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We investigate the quench dynamics of a one-dimensional incommensurate lattice described by the Aubry-
André model by a sudden change of the strength of incommensurate potential � and unveil that the dynamical
signature of localization-delocalization transition can be characterized by the occurrence of zero points in the
Loschmidt echo. For the quench process with quenching taking place between two limits of � = 0 and � = ∞,
we give analytical expressions of the Loschmidt echo, which indicate the existence of a series of zero points in
the Loschmidt echo. For a general quench process, we calculate the Loschmidt echo numerically and analyze its
statistical behavior. Our results show that if both the initial and post-quench Hamiltonian are in extended phase
or localized phase, Loschmidt echo will always be greater than a positive number; however if they locate in
different phases, Loschmidt echo can reach nearby zero at some time intervals.
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I. INTRODUCTION

In recent years, dynamical quantum phase transition
(DQPT) has extended our understanding of phase transitions
and universality greatly [1–12], which provides us a new
perspective on exploring the behavior of phase transitions
far from equilibrium. As a simple but important paradigm
of nonequilibrium processes, the quantum quench attracted
intensive studies. To describe the dynamics of a quantum
system which is pushed out equilibrium by a sudden change of
the Hamiltonian, an important quantity is the Loschmidt echo,
which measures the overlap of the initial quantum state and the
time-evolved state after the quench [13–16]. Many theoretical
works have demonstrated that the Loschmidt echo plays an
important role in characterizing the nonequilibrium dynamic
signature of a quantum phase transition [1–3,15]. After
mapping the Loschmidt amplitude to a boundary partition
function, the singularity of dynamical free energy density in
the thermodynamic limit can be found at critical times {t∗},
which are similar to the well-known Fisher zeros [17]. This
singularity is found to have a relationship with the dynamics of
order parameter [7]. Up to now, the DQPT has been explored in
a series of models which are known to exhibit quantum phase
transition, such as transverse field Ising model (TFIM) [1],
anisotropic XY model [18,19], Hubbard and Falicov-Kimball
models [3], and two-band topological systems [10,20–22],
etc. Thanks to the developments of quantum simulation
techniques, DQPT has been realized by ions simulations of
TFIM [23]. Besides, by observing the appearance, movement,
and annihilation of vortices in reciprocal space, dynamical
topological order parameter has also been recognized in optical
lattice systems [24].

According to the theory of DQPT, the appearance of a
series of zero points in the Loschmidt echo at critical times
{t∗} can be viewed as a dynamic signature of quantum phase
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transitions. While most theoretical studies of DQPT and
Loschmidt echo focus on the traditional quantum systems
driven by competing quantum terms [1–11], less attention
is paid on the dynamics and Loschmidt echo in a quantum
disorder system which exhibits the localization-delocalization
transition [25]. A natural but interesting question is whether
the Loschmidt echo can still be used to characterize the DQPT
of a quantum disordered system, and if yes, whether we can
observe zero points of the Loschmidt echo by studying the
quench dynamics of the quantum disordered system? Aiming
to answer these questions, in this paper we shall study the
quench dynamics in a one-dimensional (1D) incommensurate
lattice, which is effectively described by the Aubry-André
(AA) model [26,27], in which the on site chemical potential
is quasiperiodic and the distribution can be viewed as a kind
of deterministic disorder. It is known that all the eigenstates of
the AA model are either extended or localized and there exists
a transition from an extended state to a localized state with the
change of the strength of incommensurate potential [26–34].
The localization transition in the 1D incommensurate lattice
has been experimentally observed in a bichromatic optical
lattice by observing the expansion dynamics of a Bose-Einstein
condensate initially trapped in the center of optical lattice
[35], which exhibits different dynamical properties for the
extended or localized phase [36–40]. Different from previous
works on the expansion dynamics, we study the quench
dynamics with the initial state being an eigenstate of the initial
Hamiltonian. After performing a sudden quench of the strength
of incommensurate potential �, the behaviors of Loschmidt
echo are found to be quite different depending on whether the
initial and final Hamiltonians locate in the same phase regime
or not.

The paper is organized as follows. In Sec. II, we introduce
the model and study the quench dynamics in the limiting
cases of quenching between � = 0 (� → ∞) and � → ∞
(� = 0). In these two limiting cases, we can give analytical
expressions of the Loschmidt echo and demonstrate that there
are a series of zeros of Loschmidt echo, which is also consistent
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with our numerical results. In Sec. III, we study the general
quench process, for which no analytical results are available
and we thus study the evolution of Loschmidt echo with
the help of numerical methods. By analyzing the statistical
behavior of the values of Loschmidt echo in a long time,
we demonstrate that Loschmidt echo will oscillate and take
a finite value in the case of quenching in the same phase, while
Loschmidt echo can approach zero in the case of quenching in
different phases. A brief summary is given in Sec. IV.

