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Ab initio based empirical potential applied to tungsten at high pressure
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Density-functional theory forces, stresses, and energies comprise a database from which the optimal parameters
of a spline-based empirical potential combining Stillinger-Weber and modified embedded-atom forms are
determined. The accuracy of the potential is demonstrated by calculations of ideal shear, stacking fault, vacancy
migration, elastic constants, and phonons all between 0 and 100 GPa. Consistency with existing models and
experiments is demonstrated by predictions of screw dislocation core structure and deformation twinning in a
tungsten nanorod. Last, the potential is used to study the stabilization of fcc tungsten at high pressure.
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I. INTRODUCTION

Tungsten is an exceptional transition metal exhibiting the
highest tensile strength, melting point, and elastic modulus of
any pure metal and has important applications in aerospace,
energy, and armament industries. Much interest has been fo-
cused on α-W (bcc) and β-W (A15) nanostructures, including
nanorods [1–3], nanoparticles [4–7], and thin films [8–10].
Due to the technological importance of tungsten, classical
interatomic potentials of various forms have been developed
to study this metal [11–18].

Classical potentials, popular for their favorable scaling
compared to first-principles methods, were traditionally devel-
oped by choosing analytic functional forms with a handful of
free parameters determined by fitting directly to experimental
bulk data such as cohesive energy, lattice, and elastic constants.
The force-matching method of Ercolessi and Adams [19] has
facilitated the development of interatomic potentials based
on ab initio calculations of relaxed crystallographic defects,
metastable structures, and other nonequilibrium configura-
tions. However, many such potentials still possess a small
number of free parameters and analytic functional forms which
limit their transferability, requiring researchers to take great
care in choosing a potential suitable for their region of interest.
It is thus desirable to produce a single potential which can
be employed to study the range of materials physics, herein
tungsten.

To meet this challenge we developed a unique semiempiri-
cal potential based on a robust database of ab initio calculations
that samples much of the potential-energy landscape. Our
model combines the Stillinger-Weber (SW) [20] form with
the modified embedded-atom method [21] (MEAM) form
with functions parameterized by quintic splines. Section II
describes the functional form of the model, the density-
functional theory (DFT) calculations comprising the large fit-
ting database, and the genetic algorithm optimization scheme.
The accuracy of the fitted potential is demonstrated in Sec. III
by comparing MEAM to DFT for the various structural
and elastic properties to which it was fit. Given that the
potential is fit directly to important crystallographic defects,
structural properties, and elastic constants, transferability is
demonstrated in Sec. IV by examining MEAM predictions
for 1

2 〈111〉 screw dislocation core structure, deformation
twinning and detwinning of a nanorod, and dynamics of bcc

and fcc tungsten at high pressure. Conclusions are given in
Sec. V.

II. OPTIMIZATION OF THE EMPIRICAL POTENTIAL
WITH FIRST-PRINCIPLES CALCULATIONS

We present a spline-based empirical potential fit to a large
database of highly converged DFT calculations using a global
optimization scheme based on an evolutionary algorithm.

A. Empirical extension of the MEAM potential

The embedded-atom (EAM) [21,22] and MEAM
[12,23,24] methods have been applied to many systems, in-
cluding semiconductors [21–26] and transition metals [12,27–
30]. The original MEAM formalism involves a parametrized
analytical functional form which accounts for bond bending
through angular functions with explicit s-, p-, d-, and f -orbital
characteristics. Lenosky et al. [25] first parametrized the
MEAM formalism through the use of cubic splines for the
study of defects in Si. The use of splines for parameterizing
empirical potentials increases model flexibility and efficiency
and has been successfully applied to the study of martensitic
transformations in pure titanium [28], shock loading in nio-
bium [29,31], and dislocation dynamics in molybdenum [30].
SW potentials, initially developed for the modeling of cubic-
diamond Si, have been successfully applied to amorphous
Si [32] as well as Ge [33] and other systems.

Model flexibility is paramount when constructing empirical
potentials. The addition of distinct terms to the model can
improve flexibility, as demonstrated by the success of MEAM
over EAM [34,35]. However, care must be taken when
parameters are added to ensure that one is not overfitting
the database, and added functions should, in general, have a
physical interpretation. Without a careful balance of database
inputs and model flexibility, a potential can have a low fitting
error with little physical meaning or a large fitting error with
little practical use.

