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Spin analogs of superconductivity and integer quantum Hall effect in an array of spin chains
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Motivated by the successful idea of using weakly coupled quantum electronic wires to realize the quantum
Hall effects and the quantum spin Hall effects, we theoretically study two systems composed of weakly coupled
quantum spin chains within the mean-field approximations, which can exhibit spin analogs of superconductivity
and the integer quantum Hall effect. First, a certain bilayer of two arrays of interacting spin chains is mapped,
via the Jordan-Wigner transformation, to an attractive Hubbard model that exhibits fermionic superconductivity,
which corresponds to spin superconductivity in the original spin Hamiltonian. Secondly, an array of spin-orbit-
coupled spin chains in the presence of a suitable external magnetic field is transformed to an array of quantum
wires that exhibits the integer quantum Hall effect, which translates into its spin analog in the spin Hamiltonian.
The resultant spin superconductivity and spin integer quantum Hall effect can be characterized by their ability to
transport spin without any resistance.
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Introduction. In a metal under normal conditions, an electric
current flows in the presence of a finite resistance engendered
by, e.g., scattering with impurities. The lost electrical energy
due to the resistance is dissipated into heat, which is referred
to as Joule heating, that opposes the efficient use of the
energy. There are, however, two physical phenomena under
special conditions that allow an electric current to flow without
any resistance. One is superconductivity occurring at low
temperatures [1]. Its first microscopic theory was given in 1957
by Bardeen et al. [2], who showed that superconductivity can
be understood as a property of a macroscopic quantum wave
function of condensed pairs of electrons, subsequently termed
Cooper pairs. The other is the set of quantum Hall effects
exhibited in two-dimensional systems at low temperatures and
strong magnetic fields [3]. The integer quantum Hall effect
is the first of such that was discovered in 1980 by Klitzing
et al. [4]. It occurs when the number of electrons per unit
magnetic flux takes an integer value ν, leading to the situation
in which the bulk is gapped, but the edge supports ν gapless
modes with no resistance.

Spintronics aims at harnessing the spin degrees of freedom
to advance from conventional charge-based electronics [5].
In particular, magnetic insulators that are free from Joule
heating have been gaining attention in the field owing to
their potential advantage of low-energy consumption. An
efficient spin transport in such magnetic insulators is one of
the important topics in spintronics, and researchers have been
investigating possible ways to achieve it by borrowing some
ideas from the aforementioned phenomena of dissipationless
charge transport. For example, a bosonic spin analog of an
electric supercurrent supported in easy-plane magnets has
been theoretically investigated [6], which is shown to decay
algebraically as a function of the distance from the spin-
injection point contrary to an exponential decay of a diffusive
spin current. Spin analogs of the integer and fractional quantum
Hall effects have also been put forward in the studies of spin
liquids [7,8] and magnonic phases [9].

In this Rapid Communication, we theoretically construct
two spin systems, which can exhibit spin analogs of super-
conductivity and the integer quantum Hall effect, by using
weakly coupled quantum spin chains. Our work is motivated

by the successful theoretical realizations of the quantum Hall
phases and the quantum spin Hall phases in an array of
quantum electronic wires [10,11]. Specifically, first, we show
that an Ising-coupled bilayer of two arrays of weakly coupled
quantum XX spin chains can be mapped to a negative-U
Hubbard model for electrons by the Jordan-Wigner (JW)
transformation [12,13] within a mean-field treatment of the
interchain coupling. Since the particle current in the JW
representation corresponds to the spin current polarized along
the z axis, the established charge superconductivity of the
negative-U Hubbard model [14] naturally translates into spin
superconductivity of our original spin system (see Fig. 1
for an illustration of the system). Secondly, we show that
an array of weakly coupled quantum XX spin chains with
Dzyaloshinskii-Moriya (DM) intrachain interaction can be
transformed to an array of quantum electronic wires subjected
to an external magnetic field by the same approach taken for
spin superconductivity. The integer quantum Hall effect of the
latter electronic system [11] then translates into its spin analog
of the former spin system [see Fig. 2(a) for an illustration of the
system]. Our proposal to use coupled spin chains for quantum
simulation of two-dimensional fermionic Hamiltonians can be
an alternative to the other methods based on cold atoms in
optical lattices or impurity centers in solids [15].