II. MODEL AND QUENCH DYNAMICS

We investigate the AA model with Hamiltonian

H (�) = −J

N∑
i=1

(ĉ†i ĉi+1 + H.c.) + �

N∑
i=1

cos(2παi)ĉ†i ĉi ,

(1)

where ĉ
†
i (ĉi) denotes the creation (annihilation) operator of

fermions, J is hopping amplitude, α is an irrational number,
and � is the strength of the incommensurate potential.
The incommensurate potential can be viewed as a kind of
quasirandom disorder, which drives the system undergoing a
delocalization-localization transition at � = 2J . When � <

2J , all the eigenstates are extended, whereas all the eigenstates
are localized, when � > 2J [26]. For convenience we take
J = 1 as the energy unit and fix α =

√
5−1
2 . Denoting the

eigenstate of H as |�〉 = ∑
j ψ(j )ĉ†j |0〉, we get the following

eigenvalue equation

− [ψ(j + 1) + ψ(j − 1)] + � cos(2παj )ψ(j ) = Eψ(j ),

(2)

where E is the energy eigenvalue and ψ(j ) represents the
amplitude of the corresponding normalized wave function |�〉
at site j .

While conventional studies of dynamical properties in
disordered systems focus on the spreading of a wave packet,
in this work we consider the quench dynamics of the incom-
mensurate system described by the AA model. By preparing
the system as an eigenstate of the Hamiltonian H (�i) and
then performing a sudden quench to the final Hamiltonian
H (�f ), we consider the behavior of return amplitude (a type
of Loschmidt amplitude)

G(t,�i,�f ) = 〈�(�i)|e−itH (�f )|�(�i)〉, (3)

and return probability (Loschmidt echo) [41]

L(t,�i,�f ) = |G(t,�i,�f )|2, (4)

where |�(�i)〉 stands for the eigenstate of the initial Hamil-
tonian, and �i (�f ) represents the strength of the incommen-
surate potential corresponding to the initial (final) state before
(after) the quench. In this paper the initial state is chosen to
be the ground state while the results are still true for other
eigenstates.

It is known that the Loschmidt echo plays an important
role in the theory of DQPTs. The behavior of Loschmidt
echo approaching zero at some times t in the thermodynamic
limit can be viewed as a signature of the occurrence of the
DQPT, which has been demonstrated by studying various

models exhibiting quantum phase transitions. However, it is
still not clear whether the Loschmidt echo approaching zero
can be viewed as a signature for the localization-delocalization
transition, which shall be clarified in this work. In order to get
an intuitive understanding, we first consider two limiting cases
of quench processes, i.e., quench processes between states
with �i = 0 (∞) and �f = ∞ (0), which can be calculated
analytically, whereas the general quench processes between
arbitrary �i and �f are studied with the help of numerical
calculations.

In the first case, we fix �i = 0 and consider the periodic
boundary condition, i.e., the system is initially prepared in a
plane wave state, which is the eigenstate of the Hamiltonian
(1) with �i = 0:

|φk(� = 0)〉 = 1√
N

N∑
j=1

eikj ĉ
†
j |0〉, (5)

where the wave vector k = 2π(l−N/2)
aN

∈ (−π
a
, π

a
] (l =

1, . . . ,N) lies in the first Brillouin zone (BZ) and a represents
the lattice spacing. Here we have used |φk〉 to represent the
eigenstate |�〉 of H (� = 0) as it is also the eigenstate of the
momentum operator, and for simplicity, we also use |k〉 to
denote |φk(� = 0)〉. The corresponding eigenvalue is

Ek = 2 cos(ka). (6)

Performing a sudden quench of � from the initial value �i to
the final value �f , the return amplitude can be written as

Gk(t) = 〈k|e−iH (�f )t |k〉
=

∑
m

〈k|e−iH (�f )t |�m(�f )〉〈�m(�f )|k〉

=
∑
m

e−iEmt |〈�m(�f )|k〉|2, (7)

where Em and |�m(�f )〉 denote the mth eigenvalue and
eigenstate of the final Hamiltonian, respectively.

Now use the fact that when in the limit of �f → ∞, the
eigenstates are localized in a single site,

|�m(� = ∞)〉 =
N∑

j=1

δjmĉ
†
j |0〉, (8)

the corresponding eigenvalue is determined by the diagonal
terms

Em = �f cos(2παm). (9)

Substituting Eq. (5) and Eq. (8) into Eq. (7) we can obtain

Gk(t) = 1

N

N∑
m=1

e−i�f t cos(2παm).