In the present work, we propose an empirical extension
of MEAM which includes a SW-type three-body term in the
energy. Our model employs functions parameterized by quintic
splines which improve performance for properties requiring
continuous third derivatives of the interatomic potential, e.g.,
Cij vs P relations, over cubic splines. The total potential
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energy is that of SW with the addition of an embedding term
U ,

Vtot =
∑

i>j

φ(rij ) +
∑

i

U (ni)

+
∑

i,j > k

j �= i

p(rij )p(rik)q(cos θjik), (1)

where the “electronic density” ni at atom i involves two- and
three-body contributions,

ni =
∑

j �=i

ρ(rij ) +
∑

j > k

j �= i

f (rij )f (rik)g(cos θjik),
(2)

and θjik is the angle of the triplet centered on atom i. This
is the simplest extension of MEAM which does not include
four-body terms and cannot be gauge transformed back to the
original model. It contains as special cases the SW (U = 0),
MEAM (q = 0), and EAM (g = q = 0) forms. This flexibility
gives us the ability to fit to the large ab initio database described
in the next section.

B. Density-functional theory database

DFT calculations performed with VASP [36–39] using a
projector augmented-wave basis [40] and a Perdew-Burke-
Ernzerhof (PAW-PBE) [41,42] generalized gradient exchange-
correlation approximation comprise a database of forces,
stresses, and energies for fitting via the force-matching
method. In addition to 6s and 5d, the 5p electrons are treated
as valence electrons to improve accuracy at high pressures,
where the overlap of these semicore states is not necessarily
negligible. A plane-wave energy cutoff of 600 eV and a
first-order Methfessel-Paxton smearing width of 0.1 eV are
used for all calculations; k points are sampled on a �-centered
40 × 40 × 40 mesh in the bcc Brillouin zone. These quantities
are chosen to ensure convergence of the total energy to within
0.1 meV/atom. Additional computational details are presented
in Fellinger [43].

The ab initio fitting database contains 596 configurations
with a total of 14 690 unique force components, stress
components, and energies to be fit. The potential contains 194
fitted parameters.

Configurations in the database include volumetric strains
of bcc, fcc, hcp, β-W (A15), β-Ta (β-U), and ω-Ti. Tetragonal
strains are included for hcp and ω-Ti structures to ensure ac-
curate c/a values. The database also contains elastic constants
of the bcc phase at pressures between 0 and 100 GPa, in
increments of 25 GPa, using volume-conserving orthorhombic
and monoclinic strains of 0.5% for C ′ = 1

2 (C11 − C12) and
C44, respectively. At zero pressure, configurations with or-
thorhombic strains up to 10% and monoclinic strains up to 40%
are added. Unrelaxed symmetry-inequivalent configurations of
〈110〉 and 〈112〉 γ surfaces, ideal shear strain, and vacancy
migration are included at five equally spaced pressures
between 0 and 100 GPa. Relaxed zero-pressure structures
containing a vacancy at the lattice site and halfway along
the 〈111〉 migration path are also added. A 7 × 7 × 7 bcc
supercell with a single atom displaced by 0.006 Å is included

to promote accurate force constants and phonons via the small-
displacement method [44,45]. Using a supercell of this size
reduces the interaction of the displaced atom with its images
across periodic boundaries and thus improves the accuracy of
calculated force constants and phonon dispersions. Relaxed
low-index free surfaces as well as crowdion, octahedral,
〈111〉-split, and 〈110〉-split self-interstitial configurations are
included. Ab initio molecular dynamics (MD) snapshots of
125-atom bcc supercells at 1620 and 2960 K and liquid
tungsten at 6730 K are added to improve performance for
simulations at high temperature. A 36-atom hcp supercell at
100 K is also included. Last, a mesh of 36 points on the
Bain [46] (bcc-fcc) and Burgers [47] (bcc-hcp) energy surfaces
at pressures of 0 and 700 GPa in addition to 600 GPa for the
Bain path and 800 GPa for the Burgers path is included to
ensure that the potential can be used to explore properties of
these close-packed phases at high pressure.

C. Genetic algorithm optimization

The development of the optimized potential is an iterative
process of fitting, testing, and database refinement. Ten to
twenty fits are performed simultaneously, and the resultant
potentials are tested for accuracy on a range of properties.
The fitting database is refined based on the results of these
tests: new structures are added to correct spurious behavior,
or structures are removed when underfitting is suspected. For
example, points on the Bain and Burgers paths at high pressure
were added when previous iterations gave unsatisfactory
results for these tests. Retuning algorithm inputs and/or error
weights often accompanies this refinement.

