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Crystal truncation rods from miscut surfaces
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Crystal truncation rods are used to study surface and interface structure. Since real surfaces are always
somewhat miscut from a low index plane, it is important to study the effect of miscuts on crystal truncation rods.
We develop a model that describes the truncation rod scattering from miscut surfaces that have steps and terraces.
We show that nonuniform terrace widths and jagged step edges are both forms of roughness that decrease the
intensity of the rods. Nonuniform terrace widths also result in a broad peak that overlaps the rods. We use our
model to characterize the terrace width distribution and step edge jaggedness on three SrTiO3 (001) samples,
showing excellent agreement between the model and the data, confirmed by atomic force micrographs of the
surface morphology. We expect our description of terrace roughness will apply to many surfaces, even those
without obvious terracing.
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I. INTRODUCTION

Surface x-ray diffraction is a critical tool for understanding
surface structure on an atomic scale [1]. One useful surface
diffraction technique is analysis of crystal truncation rods,
which are streaks of scattering extending away from the
Bragg peaks parallel to the surface normal. Crystal truncation
rods have been used to solve surface reconstructions [2,3],
locate adatoms [4], study self-assembled monolayers [5], and
understand buried interfaces [6,7], solid-liquid interfaces [8,9],
and solid-gas interfaces [10]. Thus, they are a critical tool for
understanding surface structure determination.

There are two approaches to simulating the truncation rod
intensity. The first, continuum approach presumes that a crystal
can be described as an infinite lattice multiplied by a shape
function, which is unity in the bulk and zero outside the crystal
[11]. The Fourier transform of the shape function determines
the shape of the truncation rod. The second, atomistic approach
is to add up the scattering from every atom in the crystal, with
an appropriate phase factor that depends on the position of
the atom [12]. The square of the magnitude of the sum is
proportional to the truncation rod intensity.

Roughness can be included in both models. In the con-
tinuum approach, roughness is captured by a broadening of
the shape function [13]. In the atomistic approach, roughness
is modeled as a series of partially occupied layers near the
surface. In the best-known formulation, called β roughness, the
occupancy of each layer above the bulk is a constant fraction,
β, of the layer below [12]. In both approaches, roughness re-
duces the intensity of the truncation rod, with the largest effect
at the anti-Bragg points. Other models have also been devel-
oped. For example, coexistence of two-dimensional and three-
dimensional growth modes in a thin film results in a more com-
plex roughness factor [14]. These approaches generally work
well when the crystal surface is parallel to a low-index plane.
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However, no real surface is parallel to a low-index plane.
Even if the surface is locally parallel to the plane, steps, often
one unit cell tall, divide the surface into terraces whose lateral
spacing depends on the miscut angle. Provided the coherence
length exceeds the terrace width, a separate “subrod” will
extend from each Bragg point, as shown in Fig. 1(a). Measuring
the truncation rods from such a surface with a point detector is
challenging because each subrod must be measured separately,
and small misalignments or imperfections in the diffractometer
require frequent alignment scans to find the subrods. Thus,
experimentalists frequently use samples with small miscuts
(< 0.05◦) and align the miscut with the low-resolution di-
rection of the beam or diffractometer to avoid the need to
track the individual subrods [3,15]. Recently, area detectors
have made the task of measuring truncation rods from miscut
samples much easier since the detector usually intercepts
several subrods simultaneously and small misalignments have
minimal impact on the data collection [16]. In light of this
much easier data collection, it is necessary to develop a theory
of truncation rods from miscut samples so that a wider variety
of samples can be studied.

In this paper, we develop a model for the crystal truncation
rods from miscut surfaces with terraces and steps and show
that it agrees well with data collected from miscut SrTiO3

(001) surfaces, whose morphology is separately characterized
by atomic force microscopy.