For an irrational number α, the phase 2παm (m = 1, . . . ,N)
modulus 2π is distributed randomly between −π and π when
we sum over m to the large N limit. So we can approximately
replace the summation by the integration

Gk(t) ≈ 1

2π

∫ π

−π

e−i�f t cos θdθ = J0(�f t), (10)
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FIG. 1. Evolution of Loschmidt echo with different �f s and the
size of the system N = 1000. The initial state is fixed to be the
ground state of the initial Hamiltonian with �i = 0. (a) L versus
t . (b) L versus the rescaled time �f t . (c) Evolution of “dynamic
free energy” f (t) for various large �f s. The black dashed-dotted
curve corresponds to the analytical result f0(t) = − log |J0(�f t)|2.
(d) Evolution of Loschmidt echo for various �f s. For �f > 2, L(t)
will approach zero after some time intervals.

where J0(�f t) is the zero-order Bessel function. From the
properties of Bessel function, we know that J0(x) has a series
of zeros xα with α = 1,2,3, . . .. These zeros indicate the
Loschmit amplitude and echo reach zero at times

t∗α = xα

�f

. (11)

According to the theory of DQPT, the occurrence of a series
of zeros in the Loschmidt amplitude can be viewed as the
signature of DQPT as these zeros correspond to divergences
of the boundary partition function. Although the analytical
result is obtained in the limit of �f → ∞, the above results
are expected to hold true as long as �f is large enough [see
Figs. 1(a)–1(c)]. Since the transition time t∗α is inversely
proportional to �f , the Loschmidt echo will oscillate more
rapidly as �f is increasing. If we rescale the time t → �f t ,
the evolution of Loschmidt echo will display a similar behavior
for quench processes with different �f . To see it clearly, we
display the numerical results of the evolution of Loschmidt
echo as a function of t and �f t in Fig. 1(a) and Fig. 1(b),
respectively. Here the initial strength is set at �i = 0. It
is clear that the Loschmidt echoes L(t) for �f = 30, 50,
and 70 oscillate with different frequencies, but they almost
completely overlap to the analytical result |J0(�f t)|2 and
are indistinguishable after rescaling the time as shown in
Fig. 1(b). When �f = 10, the Loschmidt echo obviously
deviates |J0(�f t)|2, indicating the analytical result obtained in
the limit �f → ∞ is no longer a good approximation. To see
the zeros of L(t) more clearly, we can use the “dynamical free
energy” which is defined as f (t) = − log L(t) [1], where f (t)

will be divergent at the dynamical phase transition time t = t∗α .
The evolution of f (t) for different �f s are shown in Fig. 1(c).
L(t) exhibits obvious peaks around t = t∗α and the behavior
gets more close to the limiting case with the increasing of �f .

In Fig. 1(d), we display L(t) versus �f t for various �f

with �f = 10, 3, 2, 1.5, 1, and 0.5 from bottom to top. It
can be seen that L(t) exhibits different behaviors for �f > 2
and �f < 2. For �f < 2, L(t) oscillates around its long time
average, which decreases with �f deviating from �i . We do
not find any zero point of L(t) even in a long time, which is
obviously different from cases with �f > 2. As a comparison,
for the case of �f = 3 the Loschmidt echo L(t) has an obvious
decay and reaches nearby zero at about �f t = 28.5. With the
increase of �f , L(t) decays more quickly and gets more closed
to the limiting case described by Eq. (10).

Next we consider the quench processes from a very large �i

to �f = 0. In the limit of �i → ∞, the initial state is chosen
as an eigenstate of the system, which is localized in one site,
e.g., the site m. Substituting Eqs. (6) and (5) into Eq. (3) we get

Gm(t) = 〈m|e−iH (�f )t |m〉 =
∑

k

〈m|e−iH (�f )t |k〉〈k|m〉

=
∑

k

e−2it cos ka|〈m|k〉|2 = 1

N

∑
k

e−2it cos ka.

Here we have used |m〉 to denote |�m(�i = ∞)〉 for
simplification. In the large N limit, we can replace the
summation by the integration, which leads to

Gm(t) = a

2π

∫ π
a

− π
a

e−2it cos kadk

= J0(2t). (12)

From this expression, it is clear that the zeros of Loschmidt
echo occur at

t∗α = xα

2
, (13)

which are half of the zeros of the zero-order Bessel function
J0(x). When �f deviates a little from the limit case of
�f = 0, the analytical result Eq. (12) is expected to be still
a good approximation. Different from Eq. (11), the transition
time t∗α is independent of �f . Furthermore, we find that t∗α
is also not sensitive to the initial value �i as long as �i

is large enough because the only information of the initial
Hamiltonian we have used is the localized wave function.