A global optimization scheme combining a genetic algo-
rithm (GA) with a local downhill optimizer provides a method
for determining the spline parameters of the potential. At
each iteration of the GA all potentials in the population of
ten are locally optimized with 60 steps of a Powell [48]
conjugate direction algorithm; then the population is sorted
and bred according to total weighted least-squares error. For
the presented potential forces, stresses and energies are given
weights of equal magnitude in the least-squares error. Units

employed are eV/Å, eV/Å
3
, and eV, respectively.

Breeding is done by a stochastic combination of spline
knots from two parent potentials. The following constraints
are enforced by introducing a “punishment” error when not
satisfied: (i) |max[f (r)]| = |max[p(r)]| = 1 and (ii) ni lies
within the domain of U (n) for all i. If the latter constraint is
violated, the embedding function is evaluated at its nearest end
point. At each GA step, for every potential in the population,
there is a 10% chance for the embedding function domain and
total density [Eq. (2)] to be rescaled by a transformation where
U (n) → U (n/α) and n → αn, where α is determined by the
minimum and maximum densities at the current step. When
this occurs, additional gauge symmetries in the three-body
terms of Eqs. (1) and (2) are exploited so that the maximal
knot values of |f | and |p| are equal to 1.

While forces and energies are invariant with respect to
these transformations, the total error is not because constraints
(i) and (ii) are always satisfied after rescaling. Because
during fitting the embedding function is not extrapolated but
rather evaluated at the nearest end point when densities lie
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outside the domain, energies for such configurations are not
invariant under the aforementioned rescaling. Furthermore,
spline functions are, in general, not invariant under such
a transformation of their argument. Thus, performing this
rescaling serves as a genetic mutation of the potential. The
algorithm is exited when between successive steps the change
in total error for every potential in the population is less than
10−3. Parameters for the fitted potential and plots of the seven
functions are presented in the Supplemental Material [49],
along with more detailed descriptions of the algorithms used.
Henceforth, all references to MEAM will pertain to the present
empirically extended potential.

III. ACCURACY OF THE FITTED POTENTIAL

We demonstrate the accuracy of the fitted MEAM potential
through the energetics of nonequilibrium structures, crys-
tallographic defects, thermodynamic properties, and phonon
dispersion. All MEAM calculations in this work (other
than those necessary for fitting) are performed in the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [50]. The compatibility of the module has been
verified for LAMMPS versions as recent as 17 November 2016.
If at any step during an MD run the density seen by an
atom exceeds the embedding function domain, the embedding
energy is linearly extrapolated from the nearest end point.

A. Energetics and elastic properties

Figure 1(a) shows the generalized gradient approximation
(GGA)-DFT and MEAM energy-volume relations for six
distinct phases, including A15 β-W and high-energy close-
packed structures. MEAM accurately predicts energies of all
six phases relative to the ground state. An equilibrium bcc
lattice constant of 3.189 Å is predicted by both GGA-DFT
and MEAM, compared to the published experimental values
between 3.15 and 3.165 Å [53–55]. It is well known now that
GGA tends to overestimate the lattice constant of metals; the
reason for this is discussed in Wang et al. [56] as well as Favot
and Dal Corso [57] (and references therein).

Figure 1(b) compares bcc tungsten pressure-volume rela-
tions as computed with MEAM and GGA-DFT and measured
through shock experiments [51]. MEAM and GGA-DFT
curves, obtained with static calculations of volumetric strain,
are indistinguishable for pressures through 800 GPa and in
excellent agreement with experimental results up to 300 GPa,
indicating the applicability of the fitted MEAM potential to
high-pressure physics in tungsten.

Figure 1(c) compares linear thermal expansion predictions
by MEAM to experimental results [52] for temperatures
between 300 K and the experimental melting point of 3695 K.
Constant N -P -T MD simulations of 2000 atoms at P = 1 atm
yield the thermal-expansion curve. Each MD simulation runs
for 50 000 steps with a 1-fs time step, and the lattice constant
for each temperature is determined by averaging over the last
5000 simulation steps. MEAM shows excellent agreement
with experiment up to 1000 K and remains within 1% of the
experimental fit for all temperatures considered, indicating that
the potential interpolates between temperatures included in the
fitting database.