II. MODEL

It is well known that scattering from a surface encodes
information about the height-height correlation function
[13,17]. Several models have been developed to describe
diffraction from vicinal, stepped surfaces that include a variety
of terrace width distributions and step edge roughnesses
[18–21]. Experimentally, the details of the step distribution
can be elucidated using these models. For example, step
edge repulsion and phase separation were observed in miscut
silicon [22,23], and anisotropy in a roughening transition was
observed in Ag (110) [24].
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FIG. 1. Schematic of the truncation rods and the sample surface.
(a) Miscut results in splitting of the truncation rod, with separate
subrods extending away from each Bragg point in a direction
perpendicular to the surface. L is an integer labeling the out-of-plane
index of the Bragg points. We label each subrod with a subscript
indicating the Bragg point from which it emanates. It is possible to
intercept all subrods from a given rod using an area detector. (b)
Terraces are one bulk unit cell tall with an average width Ma. The
deviation from the zero-roughness position of the step edge on the mth

terrace, n unit cells along the step is Dm,na. Fs and Fb are the the
structure factors of the surface unit cell and bulk unit cell, respectively.

These models for step distributions generally do not
describe the intensity along the entire truncation rod, but rather
only the in-plane shape. However, it has been shown in a
simple model with two terrace widths that unequal terrace
widths reduce the truncation rod intensity, especially at the
anti-Bragg points [25]. A numerical calculation of truncation

rod intensities from an atomic force microscope image of a
terraced, miscut surface shows a similar effect [15].

Building on these principles, we develop an atomistic model
of a miscut surface, presuming a cubic crystal comprised of
bulk unit cells (with structure factor Fb) covered by a single
layer of a different surface unit cell (with structure factor Fs).
We presume that all step edges are one bulk unit cell tall and
that the average terrace width is M unit cells, so the miscut
angle is arctan(1/M). However, we do not presume that the
terraces edges are straight or that each terrace has the same
width. As shown in Fig. 1(b), the position of the step edge
at the end of the mth terrace, n unit cells along the step,
is ((m + 1)M + Dm,n)a, where Dm,n is the deviation of the
position from the ideal value and a is the lattice constant.
For an ideal surface with straight-edged, uniformly spaced
terraces, all Dm,n = 0.

To begin, we add the structure factors from a single row of
unit cells, outlined in black in Fig. 1(b), to find

Fm,n =
⎛
⎝xm,n/a−1∑

j=−∞
Fbe

iqxaj +
xm+1,n/a−1∑
j=xm,n/a

Fse
iqxaj

⎞
⎠

× eiqyane−iqzam. (1)

If the beam were perfectly coherent, the scattered ampli-
tudes from the entire illuminated surface would add coherently.
To account for partial coherence, we add scattered amplitudes
from a local region or patch, weighting amplitudes farther from
the center of the patch less than those near the center:

Fpatch =
∞∑

n=−∞

∞∑
m=−∞

Fm,ne
−m2M2a2/ξ 2

x e−n2a2/ξ 2
y , (2)

where ξx and ξy are the coherence lengths in the x and y

directions. Presuming that any correlation in the deviations
Dm,n decays on a shorter scale than either coherence length,
the scattered intensity is proportional to

I = Aa2

2π3ξxξy

〈FpatchF
∗
patch〉, (3)

where A is the illuminated area, and the brackets denote
the spatial average over the whole sample. Expanding this
expression, we find

I = Aa2

2π3ξxξy

〈 ∑
m,n,m′,n′

Fm,nF
∗
m′,n′

× e−(m2+m′2)M2a2/ξ 2
x e−(n2+n′2)a2/ξ 2

y

〉
. (4)

By defining

F̃m,n ≡ (Fs − Fb)eiqxaDm,n − Fse
iqxa(M+Dm+1,n)

1 − eiqxa
(5)

and

θ ≡ qxaM − qza, (6)
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FIG. 2. Roughness on a terraced surface can arise from (a) step
edge jaggedness and/or (b) width variation from terrace to terrace.

the expression for intensity becomes

I = Aa2

2π3ξxξy

∑
m,n,m′,n′

〈F̃m,nF̃
∗
m′,n′ 〉eiθ(m−m′)

× eiqya(n−n′)e−(m2+m′2)M2a2/ξ 2
x e−(n2+n′2)a2/ξ 2

y , (7)

where

〈F̃m,nF̃
∗
m′,n′ 〉 = |Fs − Fb|2〈eiqxa(Dm,n−Dm′ ,n′ )〉

− (Fs − Fb)F ∗
s e−iqxaM〈eiqxa(Dm,n−Dm′+1,n′ )〉

− (Fs − Fb)∗Fse
iqxaM〈eiqxa(Dm+1,n−Dm′ ,n′ )〉

+ |Fs|2〈eiqxa(Dm+1,n−Dm′+1,n)〉. (8)