In Fig. 2, we show the numerical results for quenching pro-
cesses with the initial state prepared in a localized state, which
is taken to be the ground state of the initial system with �i =
1000. From Fig. 2(a), we see that systems with �f = 0.3, 0.2,
0.1, and 0.05 display similar behaviors to the limit case with
�f = 0, for which the divergent points of f (t) occur at t = t∗α .
The more close to �f = 0, the curves of numerical results
are more close to the analytical result f0(t) = − log |J0(2t)|2,
which are not sensitive to the values of �f . In Fig. 2(b), we
display L(t) versus t for various �f with �f = 0.05, 1.5, 2,
2.5, 3.5, and 4.5 from bottom to top. Similar to the previous
case displayed in Fig. 1(d), L(t) exhibits quite different
behavior for �f > 2 and �f < 2. For �f < 2, L(t) will
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FIG. 2. (a) Evolution of “dynamical free energy” f (t) for large
�f s. The black dashed-dotted curve corresponds to the analytical
result f0(t) = − log |J0(2t)|2. (b) Evolution of Loschmidt echo with
various �f s and the size of the system N = 1000. The initial state is
fixed to be the ground state of the initial Hamiltonian with �i = 100.

approach zero at some given times. On the other hand, when
�f > 2, L(t) never approaches zero in the evolution process.

III. NUMERICAL STUDY OF A GENERAL
QUENCH PROCESS

In the above section, starting from the initial state prepared
in the limit case with �i = 0 (or �i → ∞), we have shown
that the Loschmidt echo can reach nearby zero in the evolution
process if the incommensurate strength �f after the quench
is larger (or less) than the critical value �c = 2, which is
also the localization-to-delocalization transition point of the
AA model. Now we consider the general cases that �i and
�f are neither close to zero nor the infinity limit. Although
no analytical solution can be found for the general case,
we can still explore whether the presence or absence of the
zeros of Loschmidt echo can still serve as a characteristic
signature of dynamic quantum phase by numerically analyzing
the evolution of the Loschmidt echo. In Fig. 3, we show the
evolution of Loschmidt echo for various �f s with �i = 0.5
in (a) and (b), and �i = 4 in (c) and (d), respectively. If both
�i and �f locate in the same regime, i.e., both in the regime
of � > 2 or � < 2, L(t) oscillates and has a positive lower
bound, which never approaches zero during the evolution
process, as shown in Figs. 3(a) and 3(c). However, if �i and
�f locate in different regimes, L(t) shall approach zero after
some time intervals, as shown in Figs. 3(b) and 3(d).

To give a quantitative description on how Loschmidt echo
approaches zero, we define a cutoff of small value ε close to
zero. At a given large length range of time T , we measure the
length of time interval which fulfills L(t) � ε in t ∈ [0,T ].
Denoting this length as M(ε), which is a function of ε when
fixing T , it can be viewed as the Lebesgue measure I (L � ε)
[42]. For convenience we use a normalized function m(ε) =
M(ε)

T
. In Fig. 4(a) we show m(ε) as a function of �f for different

εs with �i = 0.5 fixed in the extended regime. Here the initial
state is chosen as the ground state of the system. It can be seen
that the behavior of m(ε) is quite different for �f < 2 and
�f > 2. For �f < 2, m(ε) is always zero for ε = 5 × 10−4,
3 × 10−4, 2 × 10−4, and 1 × 10−4. However, there is a sharp
increasing as �f passes through the transition point �c = 2,
and m(ε) takes a finite value when �f > 2. Despite the fact
that the value of m(ε) in the regime of �f > 2 depends on the

FIG. 3. Evolution of Loschmidt echo in a long time T = 6 ×
105. The initial state is chosen to be the ground state of the initial
Hamiltonian with (a) (b) �i = 0.5 and (c) (d) �i = 4. Different �f s
are shown by different colors. Loschmidt echo can reach nearby zero
only if �f passes through the critical point � = 2.

cutoff value ε, we note that the sharp change behaviors around
the transition point are similar for different cutoffs.

Although the initial state is taken to be the ground state
of H (�i) in the above calculations, we would like to indicate
that our conclusion is independent of the choice of the initial
eigenstates. To see this clearly, in Fig. 4(b) we show m(ε) as

FIG. 4. The behavior of m as a function of �f for N = 1000,
T = 6 × 105, and �i = 0.5. (a) Different εs are shown by different
colors. There is a sharp increasing around �f = 2. It is shown that
m = 0 for �f < 2 and m > 0 for �f > 2. (b) Different choice of
initial state with n standing for the label of eigenstates of H (�i). A
clear boundary located at �f = 2 can be seen. Here ε = 0.01.
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FIG. 5. (a) Loschmidt echo as a function of � and t for the system
with N = 1000. The valley only occurs at the critical point � = 2.
(b) The cross section of � = 2 for different sizes of systems.

a function of �f by choosing different eigenstates of H (�i)
as the initial state with �i = 0.5 and ε = 0.01. We can see
that there exists a clear boundary at �f = 2. For �f < 2, m

is close to zero in the whole region. A sharp increase can be
found around the transition point �c = 2 for all the initial
eigenstates, and m(ε) takes a finite value when �f > 2.