FIG. 1. (a) Comparison of energy-volume curves between
MEAM and DFT for six crystal structures. Curves are ordered
vertically according to the key. Our empirical potential reproduces
the energies of each phase relative to that of the bcc ground state.
(b) Pressure-volume relation for tungsten as computed by MEAM
and DFT at 0 K compared with data from shock experiments [51] at
room temperature. MEAM shows agreement with both experimental
and ab initio results, even at extreme pressures. (c) Thermal expansion
of tungsten predicted by MEAM agrees with experimental data fit [52]
up to the melting point of 3695 K.

Table I shows the zero-pressure bcc elastic constants of the
present MEAM and GGA-DFT results compared to previous
ab initio calculations and other interatomic potentials. The
bulk modulus B and C11 predicted by MEAM are higher than
experimental and GGA results but consistent with the local-
density approximation (LDA) work of Einarsdotter et al. [58].
The pressure dependence of bcc elastic constants is shown in
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TABLE I. Zero-pressure elastic constants of bcc tungsten in GPa.

B C11 C12 C44

MEAMa 319 550 204 147
GGAa 304 513 199 142
F-Sb 309 520 204 161
LDAc 320 552 204 149
F-Sd 310 525 203 159
F-Se 310 522 204 161
EAMf 308 520 202 159
BOPg 310 522 204 161
Expt.h 308–314 501–521 199–207 151–160

aMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al. [17].
cLDA-DFT results of Einarsdotter et al. [58].
dFinnis-Sinclair results of Derlet et al. [15].
eFinnis-Sinclair results of Ackland and Thetford [11].
fEAM results of Zhou et al. [14].
gBond-order potential results of Mrovec et al. [16].
hExperimental results of Bolef and de Klerk from 77 to 500 K [59].

Fig. 2; MEAM does not predict a monotonic increase of Cij

but remains within 21% of the GGA-DFT values.
Figure 3 shows phonon dispersion of equilibrium bcc tung-

sten as computed with MEAM and DFT compared to inelastic
neutron scattering results of Chen and Brockhouse [60]. Dis-
persions are calculated using the finite-displacement method
in a 7 × 7 × 7 primitive bcc supercell. DFT dispersion
agrees well with experiment but exhibits oscillations in the
longitudinal (low-lying) branch near the H point, a feature
also found in density-functional perturbation theory results
within LDA-DFT [58]. Overall, MEAM tracks both DFT and
experiment but underestimates the frequency along the L[ξξξ ]
branch, particularly near the ω mode at ξ = 2

3 .

B. Point and planar defects

Table II lists the energies of vacancies and self-interstitial
atoms (SIAs) in bcc tungsten, essential quantities for the
accurate modeling of plasticity. The present MEAM and

FIG. 2. Elastic constants versus pressure for bcc tungsten as
computed with GGA-DFT and the fitted potential. MEAM produces
elastic constants within 21% of the DFT values for all pressures
shown.

FIG. 3. Phonon dispersion for bcc W at zero pressure as calcu-
lated by DFT and MEAM, compared with inelastic neutron scattering
data of Chen and Brockhouse [60].

DFT calculations use a 5 × 5 × 5 cubic supercell. Atomic
positions are relaxed to 0.01 eV. Geometric details of bcc SIA
calculations can be found in Xu and Moriarty [63]. GGA-DFT
calculations of Becquart and Domain [61] and the present
work indicate the 〈111〉 dumbbell to be the most energetically
favorable self-interstitial, as do the present MEAM potential
and Finnis-Sinclair (F-S) potentials of Derlet et al. [15] and
Ackland and Thetford [11]. Experiments [64,65] and previous
MD studies [14] found the 〈011〉 dumbbell to be the favored
self-interstitial structure in tungsten, but recent work [66]
combining the object kinetic Monte Carlo (OKMC) method
with dislocation loop measurements found OKMC simulations
of 〈111〉 interstitials and one-dimensional migration match
experiment the best. Vacancy formation and migration energies
predicted by MEAM compare favorably with the present
ab initio results and those of Becquart and Domain [61],
while existing F-S and EAM tungsten potentials are in closer
agreement with GGA results of Nguyen-Manh et al. [62].

Figure 4 presents unrelaxed vacancy migration pathways
at five equally spaced pressures between 0 and 100 GPa.
Calculations are performed using a 127-atom 4 × 4 × 4 cubic
bcc supercell with migration in the 〈111〉 direction. Overall,
MEAM agrees well with the DFT results; minor discrepancies
are found when the vacancy lies near the lattice site and
halfway between two lattice sites.