In order to simplify the calculation, we assume that the
deviations Dm,n have zero mean and a Gaussian distribution.
Then, we can use the Baker-Hausdorff Theorem [26] to
calculate the spatial average,

〈eiqxa(Dm,n−Dm′ ,n′ )〉 = e−(qxa)2〈(Dm,n−Dm′ ,n′ )2〉/2. (9)

To proceed, we must calculate the average difference
between the step positions at different locations, 〈(Dm,n −
Dm′,n′ )2〉. For most surfaces, this quantity is a complicated
function of m − m′ and n − n′ that depends on the details
of the step distribution on that particular surface. In order to
proceed, we use a simple step distribution. As shown in Fig. 2,
we presume that there are only two nonidealities in the step
edges. First, any single step edge is jagged, with standard
deviation from the average position σs (“s” for “step”) and
no correlation in the jaggedness along the step. Second, the
terrace width changes from terrace to terrace, with standard
deviation from the average width σw (“w” for “width”) and no
correlation between widths on subsequent terraces. These two
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FIG. 3. Simulation of the three components of the scattered
intensity from a miscut surface at fixed qz. (a) Ip denotes sharp peaks
given by Eq. (12). I tot,L

p is the intensity in a single peak integrated
over qx and qy . I tot

p is the sum of the integrated intensity in all of
the peaks. (b) Iw indicates a broad peak that arises from variations in
terrace width from terrace to terrace given by Eq. (22). We define Imax

w

as the sum of the column containing the highest intensity pixel. (c) Is

is a diffuse background that arises from jagged step edges given by
Eq. (26). The intensity is usually too low to observe experimentally.
(d) The total scattered intensity.

types of roughness result in the average correlation function

〈(Dm,n − Dm′,n′ )2〉
2

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 n = n′,m = m′

σ 2
s

a2
n 	= n′,m = m′

σ 2
s + σ 2

w

a2
m 	= m′

. (10)

Many surfaces will have much more complicated forms of
this correlation function. However, this simple form captures
the main features of many terraced surfaces. Evaluating the
sum in Eq. (7) using Eqs. (9) and (10), we find three distinct
components of the total intensity

I = Ip + Iw + Is, (11)

where Ip, Iw, and Is are all functions of qx, qy , and qz; Fb

and Fs; and the two roughness parameters σs and σw. These
functions are shown in Fig. 3 for fixed qz. Equation (11) is
a significant result. It states that the scattering from a miscut
surface can be divided into three distinct parts arising from
(1) the splitting of the truncation rod due to the miscut, (2) a
broad peak due to variable terrace widths, and (3) a diffuse
background from jagged step edges. We now discuss these
parts in more detail.

A. Ip, sharp peaks from subrods

Most of the scattering in our model comes in a series of
sharp peaks, given by

Ip = Aa2

2π3ξxξy

H0(θ,ξx/Ma)H0(qya,ξy/a)

× ∣∣(Fs − Fb) − Fse
iqxaM

∣∣2 e−q2
x (σ 2

s +σ 2
w)

4 sin2(qxa/2)
(12)
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(with “p” for “peaks”), where

H0(x,b) =
∞∑

j=−∞
πb2e− 1

2 b2(x−2πj )2
. (13)

Equation (12) is plotted in Fig. 3(a) for fixed qz. The function
H0(x,b) is a periodic series of peaks spaced by 2π in x.
Thus, the product of the two H0 functions in Eq. (12) restricts
scattering to a series of rods in reciprocal space. With no
miscut, there would be a single rod for each integer value
of h and k, and the rods would be labeled (00l), (10l), and
so on, in the usual representation. As shown in Fig. 1(a),
miscut splits these rods into separate subrods, each emanating
from a single Bragg point, which we call the primary Bragg
point for that subrod. Thus, we label each subrod by the usual
notation plus a subscript noting the l value of the primary Bragg
point, so the (10l) rod now splits into several sub-rods, labeled
(10l)0, (10l)1, and so on. An area detector often intercepts
several of these subrods simultaneously, displaying a series
of sharp peaks. These peaks will be spaced by 2π/Ma in
qx . As the miscut increases, so does the spacing between
peaks.