pseudospin up

pseudospin down

m = 1

m = 2

m = 3

n = 1 n = 2

x
y

FIG. 1. Schematic of a bilayer of two arrays of weakly coupled
spin chains (shown as the solid lines indexed by m), each of which
can be represented by a one-dimensional system of (spinless) Jordan-
Wigner fermions. The top and bottom layer indices serve as the
pseudospin up and down for the fermions, respectively. The green
box represents a pseudospin-singlet Cooper pair of two fermions
established by an Ising interlayer interaction.
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FIG. 2. (a) Schematic of an array of spin-orbit-coupled spin-1/2
spin chains, which can support chiral edge modes of the Jordan-
Wigner fermions. The coupling of four spins (colored by yellow)
illustrates the interchain interaction O [Eq. (2)]. (b) A schematic plot
showing how the interchain interaction gives rise to chiral edge modes
with the gapped bulk. At the external magnetic field h corresponding
to the filling factor ν = 1, the JW fermion can flow in the left direction
on the top chain (colored by blue) and in the right direction on the
bottom chain (colored by red) in (a), which are represented by the blue
(left) and red (right) dots in (b), respectively. The particle current in
the JW representation corresponds to the spin current polarized along
the z axis.

Spin superconductivity. We consider the following spin
Hamiltonian for two layers of weakly coupled M spin-1/2
chains of length N :

Hsc = J
∑
n,m,α

σ ‖
n,m,α · σ

‖
n+1,m,α − H

∑
n,m,α

σ z
n,m,α

−U
∑
n,m

σ z
n,m,↑σ z

n,m,↓ − K
∑
n,m,α

[On,m,α + H.c.], (1)

with

On,m,α = σ+
n,m,ασ+

n+1,m,ασ−
n,m+1,ασ−

n+1,m+1,α, (2)

where the integers m and n are the indices for a spin chain
within a layer and a spin within a chain, respectively, and α =
↑,↓ indexes the layer which will serve as the pseudospin of the
JW fermions. A spin is represented by the three-dimensional
Pauli matrices σ ; the symbol ‖ denotes the projection of the
vector onto the xy plane; σ± ≡ (σx ± iσ y)/2. Here, the first
term describes the quantum antiferromagnetic XX spin-1/2
chains with J > 0 [16]; the second term is the Zeeman energy;
the third term is the ferromagnetic Ising interaction with
U > 0 between the two layers; the last term represents a weak
four-spin interaction with 0 < K � J , which, in the JW rep-
resentation, can engender the interchain tunneling and thereby
make each layer an effective two-dimensional fermionic gas.
Interchain interactions involving only two spins such as the
Heisenberg XX exchange ∝σ

‖
n,m · σ

‖
n,m+1 would also appear

as tunneling between two chains. They, however, introduce
nonlocal terms after the JW transformation, making it difficult
to treat the interchain interaction [17]. Our goal, instead, is to
construct simple spin systems that can be viewed as weakly
interacting simple fermionic wires. Therefore, by coupling
neighboring spin chains by the four-spin interaction, we retain
its locality after the JW transformation. The spin Hamiltonian
Hsc respects the spin-rotational symmetry about the z axis, and
thus the total spin projected onto the z axis is conserved.

The spin Hamiltonian Hsc can be transformed
into the Hamiltonian for the spinless fermions by
the multidimensional JW transformation [13]: fn,m,α =

σ−
n,m,α(

∏
l<n σ z

l,m,α)(
∏

(k,β)<(m,α) τ
y

k,β)τ x
m,α , and the analogous

expression for f
†
n,m,α with σ− substituted by σ+, where

the auxiliary Pauli-matrix vector, τm,α , is introduced for
each spin chain to make the fermion operators on different
chains anticommute [18]. The interchain interaction On,m,α

[Eq. (2)] yields a quartic term in the fermion operators,
f

†
n,m,αf

†
n+1,m,αfn,m+1,αfn+1,m+1,α , and thus we employ the

Hartree-Fock decoupling [19] to study its effects. There are two
potentially relevant mean-field order parameters [20]. One is
an interchain-tunneling amplitude,

χ = 1

2NM

∑
n,m,α

〈f †
n,m,αfn,m+1,α〉. (3)

The other is an intrachain pairing amplitude,

� = 1

2NM

∑
n,m,α

〈fn,m,αfn+1,m,α〉. (4)

The mean-field Hamiltonian for a single layer of the pseu-
dospin α is given by

H̄α = −tx
∑
n,m

[f †
n,m,αfn+1,m,α + H.c.]

− 2K
∑
n,m

[χf †
n,m,αfn,m+1,α + H.c.]

− 2K
∑
n,m

[�f †
n,m,αf

†
n+1,m,α + H.c.]