Figure 5 shows unrelaxed generalized stacking-fault en-
ergies (GSFEs) at five pressures on the {112} and {110}
planes as a function of relative displacement along 〈111〉
for MEAM and DFT. While bcc metals are less prone to
stacking-fault formation than their close-packed counterparts,
they have been observed in Fe, Nb, W, and Mo-35% Re to
exist on {112} and {110} planes, formed by the dissociation
of 1

2 〈111〉 dislocations [67]. Relaxed GSFE curves, computed
with MEAM at zero pressure, do not predict the presence of
any metastable stacking-fault configurations. At all pressures,

MEAM agrees with DFT to within a few meV/Å
2

and thus
should be suitable for studying the effect of pressure on
{112}〈111〉 and {110}〈111〉 slip systems.

Table III shows energies and interplanar relaxations of
low-index free surfaces. The present calculations employ
48-atom supercells, replicated along the surface normal with
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TABLE II. Table of vacancy (Vac.) and self-interstitial formation energies (in eV) for bcc tungsten. Entries with angle brackets indicate
that the defect in question relaxes to the dumbbell configuration shown.

Defect MEAMa GGAa F-Sb GGAc F-Sd F-Se EAMf GGAg

Vac. formation 2.99 3.17 3.58 3.11 3.56 3.63 3.57 3.56
Vac. migration 1.73h 1.70h 1.43 1.66 2.07 1.44 2.98h 1.78
Vac. activation 4.72h 4.87h 5.01 4.77 5.63 5.07 6.55h 5.34
〈001〉 Dumbbell 11.15 〈111〉 11.53 11.74 11.51 9.82 12.20 11.49
〈011〉 Dumbbell 9.98 10.64 9.86 10.10 9.84 9.64 9.704 9.84
〈111〉 Dumbbell 9.73 10.31 9.58 9.82 9.55 9.82 10.56 9.55
Octahedral 11.76 12.42 11.72 11.99 11.71 10.02 12.03 11.68
Tetrahedral 10.54 〈111〉 10.93 11.64 11.00 10.00 〈011〉 11.05

aMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al. [17].
cGGA-DFT results of Becquart et al. [61].
dFinnis-Sinclair results of Derlet et al. [15].
eFinnis-Sinclair results of Ackland et al. [11].
fEAM results of Zhou et al. [14].
gGGA-DFT results of Nguyen-Manh et al. [62].
hUnrelaxed calculation by present authors.

an equally sized vacuum region and periodic boundary
conditions. All results presented here predict the 〈011〉 surface
to have the lowest energy, followed by 〈111〉. Finnis-Sinclair
potentials [11,17] tend to underestimate the surface energy
with respect to GGA-DFT. The present MEAM potential
compares favorably with the present ab initio results and
those of Vitos et al. [68] but underestimates the interplanar
relaxation of the high-energy 〈100〉 surface by 50%. The origin
of the discrepancy between the GGA-DFT results of Moitra
et al. [69] and the others is unclear.

Figure 6 presents the unrelaxed ideal shear stresses and
energy barriers for pressures up to 100 GPa. Ideal shear
defines the upper limit of stress required to deform a perfect
crystal and is fundamental to our current understanding of the
strength of materials. Calculations are performed following the
methodology of Paxton et al. [72], which uses a bcc primitive
cell. MEAM accurately reproduces the GGA-DFT results for
all pressures, with small discrepancies in shear stress around
the extrema.

FIG. 4. Vacancy migration pathway as calculated in GGA-DFT
and MEAM at multiple pressures. The shallow local minimum at
〈 1

2
1
2

1
2 〉 is predicted by both DFT and MEAM to increase between 0

and 100 GPa, although this effect is nonmonotonic in MEAM.

IV. TRANSFERABILITY OF THE FITTED POTENTIAL

The transferability of the fitted potential is demonstrated
by application to the screw dislocation core structure, defor-
mation twinning in a bicrystal nanorod, and the high-pressure
bcc-to-fcc phase transformation.

FIG. 5. Unrelaxed low-index generalized stacking-fault energies
(GSFE) for bcc tungsten. MEAM accurately models the evolution
of both {110} and {112} faults with pressure. Relaxed GSFE
curves computed with MEAM are shown as dotted lines for 0 GPa.
Relaxation lowers fault energy slightly but does not result in any
metastable configurations.
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TABLE III. Energy and structural relaxation of low-index free surfaces in bcc tungsten. Surface energies E are given in meV/Å
2
, and the

changes �12 in interplanar spacing between the first two planes of the surface, where available, are given as percentages.

