupation number which can
take values 0 and 1, as the on-site Coulomb energy is assumed
to be too large to permit more than one electron per site. The
on-site energy φi at each site was considered as independent
random variable with a probability distribution P (φ) defined
as

P (φ) =
{

1
2W

, if −W
2 ≤ φ ≤ W

2 .

0, otherwise.
(4)

The width W of this distribution characterizes the amount of
disorderedness in the system. The distance (rij = |−→ri − −→

rj |)
between sites i and j was calculated using periodic boundary
conditions (using minimum-image convention). The system
under consideration possesses a particle-hole symmetry so the
chemical potential μ = 0. All the energies are measured in
units of e2/κa where a is lattice spacing and κ is the dielectric
constant of the medium. We are considering a two-dimensional
CG system on a square lattice.

The minimum energy state was obtained using Monte
Carlo annealing. To start the simulation we used a completely
random initial configuration {si} (using Ising spin variable
si = ni − 1/2) where half the sites were randomly assigned
with si = 1

2 and the remaining half with si = −1
2 . In our

previous work [6], {φi} were chosen in a correlated manner,
i.e., for each run, {φi} were chosen from a box distribution
{−1,1} and then multiplied by W/2 which was increased from
0 to 0.50 in small steps. In this paper at each W , {φi}’s were
chosen independently from a box distribution given by Eq. (4).
Both type of simulations have been extensively done for RFIM.
Metropolis algorithm [31,32] was used which constitutes a
random walk in space of all the possible configurations in the
system. As the number of electrons is conserved, we have
used Kawasaki dynamics (spin-exchange) here. In this case a
single Monte Carlo step (MCS) involves randomly choosing
two sites i and j with opposite spins for spin exchange. If the
state after spin exchange results in energy relaxation then the
exchange is always done with the exchange probability

Pij = 1. (5)

But if the above mentioned condition is not satisfied, i.e., the
spin exchange results in thermal excitation by an amount say
	ij , then the exchange probability is

Pij = exp

{−	ij

KT

}
, (6)

where

	ij = ej − ei − 1

rij

(7)

is the change in energy [30] calculated using the single-particle
Hartree energy (ei)

ei = φi +
∑
i �=j

sj

rij

. (8)

Annealing was done from T = 1 to T = 0.01 for different
system sizes (L = 16,32,48,64,96). At low temperatures the
number of MCS were increased to a maximum of 5 × 105

at each temperature. For all system sizes, investigations were
done from W = 0.0 to W = 0.50. The minimum energy state
obtained after MC annealing was then used to perform cluster
analysis by Hoshen-Kopelman algorithm [33]. This algorithm
is used to identify domains (clusters) which are defined as a
group of nearest neighbor spins with antiferromagnetic order-
ing. We found that for W � Wc, the ground state consisted
of a single domain. In the transition region, we found two
large domains and few small domains. We then calculated the
domain-domain interaction between all the domains excluding
the largest domain. The interaction between these domains
was negligible. So we flipped the domains one by one to
reach a lower energy state. The final state thus obtained was
then assumed as a ground state. We have also carried out the
above mentioned simulation for the case where the same {φi}
was considered for different initial configurations {si}. The
domains in the ground state for four different configurations
are shown in Fig. 1. One can see that the minimum energy
states of all four configurations have the same domain structure
and are pinned at a certain location. So using our method one
cannot find the true ground state, but the minimum energy state
found will be very close to the ground state.
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FIG. 1. Domains in the ground state of L = 64 system having the
same disorder realization but four different initial configurations.

III. RESULTS AND DISCUSSIONS

A. Calculation of critical exponents

In the absence of disorder, the ground state of the CG is
expected to have antiferromagnetic ordering [1]. So the order
parameter of the system is staggered magnetization, which is
defined as follows

Ms = 1

Ld

Ld∑
i=1

σi, (9)

where σi = (−1)iSi . Figure 2(a), shows the behavior of
〈|Ms |〉 as a function of disorder, where 〈...〉 denotes disorder
averaging. Here disorder averaging means averaging over
different disorder {φi} realizations. In addition to this, we
have also calculated the root-mean-square of different disorder
realizations of the square of the staggered magnetization
defined as follows [15]:

	M2
s

≡
√〈

M4
s

〉 − 〈
M2

s

〉2
. (10)