−μ
∑
n,m

nn,m,α, (5)

up to an additive constant, where nn,m,α = f
†
n,m,αfn,m,α is the

fermion-number operator, tx = 2J , and μ = 2H − 2U . (By
H̄ , we will denote the Hamiltonians in the JW representation
throughout.) Assuming the periodic boundary conditions,
the self-consistency equations for the two mean-field order
parameters χ and � in the momentum space are given by

� = 1

NM

∑
k

2K� sin2 kx√
ε(k)2 + |�(k)|2

, (6)

χ = 1

NM

∑
k

cos ky

2

(
1 − ε(k)√

ε(k)2 + |�(k)|2

)
, (7)

where ε(k) = −2tx cos kx − 4Kχ cos ky − μ and �(k) =
4iK� sin kx . Here, the spatial coordinates x and y are related
to n and m, respectively, as shown in Fig. 1. Since the coeffi-
cient for the interchain interaction is assumed to be positive,
K > 0, the pairing amplitude vanishes, � = 0. We performed
the numerical calculations to solve Eq. (7) for χ by varying
the parameters K and μ, and they yielded the finite value of χ

in a broad range of parameter values [21]. The self-consistent
analytical solution for χ can be obtained when the effective
chemical potential is close to the bottom of the band for a single
chain, μ = −2tx + δμ with |δμ| � K , allowing a parabolic
band approximation for the dispersion ε(k) around the origin.
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The analytical solution is given by

χ =
(∫ π/2

0
dky cos3/2 ky

)2
4K

π4tx
+ O

(
δμ

K

)
, (8)

which can be approximated to χ ≈ K/25tx . With the finite χ

and vanishing � = 0, the mean-field Hamiltonian H̄α (5) for a
single layer describes a two-dimensional spinless fermion gas.

By combining the spin Hamiltonians H̄α for α = ↑ and
α =↓, we obtain the following mean-field Hamiltonian for the
bilayer:

H̄sc = −tx
∑
n,m,α

[f †
n,m,αfn+1,m,α + H.c.]

− ty
∑
n,m,α

[f †
n,m,αfn,m+1,α + H.c.]

−μ
∑
n,m,α

nn,m,α − u
∑
n,m

nn,m,↑nn,m,↓, (9)

where ty = 2Kχ and u = 4U , which describes the attractive
Hubbard model [14]. It is known that the ground state
of the Hamiltonian H̄sc away from the half-filling is in
the superconducting phase composed of pseudospin-singlet
Cooper pairs of the JW fermions [14] characterized by the
finite superconducting gap, � = ∑

n,m〈fn,m,↑fn,m,↓〉/NM .
Since the JW-fermion particle current corresponds to the spin
current polarized along the z axis, the spin system described
by the original Hamiltonian Hsc (1) should exhibit a spin
analog of charge superconductivity within the mean-field
approximations [21].

Spin integer quantum Hall effect. For a spin analog of
the integer quantum Hall effect, we take the following spin
Hamiltonian:

Hqh = J
∑
n,m

cos(mφ) σ ‖
n,m · σ

‖
n+1,m

+ J
∑
n,m

sin(mφ) ẑ · σ n,m × σ n+1,m

−H
∑
n,m

σ z
n,m − K

∑
n,m

[On,m + H.c.], (10)

where the four-spin interaction On,m is given by Eq. (2)
with α removed. Here, the first two terms describe the
antiferromagnetic Heisenberg XY spin chains with the DM
interaction; the third term is the Zeeman coupling; the last
term is the weak interchain interaction, 0 < K � J [see Fig.
2(a) for an illustration of the system]. The DM interaction can
exist if the reflection symmetry with respect to the xz plane
is broken; the Hamiltonian respects the reflection symmetries
through the xy and yz planes. The chain-dependent exchange
coefficients can be realized by controlling the extent of the
reflection-symmetry breaking associated with the DM interac-
tion (see the discussion). We focus on the weak DM interac-
tions, 0 < φJ � K , compared to the interchain coupling [22].

After employing the JW transformation [13], we take
the mean-field approach for the interchain interaction. Since
the gradient of spin-orbit coupling breaks the translational
symmetry along the y axis of the system, it is difficult to
obtain an analytical mean-field solution χ for an arbitrary
number of chains M . Instead, let us consider a special case

of two weakly coupled spin chains, which is described by
Hqh [Eq. (10)] with m = ±1. Two possible order parameters
pertain to the interchain tunneling, χ = ∑

n〈f †
n,1fn,−1〉/N ,

and the intrachain pairing, � = ∑
n,m=±1〈fn,mfn+1,m〉/2N .

The mean-field Hamiltonian for the JW fermions in the
momentum space is given by

H̄ =
∑

k,m=±1

{[−2tx cos(k + mφ) − μ]f †
k,mfk,m}

− 2K
∑

k

[χf
†
k,1fk,−1 + H.c.]