MEAMa GGAa F-Sb GGAc F-Sd GGAe AMEAMe BOPf MEAMg Expt.

E001 233 245 186 289 183 487 373 237 243
�001

12 −5.7 −11.5 −0.9 −0.7 −2.5 −3.2
E011 198 200 159 249 161 398 353 163 214
�011

12 −3.8 −3.8 −1.1 −0.5 −1.0 −3.0
E111 204 216 278 449 314 271
�111

12 −18.9 −21.6 −13.2
Epoly 187h, 216i

aMEAM and GGA-DFT results of this work.
bFinnis-Sinclair results of Wang et al. [17].
cGGA-DFT results of Vitos et al. [68].
dFinnis-Sinclair results of Ackland et al. [11].
eGGA-DFT and AMEAM results of Moitra et al. [69].
fBond-order potential results of Mrovec et al. [16].
g2NN-MEAM results of Lee et al. [13].
hEstimation by liquid-surface tension at 0 K, Tyson et al. [70].
iEstimation by atomization enthalpy at RT, Mezey et al. [71].

A. Dislocation core and deformation twinning

The core structure of the 1
2 〈111〉 screw dislocation is

determined using a cell with lattice directions [12̄1], [1̄01], and
[111] and periodic boundary conditions along the dislocation
line. The first two lattice vectors are repeated to form a large

FIG. 6. Ideal shear energy (top) and stress (bottom) for a
continuous deformation of a one-atom bcc unit cell corresponding
to a (112)[1̄1̄1] twinning system as described by Paxton et al. [72].
MEAM accurately reproduces the energy barrier and shear stress of
this deformation for pressures up to 100 GPa. Small discrepancies in
shear stress are found at the inflection points of the energy barrier,
which correspond to the two extrema of shear stress at x = 0.25 and
x = 0.75.

cell containing 92 277 atoms which are displaced according to
the appropriate elastic strain field. The core structure is then
determined by relaxing a central region containing 54 396
atoms while the remaining atoms are fixed, ensuring that the
correct boundary conditions are satisfied by the long-range
anisotropic solution. This methodology is further explained in
our group’s previous work on Nb [29] and Mo [30].

Figure 7 shows a nondegenerate symmetric core structure
predicted by MEAM, presented as a differential displacement
map [73], is in agreement with results from an existing
bond-order potential [16] and DFT-GGA [74] calculations
for tungsten. Existing F-S potentials predict an asymmetric
core [75,76]. Our potential is also consistent with the criterion
of Duesbery and Vitek [77], which is based on F-S calculations
and states that the 1

2 〈111〉 screw dislocation in bcc metals will
have a symmetric core structure if γ{110}(b/3) > 2γ{110}(b/6),

FIG. 7. Differential displacement map of the 1
2 〈111〉 screw

dislocation. MEAM predicts a nondegenerate symmetric core struc-
ture consistent with previous bond-order [16] and GGA-DFT [74]
calculations, whereas existing F-S potentials for tungsten predict a
degenerate core [76].
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FIG. 8. Deformation twinning and detwinning in a tungsten bicrystal nanowire under axial compression at room temperature. The results
should be compared to the work of Wang et al. [3]. Structure identification was performed using adaptive common neighbor analysis as
implemented in OVITO [80,81]. Atoms are color-coded by structure: light (bcc) and dark (none). (a)–(c) Multiple deformation twins of the
{112}〈111〉 type grow and merge as the rod is compressed by 10%. (d)–(f) Detwinning occurs as the load is released, recovering the compressive
strain. Different shades of gray appear in the bulk because of atomic-level shading in OVITO.

where γ{110} is the relaxed {110} γ surface and b = a
√

3/2
is the Burgers vector magnitude. Relaxed values taken from

Fig. 5 for MEAM are γ{110}(b/3) = 100 meV/Å
2

and

γ{110}(b/6) = 39 meV/Å
2
.

While dislocation slip is fundamental to plastic deformation
of bulk transition metals, twinning has been found to dominate
deformation in nanocrystalline Mo, Ta, and Fe [78]. A recent
study [3] observed deformation twinning and detwinning
during uniaxial loading and unloading of a bicrystal nanorod.
The Finnis-Sinclair potential of Ackland and Thetford [11]
was used to model this twinning and detwinning in good

agreement with experiment. We simulate this deformation as
a challenge for our fitted MEAM potential and to demonstrate
transferability to nonequilibrium conditions and consistency
with existing models.