We have assumed that the coherence length is significantly
longer than the average terrace width, so that the peaks
from the subrods are well defined. If the coherence length
is shorter than or comparable to the average terrace width,
then the width of each subrod will be broad enough that the
individual subrods will be indistinguishable, and the scattering
will appear like a single rod connecting Bragg peaks in the
out-of-plane direction.

The second line of Eq. (12) modulates the intensity of the
subrods in two ways. First, there is the standard interference
between the surface and the bulk, in which the bulk dominates
near the primary Bragg point (and whenever l is an integer),
whereas they contribute equally whenever l is a half-integer.
Second, there is a roughness factor which reduces the intensity
of the subrod away from the primary Bragg point. Larger
terrace width variation, σw, and larger step edge jaggedness,
σs, both result in a faster reduction of intensity moving away
from the primary Bragg point.

Experimentally, in a truncation rod measurement, Ip will
be observed as a series of peaks on an area detector, one from
each subrod. One useful way to treat such data is to subtract
a background from each peak and then add the total intensity
in all of the peaks. To calculate the total integrated intensity
observed in this case, we need to integrate over qx and qy . We
note that

∫ ∞

−∞
πb2e− 1

2 b2x2
dx = π

√
2πb. (14)

Even though Fs and Fb are functions of qx and qy , we
treat them as constants during the integration since only a
few peaks contribute to the integral and Fs and Fb vary only
slightly from peak to peak (for M >> 1). Since H0(θ,ξx/Ma)
is peaked at θ = 2πL, where L is an integer, we approximate
it as a series of δ functions and make the substitution qx =
(qza − 2πL)/Ma, which allows us to write the result as a

sum:

I tot
p = A

M2a2

∣∣(Fs − Fb) − Fse
iqza

∣∣2

×
∑
L

e−(qza−2πL)2(σtot/Ma)2

4 sin2 ((qza − 2πL)/2M)
, (15)

where

σtot ≡
√

σ 2
s + σ 2

w (16)

is the total “terrace roughness.” For M >> 1, only terms near
L = qza/2π contribute to the sum, so the argument of sin x in
the denominator is small. By expanding and rearranging, we
find

I tot
p = A

a2

∣∣∣∣Fs + Fb
e−iqza

1 − e−iqza

∣∣∣∣
2

×
∑
L

4
sin2(qza/2)

(qza − 2πL)2
e−(qza−2πL)2σ̃ 2

tot , (17)

where σ̃tot ≡ σtot/Ma is the total roughness as a fraction of the
terrace length, and σ̃w and σ̃s are similarly defined. Each term
in the sum in Eq. (17) is the integrated intensity in the sharp
peak from the Lth subrod, which we denote I tot,L

p .
In order to isolate the effect of roughness, we define

I0 ≡ A

a2

∣∣∣∣Fs + Fb
e−iqza

1 − e−iqza

∣∣∣∣
2

(18)

and a roughness factor

cp ≡
∑
L

4
sin2(qza/2)

(qza − 2πL)2
e−(qza−2πL)2σ̃ 2

tot (19)

≈ 1 −
[

4√
π

σ̃tot + O(σ̃ 3
tot)

]
sin2

(
qza

2

)
, (20)

where the first-order approximation in Eq. (20) is valid for
σ̃tot � 0.3 (which limits the error to 3%) [27]. The expression
for I tot

p can then be written as

I tot
p = cpI0, (21)

where I0 is the intensity had there been no miscut and cp

is a factor that depends only on qz and σtot and not on
Fb or Fs. It is unity when the total roughness is zero and
less than one otherwise. (We discuss the roughness factor in
detail in Sec. IV.) Thus, the total integrated intensity in all
of the peaks is proportional to the intensity had there been
no miscut and a roughness factor which depends only on qz

and σtot.