Finally, we consider the special case of �f being very close
to �i . In such a case, the Loschmidt echo can be represented as

L(t,�,δ) = |〈�(� − δ)|e−itH (�+δ)|�(� − δ)〉|2, (14)

where δ is a very small value. In terms of the above definition,
a sharp decay of the Loschmidt echo around the critical point
has been taken as the signature of quantum phase transition
[15,43–48]. The quench process can be viewed as from � − δ

to � + δ, so the initial and final Hamiltonian are quite similar
except around the critical point � = 2. In Fig. 5(a), we fix
δ = 0.02 and show the Loschmidt echo as a function of � and
t . A deep valley can be found at � = 2, as the localization-
delocalization transition enhances the decay of the Loschmidt
echo. While in the region apart from the critical point, the
Loschmidt echo oscillates near L(t) ∼ 1 and does not decay in

a long time. The cross section of Fig. 5(a) at � = 2 is shown in
Fig. 5(b). As a comparison, we also provide results for systems
with different sizes. It is clear that the Loschmidt echo decays
in an oscillating way and can always reach nearby zero in quite
a long time interval, which is consistent with our conclusions.

IV. CONCLUSION

In summary, we have studied the quench dynamics of the
AA model by preparing the initial state as an eigenstate of
the initial Hamiltonian H (�i) and then performing a sudden
quench to the final Hamiltonian H (�f ). For the quench
process between two limiting cases, i.e., with �i = 0 and
�f = ∞ or �i = ∞ and �f = 0, we obtain the analytical ex-
pression of the Loschmidt echo, which suggests the existence
of a series of zero points at critical times {t∗}. By comparing
with the numerical results, we find the analytical results are
still good approximations as long as the quench parameters
deviate these limits not far away. For the general quench
processes, we study the statistical behavior of Loschmidt
echo numerically and demonstrate that Loschmidt echo would
oscillate but never decay to zero in a long time if �i and
�f are located in the same phase; however, Loschmidt echo
would decay and reach nearby zero if �i and �f are located
in different phases. Our results suggest that the occurrence
of zero points in the Loschmidt echo can give a dynamical
signature of localization-delocalization transition in the 1D
incommensurate lattice.

ACKNOWLEDGMENTS

The work is supported by the National Key Research and
Development Program of China (2016YFA0300600), NSFC
under Grant No. 11425419, No. 11374354, and No. 11174360,
and the Strategic Priority Research Program (B) of the Chinese
Academy of Sciences (No. XDB07020000).

[1] M. Heyl, A. Polkovnikov, and S. Kehrein, Phys. Rev. Lett. 110,
135704 (2013).

[2] C. Karrasch and D. Schuricht, Phys. Rev. B 87, 195104 (2013).
[3] E. Canovi, P. Werner, and M. Eckstein, Phys. Rev. Lett. 113,

265702 (2014).
[4] F. Andraschko and J. Sirker, Phys. Rev. B 89, 125120 (2014).
[5] M. Marcuzzi, E. Levi, S. Diehl, J. P. Garrahan, and I.

Lesanovsky, Phys. Rev. Lett. 113, 210401 (2014).
[6] J. M. Hickey, S. Genway, and J. P. Garrahan, Phys. Rev. B 89,

054301 (2014).
[7] M. Heyl, Phys. Rev. Lett. 113, 205701 (2014).
[8] M. Heyl, Phys. Rev. Lett. 115, 140602 (2015).
[9] M. Schmitt and S. Kehrein, Phys. Rev. B 92, 075114 (2015).

[10] J. C. Budich and M. Heyl, Phys. Rev. B 93, 085416 (2016).
[11] A. A. Zvyagin, Fiz. Nizk. Temp. 42, 1240 (2016).
[12] Z. Huang and A. V. Balatsky, Phys. Rev. Lett. 117, 086802

(2016).
[13] R. A. Jalabert and H. M. Pastawski, Phys. Rev. Lett. 86, 2490

(2001); F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, and W. H.
Zurek, ibid. 91, 210403 (2003).

[14] T. Gorin, T. Prosen, T. H. Seligman, and M. Znidaric, Phys. Rep.
435, 33 (2006).