One would expect that the peak of 	M2
s

to scale as L−2β/ν

but the peak values are slowly arriving to saturation as L grows,
which is shown in Fig. 2(b). The data thus indicates that either
β = 0 or is a very small value which implies that magnetization
is changing discontinuously. Similar results were obtained
in 3D RFIM [15]. To extract the location of transition, we
determined the W ∗(L), where the maximum of the 	M2

s
occurs

at each L, and fit the correlation length exponent ν in such a
way that our W ∗(L) values lie on a straight line if plotted
against L−1/ν . The intercept of this straight line tells the value
of the critical disorder (Wc). The fitted data points shown in
Fig. 3(a) render

Wc = 0.225 33 and ν = 1.0. (11)

For a transition to be first order [34], the correlation length
exponent ν should be equal to 2/d, which is satisfied here.
With the estimate for Wc and ν from Eq. (11), the staggered
magnetization data was then scaled using the standard finite-
size scaling relation

〈|Ms |〉 = L−β/ν M̃s((W − Wc)L1/ν). (12)
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FIG. 2. (a) Behavior of |Ms | as a function of disorder. (b)
Behavior of 	M2

s
for different system sizes shows that the peak value

of L = 96,64,48 are saturating to a limiting finite value.

As shown in Fig. 3(b), we have not rescaled 〈|Ms |〉 by the
factor L−β/ν , implying that β = 0. This further confirms the
discontinuity in staggered magnetization. A very small value
of β has been consistently found in all the studies of 3D RFIM
at T = 0 [15,16,35–37] as well as in T �= 0 [38], but this is
not considered as a conclusive proof of a first order transition.

From a scaling argument [25], one can find that a transition
cannot be second order unless the following relation is satisfied

d − 4 + η > 0. (13)

To check whether this condition is satisfied here or not, we
calculated disconnected susceptibility defined as

〈χdis〉 = Ld
〈
M2

s

〉
. (14)

Figure 4(a) shows the behavior of 〈χdis〉 at different disorders
for all L. The value of 〈χdis〉 at W ∗(L) denoted by χ∗

dis scales
as

χ∗
dis ∼ Lγ/ν. (15)

χ∗
dis is plotted against Lγ/ν and as shown in Fig. 4(b), the points

are scaled along a straight line giving

γ /ν = 2.0. (16)
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FIG. 3. (a) Plot of disorder W ∗(L) (where 	M2
s

attains its
maximum) versus L−1/ν . Here we have not considered L = 16 for
scaling and the full line is a least-squares straight-line fit. (b) Scaled
plot of the absolute value of average staggered magnetization using
the parameters Wc = 0.225 33 and 1/ν = 1.0 is shown. The full line
connects the points for L = 64 as a guide to the eyes. Here we have
not rescaled Ms by the factor L−β/ν , implying that β = 0.

These exponents are related to η as [38]

γ

ν
= (4 − η). (17)

From Eq. (16) and Eq. (17), we get η = 2. Hence Eq. (13) is
not satisfied, which implies that the transition is not a second-
order transition. A similar conclusion was drawn from 3D
RFIM results [25]. From the values of critical exponents at
Eqs. (11) and (16), 〈χdis〉 was scaled using the standard finite-
size scaling relation [shown in Fig. 4(c)]

χdis = Lγ/ν χ̃dis((W − Wc)L1/ν). (18)

We here summarize that both disconnected susceptibility per
site and staggered magnetization are independent of system
size at critical disorder.

B. Distribution of staggered magnetization

At Wc, ground state of the system was either COP or
consisted of two large domains. As mentioned in Sec. II, the
minimum energy state after annealing consisted of several
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FIG. 4. (a) Behavior of χdis vs W . (b) The disconnected suscep-
tibility value at W ∗(L) plotted as a function of Lγ/ν,γ /ν = 2.0. (c)
One can see a scaling plot of the disconnected susceptibility with the
parameters Wc = 0.225 33, 1/ν = 1.0, and γ /ν = 2.0. The full line
connects the points for L = 64 as a guide to the eyes.

small domains and two large domains. Cluster flipping led
to small domains being flipped and energy of the system
decreasing. The final state was mostly two large domains
(domain state), which either got flipped leading to COP or else
to a disordered phase. The distribution of a number of domains
at transition and the size distribution of the two largest domains
is shown in Fig. 5. The energy difference between COP and
domain state was very small as shown in Fig. 6. When COP is
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FIG. 5. Largest and second largest domain size (V ) at
(Wc = 0.265) divided by the system size Ld = 642. The largest
domains are sorted in descending order. Inset shows the probability
[P (n)] of an average number of domains (n) at respective Wc’s for
L = 32(◦), 48 (�), and 64 (�).

the ground state, the domain state is the metastable state and
vice versa.