B. Iw, broad peak

If the terraces have nonuniform widths, regardless of
whether the step edges are straight or jagged, then a broad
peak develops underneath the sharp peaks, described by

Iw = Aa
√

π/2

2π3ξyM
H0(qya,ξy/a)

∣∣(Fs − Fb) − Fse
iqza

∣∣2

× e−q2
x σ 2

s − e
−q2

x

(
σ 2

s +σ 2
w

)
4 sin2(qxa/2)

. (22)
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FIG. 4. Specular truncation rod from miscut SrTiO3 (001). Atomic force micrographs of samples annealed at (a) 1025 C, (b) 950 C, and (c)
no anneal show different terrace morphologies. Each step is one unit cell (3.905 Å) high. [(d), (e), (f)] Detector images where the center pixel
is l = 1.6, with column sums below. The scale bar on the image indicates the change in the length of q across the image, whereas the x-axis
labels on the plot indicate the change in qx only. [(g), (h), (i)] The integrated intensity of the subrods L = 0 to L = 5, plotted as a function of
l. Each subrod is a different colored symbol. The Supplemental Material [27] contains a complete discussion of the correction factors applied
to the data to obtain I tot,L

p .

Equation (22) is plotted in Fig. 3(b) for fixed qz. The
width in qy is inversely proportional to the coherence length.
However, the width in qx is much wider than the inverse
of the coherence length and depends on the terrace width
nonuniformity. When the width variation σw is small, the peak
is weak and broad in qx . As σw increases, the peak becomes
narrower and stronger in such a way that the integrated
intensity increases. Step edge jaggedness (σs) reduces the peak
width in qx but does not change the maximum intensity. In any
crystal with uniform terrace widths (but where the step edges
may or may not be jagged), σw is zero and Iw is zero.

Experimentally, the scattering from a sample with nonuni-
form terrace widths is a series of sharp peaks from the subrods

with a broad peak underneath. One approach to analyzing such
data is to integrate the total intensity in all of these peaks. To
calculate the total integrated intensity observed in this case,
we need to integrate Iw over qx and qy and add the result to
I tot

p . Again treating Fs and Fb as constants since they vary only
slightly over the extent of the broad peak in qx and qy , we find
that the integrated intensity in the broad peak is

I tot
w = A

a2

∣∣∣∣Fs + Fb
e−iqza

1 − e−iqza

∣∣∣∣
2

× sin2(qza/2)
4√
π

(σ̃tot − σ̃s). (23)
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FIG. 5. Extracting roughness parameters. [(a), (b), (c)] The total intensity in the sharp peaks (I tot
p , black triangles) and the height of the

broad peak (Imax
w , blue crosses). The black lines are the best fit to the ratio of these intensities using Eq. (28), where σ̃w is the only fitting

parameter. [(d), (e), (f)] The ratio of integrated intensity in a single sharp peak [plotted in Figs. 4(g)–4(i)] to the total intensity in the sharp
peaks, as a function distance from the primary Bragg peak. The black lines are the best fit to the ratio of these intensities using Eq. (27), where
σ̃tot is the only fitting parameter.

By defining

cw ≡ sin2(qza/2)
4√
π

(σ̃tot − σ̃s), (24)

the expression for I tot
w can be written as

I tot
w = cwI0, (25)

where cw is a factor that depends on σw, σs, and qz and not
on Fb and Fs. Thus, the integrated intensity in the broad
peak is always proportional to the scattering had there been
no miscut. Depending on how the detector images from an
experiment are analyzed, this scattering may or may not need
to be included during modeling. As we discuss in Sec. IV,
including it changes the shape of the rod in qz.

C. Is, diffuse background

When the step edges are jagged, there is a diffuse back-
ground. It does not depend on σw and has the functional form

Is = A

4π2M

∣∣(Fs − Fb) − Fse
iqza

∣∣2 1 − e−q2
x σ 2

s

4 sin2(qxa/2)
. (26)

Equation (26) is shown in Fig. 3(c) for constant qz. This
background is broad in all directions and cannot be easily
measured experimentally. It would be subtracted in most
reasonable background subtraction procedures.

III. EXPERIMENTAL RESULTS

To test our model, we prepared three SrTiO3 (001) sur-
faces with different terrace morphologies that correspond to
different values of σw and σs. We call the samples A, B, and
C. We etched the samples in 1:6 buffered oxide etch for 2
min to achieve TiO2 termination [28]. We then annealed the
samples differently: A at 1025 C in 1:10 O2:Ar for 1 h, B at
950 C in 1:10 O2:Ar for 1 h, and C with no anneal. These
three annealing conditions resulted in three different surface
morphologies, as shown by atomic force microscopy (AFM)
in Figs. 4(a)–4(c).