[15] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys.
Rev. Lett. 96, 140604 (2006).

[16] R. Jafari and H. Johannesson, Phys. Rev. Lett. 118, 015701
(2017).

[17] M. E. Fisher, in Boulder Lectures in Theoretical Physics, edited
by E. Wesely (University of Colorado, Boulder, 1965), Vol. 7.

[18] J. M. Hickey, arXiv:1403.5515.
[19] S. Vajna and B. Dóra, Phys. Rev. B 89, 161105(R)

(2014).
[20] S. Vajna and B. Dóra, Phys. Rev. B 91, 155127 (2015).
[21] S. Sharma, U. Divakaran, A. Polkovnikov, and A. Dutta, Phys.

Rev. B 93, 144306 (2016).
[22] U. Bhattacharya and A. Dutta, arXiv:1610.02674.
[23] P. Jurcevic, H. Shen, P. Hauke, C. Maier, T. Brydges, C.

Hempel, B. P. Lanyon, M. Heyl, R. Blatt, and C. F. Roos,
arXiv:1612.06902.

[24] N. Fläschner, D. Vogel, M. Tarnowski, B. S. Rem, D. Lühmann,
M. Heyl, J. C. Budich, L. Mathey, K. Sengstock, and C.
Weitenberg, arXiv:1608.05616.

[25] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[26] S. Aubry and G. André, Ann. Isr. Phys. Soc. 3, 133 (1980).
[27] M. Modugno, New J. Phys. 11, 033023 (2009).

184201-5

https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevB.87.195104
https://doi.org/10.1103/PhysRevLett.113.265702
https://doi.org/10.1103/PhysRevLett.113.265702
https://doi.org/10.1103/PhysRevLett.113.265702
https://doi.org/10.1103/PhysRevLett.113.265702
https://doi.org/10.1103/PhysRevB.89.125120
https://doi.org/10.1103/PhysRevB.89.125120
https://doi.org/10.1103/PhysRevB.89.125120
https://doi.org/10.1103/PhysRevB.89.125120
https://doi.org/10.1103/PhysRevLett.113.210401
https://doi.org/10.1103/PhysRevLett.113.210401
https://doi.org/10.1103/PhysRevLett.113.210401
https://doi.org/10.1103/PhysRevLett.113.210401
https://doi.org/10.1103/PhysRevB.89.054301
https://doi.org/10.1103/PhysRevB.89.054301
https://doi.org/10.1103/PhysRevB.89.054301
https://doi.org/10.1103/PhysRevB.89.054301
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.113.205701
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevLett.115.140602
https://doi.org/10.1103/PhysRevB.92.075114
https://doi.org/10.1103/PhysRevB.92.075114
https://doi.org/10.1103/PhysRevB.92.075114
https://doi.org/10.1103/PhysRevB.92.075114
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevB.93.085416
https://doi.org/10.1103/PhysRevLett.117.086802
https://doi.org/10.1103/PhysRevLett.117.086802
https://doi.org/10.1103/PhysRevLett.117.086802
https://doi.org/10.1103/PhysRevLett.117.086802
https://doi.org/10.1103/PhysRevLett.86.2490
https://doi.org/10.1103/PhysRevLett.86.2490
https://doi.org/10.1103/PhysRevLett.86.2490
https://doi.org/10.1103/PhysRevLett.86.2490
https://doi.org/10.1103/PhysRevLett.91.210403
https://doi.org/10.1103/PhysRevLett.91.210403
https://doi.org/10.1103/PhysRevLett.91.210403
https://doi.org/10.1103/PhysRevLett.91.210403
https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1016/j.physrep.2006.09.003
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevLett.96.140604
https://doi.org/10.1103/PhysRevLett.118.015701
https://doi.org/10.1103/PhysRevLett.118.015701
https://doi.org/10.1103/PhysRevLett.118.015701
https://doi.org/10.1103/PhysRevLett.118.015701
http://arxiv.org/abs/arXiv:1403.5515
https://doi.org/10.1103/PhysRevB.89.161105
https://doi.org/10.1103/PhysRevB.89.161105
https://doi.org/10.1103/PhysRevB.89.161105
https://doi.org/10.1103/PhysRevB.89.161105
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.91.155127
https://doi.org/10.1103/PhysRevB.93.144306
https://doi.org/10.1103/PhysRevB.93.144306
https://doi.org/10.1103/PhysRevB.93.144306
https://doi.org/10.1103/PhysRevB.93.144306
http://arxiv.org/abs/arXiv:1610.02674
http://arxiv.org/abs/arXiv:1612.06902
http://arxiv.org/abs/arXiv:1608.05616
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1088/1367-2630/11/3/033023
https://doi.org/10.1088/1367-2630/11/3/033023