In our previous work [6], we proved phase coexistence
in terms of similar domains formed in the ground state at
W+

c and in the metastable state at W−
c . This implies that

the free energy which is equal to energy at T = 0 has two
minimas (valleys) centered at |σ | = 0.5 and |σ | ≈ small,
which is an indication of first order transition. To look for
evidence of first-order transition, it is useful to plot staggered
magnetization distribution [P (Ms)] vs Ms in the transition
region. One expects a three peak structure at Wc signifying
phase coexistence. In that case, the central peak corresponds to
the disordered phase (where σ ≈ 0.0) and the two side peaks
correspond to the charge-ordered phase (where σ = ±0.5).
Also with an increase in system sizes, the three peaks would
become higher and sharper. Figure 7(a) shows the distribution
[P (Ms)] vs Ms at various disorder for L = 64. One can notice
three peaks present in the vicinity of the critical disorder
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FIG. 6. The energy difference (	E) between the ground state
and the domain state for L = 32 and L = 64 at there respective Wc’s.
With increase in L, change in energy per site (	E/Ld ) is negligible.
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FIG. 7. (a) Distribution of average staggered magnetization
around the transition region for L = 64. The distribution shows a
three peak structure at W = 0.265, which is Wc for L = 64. (b)
Distribution of average staggered magnetization at respective Wc of
L = 48,64,96.

(which is Wc = 0.265 for this system size). From Fig. 5,
one can see that small domains are also possible. These are
responsible for the finite width of Ms = ±0.5 peaks. Similarly
for large domains, there is a wide distribution of domain
sizes leading to a broad peak around Ms = 0. For W < Wc

the distribution possesses two side peaks and as W becomes
greater than Wc a single peak centered at Ms = 0 becomes
dominant. In Fig. 7(b), we have shown the distribution for
L = 48,64,96 only at their respective Wc, to confirm the
presence of three peaks at all L. Getting three peaks structure
at W = Wc is not surprising. The energy difference between
COP and the domain state is very small. At W = W−

c , for most
of the configurations, ground state is COP and the domain state
is the metastable state. At W = W+

c , the situation is reversed
and at W = Wc, phase coexistence occurs. To summarize, the
distribution of staggered magnetization suggests that the 2D
CG undergoes a first-order transition as a function of disorder
at T = 0.

C. Properties of the domain

The absence of ferromagnetic ordering in 2D RFIM is due
to the roughening of the domain walls. Hence there exists a
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FIG. 8. ln(Lb) vs (1/W ), where Lb is calculated using PMs
(Lb) =

0.25. The solid line is the fitting using the function f (x) =
(a[1/W ]b), where a = 0.89, b = 1.18 and the dotted line is drawn
using the function f (x) = (c[1/W ]2) where c = 0.31 ± 0.01.

breakup length Lb above which the magnetization vanishes.
This breakup length is related to the disorder in the system by
the relation [8]

Lb ∼ exp(C[1/W ]2), (19)

where C is a disorder-dependent constant of O(1). The
variation of Lb for varying W is shown in Fig. 8 where Lb

was defined with PMs
(Lb) = 0.25. The data was scaled using

the relation

Lb ∼ exp(a[1/W ]b). (20)

Compared to the Binder’s relation where b = 2 (fitting shown
with dotted line in Fig. 8) our data fits well with a = 0.89
and b = 1.18. Hence the Binder’s relation in Eq. (19) is
not satisfied here although the possibility of exponential
divergence in Lb cannot be excluded.

We have then investigated the Imry-Ma arguments (dis-
cussed in Sec. I) on the CG model. From the numerical studies
on RFIM [39,40] one finds that the domains are pinned and
noncompact and the random field energy of the domains ex-
ceeds considerably from the value calculated from the rms ran-
dom field fluctuations. We first tested the compactness of the
domain in our system at Wc using the power law relation [39]

S ≈ V τ , (21)

where S denotes the total number of sites on the domain wall,
V is the total number of sites in the domain, and τ is the
surface exponent which for a compact domain takes the value

τ = d − 1

d
. (22)

The scaled plot for L = 64 is shown in Fig. 9. The value of
τ is greater than 1/2, for all system sizes as shown in Table I,
which indicates that the domains are noncompact.