We measured the specular crystal truncation rod from
the three samples at beamline 7-2 at SSRL in four circle
mode with a double-crystal Si (111) monochromator and a
Rh-coated mirror to focus the beam to a spot approximately
100 × 500 μm FWHM. The energy was 15.5 keV. Scattered
photons were collected on a Pilatus 100k area detector located
approximately 1 m from the diffractometer center. Lorentz
and illuminated area corrections were applied to all data
[29–31]. The Supplemental Material [27] contains a complete
discussion of the corrections.

The scattering from the different surfaces agrees qual-
itatively with our theory. For all three samples, there are
several sharp peaks and a single broad peak, as shown in
Figs. 4(d)–4(f). For sample A, with the smoothest step edges
and the most uniform widths, the sharp peaks fall off most
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slowly away from the center, and the broad peak is only faintly
visible. The larger width variations in sample B result in a
stronger, narrower broad peak and a faster falloff in intensity
of the sharp peaks. For sample C, the broad peak is similar to
sample B, suggesting that the terrace width variance is similar,
but the sharp peaks fall off more quickly, consistent with the
more jagged step edges. The extra diffuse background from the
jagged step edges, Is, is too weak to be visible. The scattering
pattern is rotated for sample C because the miscut direction is
rotated relative to the crystal axes (see Supplemental Material
[27] for further discussion of miscut rotation).

To make a quantitative estimate of σw and σs, we compare
both the integrated intensity of individual sharp peaks and the
height of the broad peak to the total intensity in all the sharp
peaks.

Each sharp peak arises from the intersection of one subrod
with the detector. Each subrod emanates from its primary
Bragg point as an elliptic cylinder with its axis slightly tilted
relative to the [00l] direction, where l = qza/2π . For the spec-
ular rod, the primary Bragg points are located at (00L), where
L is an integer. We label the subrods using these integers. We
plot the integrated intensities of the sharp peaks from subrods
L = 0 to L = 5 in Figs. 4(g)–4(i). The integrated intensity in
each subrod reaches a maximum at its primary Bragg point.

The detector occupies a region of the Ewald sphere, and thus
in general intersects each subrod at a slightly different value
of l, as shown in Fig. 1(a). However, for small miscut (Ma >>

thickness of surface unit cell), the intensity in the subrods
varies slowly with l, and we approximate the intersection as
occurring at the same value of l for each subrod.

With this approximation, we find using Eq. (15) and (17)
that, at a given l, the ratio of the integrated intensity of the
sharp peak from the Lth subrod to the total intensity of all
sharp peaks is

I tot,L
p

I tot
p

= sin2(πx)

π2x2
e−x2π2σ̃ 2

tot

/[
1 − 4√

π
σ̃tot sin2(πx)

]
,

(27)

where x ≡ l − L is the distance along the subrod, in the qz

direction, to the primary Bragg point. This ratio depends only
on the total roughness. Thus, by fitting the observed ratios to
this expression, shown in Figs. 5(d)–5(f), we can extract σ̃tot.
Even though the intensities of the subrods vary by many orders
of magnitude, the ratios collapse onto a single curve, and the
fit is excellent.

The easiest way to find σw would be to compare the
integrated intensity in all of the sharp peaks to the integrated
intensity in the broad peak. However, since the broad peak
is often wide and weak, it is hard to accurately measure the
integrated intensity. Thus, we focus on the maximum intensity.
As shown in dashed box in Fig. 3(b), we define Imax

w to be
the sum of the intensities of the pixels in the column that
contains the broad peak maximum. Using Eqs. (17) and (23),
we calculate the ratio

Imax
w

I tot
p

= sin2(πl)
2σ̃ 2

w

π
�

/[
1 − 4√

π
σ̃tot sin2(πl)

]
, (28)

where � is the width of a detector pixel in reciprocal space.
This ratio depends on σ̃w and σ̃tot. We plot the observed ratio
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FIG. 6. Roughness factors. (a) cp, the ratio of the total intensity in
the sharp peaks for a rough sample relative to an ideally miscut sample
for various values of the total terrace roughness. The black dashed
lines are β-roughness factors for comparison, calculated assuming
Fs = Fb, chosen to match the cp factor at l = 0.5. (b) The total
intensity in the sharp peaks and the broad peak relative to the total
intensity from an ideally miscut sample. The total roughness is the
same for all curves but it is split differently between terrace width
variation and step edge jaggedness.

as red squares in Figs. 5(a)–5(c). Using Eq. (28) and our best
fit value for σ̃tot, we do a least squares fit to extract σ̃w.