YANG, WANG, WANG, GAO, AND CHEN PHYSICAL REVIEW B 95, 184201 (2017)

[28] K. Machida and M. Fujita, Phys. Rev. B 34, 7367 (1986).
[29] T. Geisel, R. Ketzmerick, and G. Petschel, Phys. Rev. Lett. 66,

1651 (1991).
[30] T. Roscilde, Phys. Rev. A 77, 063605 (2008).
[31] G. Roux, T. Barthel, I. P. McCulloch, C. Kollath, U. Schollwöck,

and T. Giamarchi, Phys. Rev. A 78, 023628 (2008); X. Deng, R.
Citro, A. Minguzzi, and E. Orignac, ibid. 78, 013625 (2008).

[32] M. Albert and P. Leboeuf, Phys. Rev. A 81, 013614 (2010).
[33] X. Cai, S. Chen, and Y. Wang, Phys. Rev. A. 81, 023626 (2010);

K. He, I. I. Satija, C. W. Clark, A. M. Rey, and M. Rigol, ibid.
85, 013617 (2012).

[34] N. Lo Gullo and L. Dell’Anna, Phys. Rev. A 92, 063619
(2015).

[35] G. Roati, C. D. Errico, L. Fallani, M. Fattori, C. Fort, M.
Zaccanti, G. Modugno, M. Modugno, and M. Inguscio, Nature
(London) 453, 895 (2008).

[36] R. Ketzmerick, G. Petschel, and T. Geisel, Phys. Rev. Lett. 69,
695 (1992).

[37] R. Ketzmerick, K. Kruse, S. Kraut, and T. Geisel, Phys. Rev.
Lett. 79, 1959 (1997).

[38] B. Huckestein and L. Schweitzer, Phys. Rev. Lett. 72, 713
(1994).

[39] G. S. Ng, J. Bodyfelt, and T. Kottos, Phys. Rev. Lett. 97, 256404
(2006).

[40] P. Qin, C. Yin, and S. Chen, Phys. Rev. B 90, 054303
(2014).

[41] In general, the definitions of Loschmidt echo and return
probability are not identical [see for example, A. Peres, Phys.
Rev. A 30, 1610 (1984)]. Nevertheless, for a specific choice of
the initial conditions which we used in this work, i.e., the initial
state is chosen as the eigenstate of H (�i), the two definitions
coincide.

[42] M. Reed and B. Simon, Methods of Modern Mathematical
Physics, Vol. 1: Functional Analysis (Academic Press, San
Diego, 1980).

[43] Z.-G. Yuan, P. Zhang, and S.-S. Li, Phys. Rev. A 75, 012102
(2007); D. Rossini, T. Calarco, V. Giovannetti, S. Montangero,
and R. Fazio, ibid. 75, 032333 (2007).

[44] P. Zanardi and N. Paunkovic, Phys. Rev. E 74, 031123 (2006);
W. L. You, Y. W. Li, and S. J. Gu, ibid. 76, 022101 (2007);
H. Q. Zhou and J. P. Barjaktarevic, J. Phys. A: Math. Theor. 41,
412001 (2008).

[45] S. Chen, L. Wang, S.-J. Gu, and Y. Wang, Phys. Rev. E 76,
061108 (2007); S. Chen, L. Wang, Y. Hao, and Y. Wang, Phys.
Rev. A 77, 032111 (2008).

[46] M. Zhong and P. Tong, Phys. Rev. A 84, 052105 (2011).
[47] J. Häppölä, G. B. Halasz, and A. Hamma, Phys. Rev. A 85,

032114 (2012); S. Montes and A. Hamma, Phys. Rev. E 86,
021101 (2012).

[48] S. Sharma, V. Mukherjee, and A. Dutta, Eur. Phys. J. B 85,
143 (2012); A. Rajak and U. Divakaran, J. Stat. Mech. (2014)
P04023.