For a short range system, the domain energy is proportional
to Ld−1 as seen in the first term of Eq. (1). In our previous paper
[6], we found that the domain energy (DE) was related to the
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W = 0.265

FIG. 9. Logarithmic plot of S vs V for L = 64 at its critical
disorder Wc = 0.265. From the power law relation in Eq. (21) we
found τ = 0.7030.

perimeter (P ) of the domain by the relation

DE ∝ P. (23)

The validity of the relation for L = 64 is shown in Fig. 10. So
the first term in Eq. (1) defining the Imry-Ma argument holds.

Whether the total random-field fluctuation (F ) in a domain
is proportional to the square root of V or not was then tested
using the power law relation [39]

F ≈ V λ, (24)

where λ was considered as an undetermined exponent. The
slope of the data (shown in Fig. 11) predicts λ to be
significantly higher than 1/2 (which was the theoretical value
predicted by Imry and Ma).

We have also calculated the ratio Fwall/F , where Fwall is
the random field energy on the domain wall. In Fig. 12, one
can see that the ratio is greater than 40% for most of the
configuration, which indicates that most of the random field
energy is contained at the domain wall. We have also calculated
ratio Fwall/P and Fout/P where Fout is the random-field energy
of the sites just outside the domain wall. Our results as shown
in Fig. 13 suggests that F is proportional to the perimeter of
the domain and not its square root as assumed in Imry-Ma
argument. So our results show that the various assumptions of
the Imry and Ma picture are not valid in the CG case. Similar
conclusions were also drawn in the RFIM case [39,40]. The
calculated values of the exponents for different system sizes
are summarized in Table I.

TABLE I. Structural exponents for the 2D Coulomb glass.

L Wc τ λ

16 0.35 0.6510 0.5237
32 0.30 0.6549 0.5916
48 0.275 0.6559 0.6292
64 0.265 0.7030 0.6896
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FIG. 10. Domain energy (DE) vs perimeter (P ) for L = 64 at its
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disorder Wc = 0.265. From the power law relation in Eq. (24) we
found λ = 0.6896.
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FIG. 12. Fwall/F vs V for L = 64 at its critical disorder
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IV. CONCLUSION

A two-dimensional lattice model of the CG at zero
temperature was studied, where the minimum energy state
was obtained by annealing the system using Monte Carlo
simulation followed by cluster flipping. We have presented
a finite size scaling analysis of the numerical data for systems
up to L = 96. Results suggest that a 2D CG with box type
distribution of fields at T = 0 exhibits a first-order transition
at Wc = 0.2253. The transition was characterized by the
exponents ν = 1.0, β = 0, and η = 2.0. The distribution of
staggered magnetization at Wc possessed three peaks which
got sharper as system size was increased. The roughening
argument given by Binder for RFIM is not satisfied for our
system. The domain picture at Wc is appreciably different
from the one assumed by Imry and Ma. We found noncompact
domains which were pinned at a certain location. Pinning was
found to be independent of the initial spin configurations. Our
calculations show that most of the random field energy of the
domain is contained in the domain wall. A two-dimensional
nearest neighbor Ising model on a triangular lattice in the
absence of disorder with all bonds antiferromagnetic has a
large ground state degeneracy [41] due to geometrical frustra-
tions. This large ground state degeneracy is immediately lifted
for electrons on a quarter filled triangular lattice due to long
range Coulomb interactions. The lifting of degeneracy is also
accompanied by emergence of very many low lying metastable
states with amorphous “stripe-glass” spatial structure [42].
Extended dynamical mean field calculations show that the
ground state has stripe order and a first order transition is
observed from liquid to stripe ordered phase as temperature
is lowered [43]. In our case, there is twofold degeneracy in
COP in the absence of disorder which is lifted by random
fields. The COP ground state is now unique and competition
between interaction and disorder leads to phase transition at
Wc at T = 0. Our method can be used to study disordered
systems with long range interactions. One can also extend this
work to the CG with positional disorder.
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