To complete the test of our model, we compare the
roughness parameters extracted from truncation rod fitting to
the roughness parameters found directly from the AFM images
in Table I. To find the roughness parameters from the AFM
images, we use a correlation length ξy of 100 nm, inferred from
the width of the truncation rods in qy , and presume that the ξx

TABLE I. Comparison of roughness parameters extracted from
truncation rod fitting and AFM images. Confidence intervals are less
than ±0.01 for all parameters.

Sample
A B C

Best fit to diffraction pattern σ̃w 0.07 0.11 0.14
σ̃s 0 0 0.14

AFM image, presuming ξy = 100 nm σ̃w 0.06 0.10 0.12
σ̃s 0.01 0.02 0.17
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exceeds the width of the image. We calculate the average step
position and the step edge jaggedness in horizontal 100-nm
strips and then average over all strips to find σ̃w and σ̃s. As we
show in Table I, the agreement between the two methods is
excellent. However, σ̃s from the AFM images systematically
exceeds σ̃s from the truncation rod fits, while the opposite is
true for σ̃w. We hypothesize in the Supplemental Material [27]
how correlations in the step edge jaggedness, which are not
captured in our model, may be responsible for this discrepancy.
Overall, the good agreement between the parameters extracted
from the two methods indicates that our model successfully
describes the terrace roughness of the three surfaces.

IV. DISCUSSION

We have found that the truncation rods from miscut surfaces
have three components: (1) a series of evenly spaced sharp
peaks arising from the splitting of the truncation rod into
subrods, (2) a single broad peak arising from terrace width
variation, and (3) a diffuse background arising from step edge
jaggedness. One of the most notable aspects of our model
is the separation between solving the surface structure and
evaluating the roughness. Indeed, we were able to characterize
the terrace width and step edge roughness on three different
samples without any knowledge of the surface or bulk structure
factors, Fs and Fb.

However, to do so, we had to examine in detail the
intensities of the subrods and the broad peak. In a typical
measurement, with lower resolution or smaller miscut, it might
not be possible to resolve these peaks. As discussed in Sec. III,
a typical analysis is likely to either (1) add integrated intensities
from the sharp peaks and subtract Iw and Is as background or
(2) add integrated intensities from the sharp peaks and the
broad peak and subtract only Is as background. In the first
case, the rod intensity is I0 times a roughness factor (cp) that
depends only on σtot and l. This factor is shown in Fig. 6(a).
It is periodic in l, reaching unity at the Bragg points and a
minimum at the anti-Bragg points. In the second case, the rod
intensity is I0 times a factor (cp + cw) that depends on σw, σs,
and l. This factor is shown in Fig. 6(b). It is also periodic
in l, reaching a minimum at the anti-Bragg points, where the

minimum value depends on the ratio of σw to σs in addition
to σtot. For two samples with the same σtot, the sample with
larger σw will have the shallower minimum.

The effect of terrace roughness is similar to other rough-
nesses because it decreases the intensity away from the Bragg
peaks. As shown in Fig. 6(a), the l dependence is different
than for β roughness. The effect of terrace roughness is
concentrated near the anti-Bragg point, whereas β roughness
results in a broader reduction in intensity. We note that multiple
types of roughness may be present on a single sample. For
example, it is possible for a surface to have β roughness or
partial occupancy across the entire surface in addition to having
terrace roughness. In that case, β roughness would only impact
I0 and terrace roughness would only impact cp and cw.

In conclusion, we have developed a model for crystal
truncation rods from miscut surfaces and applied it to a series of
SrTiO3 samples, where we characterized the terrace roughness
without needing to solve the surface structure. Our model gives
a simple multiplicative factor to account for this roughness in
the crystal truncation rods. Our approach is broadly applicable
to analyzing truncation rods from miscut samples and solving
their surface structure.
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