184201-6

https://doi.org/10.1103/PhysRevB.34.7367
https://doi.org/10.1103/PhysRevB.34.7367
https://doi.org/10.1103/PhysRevB.34.7367
https://doi.org/10.1103/PhysRevB.34.7367
https://doi.org/10.1103/PhysRevLett.66.1651
https://doi.org/10.1103/PhysRevLett.66.1651
https://doi.org/10.1103/PhysRevLett.66.1651
https://doi.org/10.1103/PhysRevLett.66.1651
https://doi.org/10.1103/PhysRevA.77.063605
https://doi.org/10.1103/PhysRevA.77.063605
https://doi.org/10.1103/PhysRevA.77.063605
https://doi.org/10.1103/PhysRevA.77.063605
https://doi.org/10.1103/PhysRevA.78.023628
https://doi.org/10.1103/PhysRevA.78.023628
https://doi.org/10.1103/PhysRevA.78.023628
https://doi.org/10.1103/PhysRevA.78.023628
https://doi.org/10.1103/PhysRevA.78.013625
https://doi.org/10.1103/PhysRevA.78.013625
https://doi.org/10.1103/PhysRevA.78.013625
https://doi.org/10.1103/PhysRevA.78.013625
https://doi.org/10.1103/PhysRevA.81.013614
https://doi.org/10.1103/PhysRevA.81.013614
https://doi.org/10.1103/PhysRevA.81.013614
https://doi.org/10.1103/PhysRevA.81.013614
https://doi.org/10.1103/PhysRevA.81.023626
https://doi.org/10.1103/PhysRevA.81.023626
https://doi.org/10.1103/PhysRevA.81.023626
https://doi.org/10.1103/PhysRevA.81.023626
https://doi.org/10.1103/PhysRevA.85.013617
https://doi.org/10.1103/PhysRevA.85.013617
https://doi.org/10.1103/PhysRevA.85.013617
https://doi.org/10.1103/PhysRevA.85.013617
https://doi.org/10.1103/PhysRevA.92.063619
https://doi.org/10.1103/PhysRevA.92.063619
https://doi.org/10.1103/PhysRevA.92.063619
https://doi.org/10.1103/PhysRevA.92.063619
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1103/PhysRevLett.69.695
https://doi.org/10.1103/PhysRevLett.69.695
https://doi.org/10.1103/PhysRevLett.69.695
https://doi.org/10.1103/PhysRevLett.69.695
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.79.1959
https://doi.org/10.1103/PhysRevLett.72.713
https://doi.org/10.1103/PhysRevLett.72.713
https://doi.org/10.1103/PhysRevLett.72.713
https://doi.org/10.1103/PhysRevLett.72.713
https://doi.org/10.1103/PhysRevLett.97.256404
https://doi.org/10.1103/PhysRevLett.97.256404
https://doi.org/10.1103/PhysRevLett.97.256404
https://doi.org/10.1103/PhysRevLett.97.256404
https://doi.org/10.1103/PhysRevB.90.054303
https://doi.org/10.1103/PhysRevB.90.054303
https://doi.org/10.1103/PhysRevB.90.054303
https://doi.org/10.1103/PhysRevB.90.054303
https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/PhysRevA.30.1610
https://doi.org/10.1103/PhysRevA.75.012102
https://doi.org/10.1103/PhysRevA.75.012102
https://doi.org/10.1103/PhysRevA.75.012102
https://doi.org/10.1103/PhysRevA.75.012102
https://doi.org/10.1103/PhysRevA.75.032333
https://doi.org/10.1103/PhysRevA.75.032333
https://doi.org/10.1103/PhysRevA.75.032333
https://doi.org/10.1103/PhysRevA.75.032333
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.74.031123
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1103/PhysRevE.76.022101
https://doi.org/10.1088/1751-8113/41/41/412001
https://doi.org/10.1088/1751-8113/41/41/412001
https://doi.org/10.1088/1751-8113/41/41/412001
https://doi.org/10.1088/1751-8113/41/41/412001
https://doi.org/10.1103/PhysRevE.76.061108
https://doi.org/10.1103/PhysRevE.76.061108
https://doi.org/10.1103/PhysRevE.76.061108
https://doi.org/10.1103/PhysRevE.76.061108
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevA.77.032111
https://doi.org/10.1103/PhysRevA.84.052105
https://doi.org/10.1103/PhysRevA.84.052105
https://doi.org/10.1103/PhysRevA.84.052105
https://doi.org/10.1103/PhysRevA.84.052105
https://doi.org/10.1103/PhysRevA.85.032114
https://doi.org/10.1103/PhysRevA.85.032114
https://doi.org/10.1103/PhysRevA.85.032114
https://doi.org/10.1103/PhysRevA.85.032114
https://doi.org/10.1103/PhysRevE.86.021101
https://doi.org/10.1103/PhysRevE.86.021101
https://doi.org/10.1103/PhysRevE.86.021101
https://doi.org/10.1103/PhysRevE.86.021101
https://doi.org/10.1140/epjb/e2012-21022-7
https://doi.org/10.1140/epjb/e2012-21022-7
https://doi.org/10.1140/epjb/e2012-21022-7
https://doi.org/10.1140/epjb/e2012-21022-7
https://doi.org/10.1088/1742-5468/2014/04/P04023
https://doi.org/10.1088/1742-5468/2014/04/P04023
https://doi.org/10.1088/1742-5468/2014/04/P04023