− 2K
∑

k,m=±1

[�eikf
†
k,mf

†
−k,m + H.c.], (11)

where tx = 2J and μ = 2H . We will assume that two phases
with finite χ and � are mutually exclusive, and will treat
them separately. For K > 0, which is assumed throughout, the
self-consistency equation yields a vanishing pairing ampli-
tude, � = 0, as in the case of spin superconductivity. With
� = 0, the band structure of the Hamiltonian is ε±(k) =
txk

2 − δμ ± 2
√

(txφk)2 + (Kχ )2 for |k|,|φ| � 1, where μ =
−tx(2 + φ2) + δμ. When the effective Fermi energy is at the
band-crossing point, δμ = 0, the analytical solution to the
self-consistency equation for χ is given by χ � K/2π2tx . The
finite interchain tunneling χ > 0 opens up the gap at the cross-
ing point of the two bands of neighboring chains [see Fig. 2(b)
for illustrations of the gap openings in the case of M = 3].

We adopt the above mean-field results for two spin chains to
the cases of multiple spin chains, which results in the following
mean-field Hamiltonian:

H̄qh = −tx
∑
n,m

[eimφf †
n,mfn+1,m + H.c.]

− ty
∑
n,m

[f †
n,mfn,m+1 + H.c.] − μ

∑
n,m

nn,m, (12)

with ty = 2Kχ , which describes an array of quantum elec-
tronic wires in the presence of an external magnetic field ∝φ.
The integer quantum Hall effect at the filling factor ν = 1
arises when the Fermi energy is close to the crossing point of
the two bands of adjacent chains, μ = −tx(2 + φ2) + δμ with
|δμ| � tx . The integer quantum Hall effects at higher filling
factors ν can be analogously obtained in the νth order of the
perturbative treatment of the interchain interaction [11].

The Hamiltonian H̄qh has been shown to exhibit the integer
quantum Hall effect [10,11]. Let us briefly explain how the
integer quantum Hall effects arise in the model for an example
of filling factor ν = 1 [see Fig. 2(b) for the JW fermion
bands of spin chains and the gap openings by the interchain
tunneling]. When the Fermi energy μ lies in the bulk gap, there
is one gapless mode in the top chain (m = 1 in the figure) and
another in the bottom chain (m = 3 in the figure). The two
modes propagate in the opposite directions, and thus engender
one chiral edge mode together. The integer quantum Hall effect
at higher filling factors ν supports ν chiral edge modes by an
analogous mechanism [11]. The state we obtained is different
from the conventional quantum Hall phase in that the trans-
ported quantity is spin, not charge; it is also distinct from the
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traditional quantum spin Hall phase [23] in that the resultant
spin transport does not accompany any charge transport.

Discussion. Let us make some comments about possi-
ble experimental realizations. First, spin-1/2 chain systems
Cs2CoCl4 [24] and PrCl3 [25] are known to be approximately
described by the isotropic antiferromagnetic Heisenberg XX
model. Secondly, the DM interaction in a single chain can be
induced by breaking the reflection symmetry through the xz

plane. For a two-dimensional film in the xz plane, application
of a normal electric field can induce the DM interaction,
which, in turn, can be spatially modulated. Or, alternatively,
the lithographic modulation of the proximate heavy-metal
layer can also create the gradient of the DM interaction [26].
Lastly, the four-spin exchange interaction can arise as the
fourth-order term in the strong-coupling expansion of the
half-filled Hubbard model or due to the spin-lattice coupling,
and its magnitude can be comparable to two-spin Heisenberg
exchange in certain materials [27,28].

The interchain interactions have been taken into account
within the mean-field treatment, which can break down in
certain cases, e.g., when the interchain coupling K is stronger
than the energy scales of individual spin chains such as J .
While we can investigate the quantum fluctuations around the
mean-field solutions for the further analysis, it is beyond the
scope of the present work.

We have theoretically constructed the two models of an
array of weakly coupled spin chains, which can exhibit spin

analogs of charge superconductivity and the integer quantum
Hall effect. To drive spin current through those systems, we
can apply an external-magnetic-field gradient, which acts as
an electric field on the JW fermions [8]. We can also attach
the spin system to heavy metals such as platinum, which
can directly inject a spin current to proximate magnets via
spin Hall effects [29]. Reciprocally, a spin current out of
the system can be measured via inverse spin Hall effects by
putting it next to heavy metals. Spin superconductivity and
spin integer quantum Hall effects can be characterized by the
zero resistance in spin flow through the bulk and along the
boundary, respectively, when neglecting spin dissipation due
to, e.g., thermal fluctuations or spin-lattice coupling.

From the results obtained for quantum spin chains, we
expect that an array of weakly coupled classical Heisenberg
spin chains (that are composed of large spins) with the DM
interaction in the presence of a strong external magnetic
field would support the magnonic chiral edge modes by
forming a topological magnon insulator [9] under suitable
conditions. More broadly, we envision that weakly coupled
one-dimensional magnetic materials would serve as a versatile
platform to engineer various spin-related topological phases.
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