Figure 8 displays cross sections of a bicrystal tungsten
nanorod under uniaxial stress at 300 K. The nanorod is 128 Å
in diameter and 510 Å in length, with periodic boundary
conditions parallel to the rod axis. A compressive strain of
10% is applied from the top of the rod over 20 ps while
atomic positions are updated using the velocity Verlet [79]
integrator and canonical ensemble with 1-fs time step. The
strain is then unloaded over an additional 20 ps. Multiple

FIG. 9. MEAM (solid lines) phonon dispersions at various pressures compared with LDA-DFT (dashed lines) work of Einarsdotter
et al. [58]. (a) bcc: MEAM is consistent DFT even at the extreme pressure of 1200 GPa but underestimates softening rate of the L- 2

3 [111]
(ω) phonon and predicts an anomalous softening of the T - 1

2 [110] phonon with increasing pressure. (b) fcc: with the exception of the soft
T -[ξξ0] and T -[ξξξ ] modes, MEAM dispersion at zero pressure diverges considerably from that of DFT. MEAM also underestimates the rate
of stabilization of the soft modes with respect to DFT work. However, at extreme pressures where fcc is thermodynamically stable, MEAM
dispersion agrees closely with that of DFT. Displayed pressures are computed with MEAM. These dispersions were calculated using the
small displacement method as implemented in the ATOMIC SIMULATION ENVIRONMENT [83]. As usual for phonons, negative values represent
imaginary frequencies.
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{112}〈111〉 deformation twins can be seen in Figs. 8(a)–8(c) to
nucleate at the grain boundary and grow with increasing stress.
At full loading, strain is accommodated primarily by a single
large deformation twin extending from the grain boundary to
the rod surface. During unloading the accumulated strain is
released by detwinning, as can be seen in Figs. 8(d)–8(f). This
deformation behavior is nearly identical to the results of Wang
et al. [3], indicating the transferability of the fitted MEAM
potential to modeling tungsten nanostructures and consistency
with the successes of previously published potentials [3,11].
Given that the F-S potential of Ackland and Thetford pre-
dicts an asymmetric core structure but accurately describes
nanorod deformation [3], our current MEAM potential is well
suited to studying the interplay of deformation twinning and
dislocation-induced plasticity in tungsten.

B. Stabilization of fcc tungsten

Finally, we investigate the stabilization of fcc tungsten at
high pressure. Theoretical studies have predicted that bcc
tungsten becomes thermodynamically unstable with respect
to close-packed fcc and hcp phases at extreme pressures [58]
and under the conditions of strong electronic excitation during
laser irradiation [82], for which a Te-dependent interatomic
potential was developed to study the transition [18]. To the
authors’ knowledge, fcc tungsten has been observed only
in thin films formed by sputter deposition between 200 ◦C
and 400 ◦C on glass, mica, and rocksalt substrates [8]. The
predicted zero-pressure lattice constants of fcc tungsten for
MEAM and DFT are 4.049 and 4.044 Å, respectively, while
Chopra et al. [8] found an fcc lattice constant of 4.13 Å
in the aforementioned tungsten films. Here we consider the
stabilization of fcc at high pressures, some accessible via
diamond-anvil experiments.

Figure 9(a) compares MEAM phonon dispersions for bcc
W at pressures of 30 to 1200 GPa with the LDA-DFT results of
Einarsdotter et al. [58]. MEAM force constants are computed
using the small-displacement method, implemented in the
ATOMIC SIMULATION ENVIRONMENT [83], on a 10 × 10 × 10
supercell with δ = a(P )/100, where a(P ) is the cubic lattice
constant at pressure P . LDA-DFT results employed the
density-functional linear response method, norm-conserving
pseudopotentials, and 5s5p5d6s6p valence. As seen in Fig. 3,
MEAM predicts the L- 2

3 [111] (ω) phonon will have lower
frequency than DFT and experiment. This mode softens with
increasing pressure, albeit at a lower rate than predicted by
LDA calculations. Otherwise, MEAM accurately captures the
other important features of bcc dispersion up to 1200 GPa.
Low-pressure results (30–60 GPa) also compare favorably
with the analytical MEAM (AMEAM) results of Zhang and
Chen [84].

Figure 9(b) compares the fcc phonon dispersion predicted
by MEAM and LDA-DFT at pressures from 0 to 1200 GPa.
At low pressure, where fcc is a highly unfavorable structure,
MEAM does not compare well to ab initio results but correctly
predicts unstable soft modes in the T [ξξ0] and T [ξξξ ]
branches. However, the stabilization of these modes with in-
creasing pressure is nonmonotonic and particularly anomalous
on the T [ξξξ ] branch at intermediate pressures. By 1200 GPa,
MEAM predicts fcc tungsten will be dynamically stable and
shows excellent agreement with the LDA-DFT dispersion.

FIG. 10. Stability of fcc tungsten at 0 K. (a) The elastic constants
C44 and C ′ as functions of pressure, demonstrating the elastic stability
of fcc tungsten for pressures above 455 GPa. (b) The stabilization of
the fcc-T[11̄0][ξξ0] phonon branch with pressure. MEAM predicts
that fcc becomes dynamically stable around 543 GPa, with the
ξ = 0.4 mode being the last to stabilize. (c) The enthalpy difference
Hf cc(P ) − Hbcc(P ) between fcc and bcc as a function of pressure,
revealing that despite being dynamically stable, fcc tungsten is not
energetically favorable until pressures above 762.5 GPa. The inset
shows the tetragonal Bain path at the determined transition pressure
exhibits an energy barrier of 140 meV/atom, indicating that bcc will
not spontaneously transform to fcc with the fitted potential.

Figure 10(a) shows the elastic moduli C44 and C ′ between
400 and 500 GPa, where all Cij are positive definite. It
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can be seen that C ′ = 1
2 (C11 − C12) is negative for pressures

below 455 GPa, reflecting the slope of the T[11̄0][ξξ0] branch
arbitrarily close to the � point. Figure 10(b) shows this mode
for pressures around 540 GPa, where long-wavelength modes
are stable but the ξ = 0.40 mode remains unstable. According
to MEAM, this mode is the last unstable phonon in any of
the considered high-symmetry lines in the Brillouin zone and
stabilizes at 543 GPa. However, Fig. 10(c), which displays
the enthalpy difference �H = Hf cc − Hbcc versus pressure,
shows that the bcc phase remains energetically favorable until
about 762 GPa. The inset in Fig. 10(c) shows the isobaric
tetragonal Bain path at the determined pressure, displaying a
barrier for the bcc → fcc transition of 140 meV/atom. This
barrier persists even above 2 TPa, but the accuracy of the
fitted potential in this pressure range has not been verified,
and any further investigation should be carefully checked with
first-principles methods.

To summarize, the present MEAM results are consistent
with the LDA-DFT predictions of Einarsdotter et al. [58] in that
for fcc C44 is stable at relatively low pressures, C ′ stabilizes
before fcc is thermodynamically favorable, the last phonon
mode to become real is the T[11̄0][ξξ0] mode at ξ ≈ 0.4,
and bcc remains energetically favorable until about 726 GPa.
Even above this pressure there exists an energy barrier on the
tetragonal Bain path from bcc to fcc, again consistent with
Einarsdotter et al., which persists at all pressures considered
here. The fitted potential should be suitable for further study
of high-pressure fcc tungsten and its possible transition from
the bcc phase, but predictions in the multiple-terapascal range
should be checked with first principles.

V. CONCLUSION

We have developed and applied a semiempirical inter-
atomic potential for tungsten based on the MEAM and SW
formalisms, parameterized using bias-free quintic splines and
force matched to a large database of highly converged DFT
data using an evolutionary global optimization scheme. We
have demonstrated the accuracy of the fit by reproducing
phonon frequencies, compression, and thermal-expansion
curves; formation energies of unfavorable crystal structures;
self-interstitial defects; free surfaces; vacancies; stacking
faults; and ideal shear at multiple pressures. The transferability
of the fitted potential has been demonstrated by the description
of the high-pressure bcc-to-fcc phase transformation, disloca-
tion core structure, and deformation twinning and detwinning
of a tungsten nanorod. Given the accurate description of both
deformation twinning and dislocation structure, this potential
is more suitable than previous models for studying their
interplay. The accuracy of elastic and vibrational properties
at high pressures will enable quality shock simulations, and
the combination of accurate free surfaces and nonequilibrium
crystal structures should produce reliable descriptions of
tungsten nanostructures.
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