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Emergent Haldane phase in the S = 1 bilinear-biquadratic Heisenberg model on the square lattice
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Infinite projected entangled pair states simulations of the S = 1 bilinear-biquadratic Heisenberg model on
the square lattice reveal an emergent Haldane phase in between the previously predicted antiferromagnetic and
three-sublattice 120◦ magnetically ordered phases. This intermediate phase preserves SU(2) spin and translational
symmetry but breaks lattice rotational symmetry, and it can be adiabatically connected to the Haldane phase of
decoupled S = 1 chains. Our results contradict previous studies which found a direct transition between the two
magnetically ordered states.
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Introduction. The search for novel states of matter in
quantum many-body systems is one of the most active areas
in condensed-matter physics. A fascinating example is the
ground state of the S = 1 antiferromagnetic Heisenberg chain
which, unlike the S = 1/2 chain, exhibits an energy gap,
exponentially decaying spin-spin correlations, and gapless
edge excitations in the case of open boundaries. Thanks to
Haldane’s pioneering work and conjecture that such a gapped
state emerges in integer Heisenberg spin chains in general
[1,2], this phase has been named after him.

The Haldane phase also extends to related S = 1 models,
such as weakly coupled S = 1 Heisenberg chains [3–7] which
are realized in several quasi-one-dimensional (1D) materials
[8–13], or the S = 1 bilinear-biquadratic Heisenberg (BBH)
chain with Hamiltonian

H =
∑

〈i,j〉
[cos(θ )Si · Sj + sin(θ )(Si · Sj)

2],

for θ in between −π/4 and π/4. More recently, the Haldane
phase has been understood as a simple example of a symmetry
protected topological phase [14–17].

In the present work we focus on the BBH model in two
dimensions, which has gained much interest in recent years
[18–26]; firstly, due to its possible connection to the triangular
lattice compounds NiGa2S4 [27] and Ba3NiSb2O9 [25,28–30],
and secondly, for θ = π/4, the model is equivalent to the
SU(3) Heisenberg model which can be experimentally realized
using ultracold fermionic atoms in optical lattices [31–34].
The latter has been shown to exhibit three-sublattice order on
the square and triangular lattices [35,36], and an important
question concerns the stability of this phase away from the
SU(3) symmetric point. Previous studies on the square lattice
based on linear flavor-wave theory [24], exact diagonalization
[24], and series expansion [26] predicted a direct transition
between the antiferromagnetic (AF) and the three-sublattice
phase for θ ≈ 0.2π . However, the accurate study of this
parameter regime remains very challenging because quantum
Monte Carlo suffers from the negative sign problem.

In this Rapid Communication we show, using state-of-the-
art tensor network simulations, that in between the AF and the
three-sublattice phase an intermediate quantum paramagnetic
phase emerges which preserves translational and SU(2) spin
symmetry, but breaks lattice rotational symmetry (see Fig. 1).
We identify this intermediate phase as the Haldane phase
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FIG. 1. Haldane phase emerging in between the AF and the three-
sublattice 120◦ ordered phases.

by showing that it can be adiabatically connected to the
Haldane phase of decoupled S = 1 chains. This result at first
appears surprising in view of the fact that for θ = 0 already a
small interchain coupling Jy > J c

y = 0.0436 [6] is sufficient
to destabilize the Haldane phase. However, we show that with
increasing θ the critical interchain coupling J c

y (θ ) separating
the Haldane phase from the AF phase dramatically increases,
and eventually reaches the isotropic two-dimensional (2D)
limit.

Method. Our results have been obtained using infinite
projected entangled-pair states [37–39] (iPEPS, also called
tensor product state [40,41])—a variational tensor-network
ansatz to efficiently represent ground states in two dimensions
directly in the thermodynamic limit. It can be seen as a natural
generalization of matrix product states (the underlying ansatz
of the powerful density-matrix renormalization group method
[42]) to two dimensions. This approach has already been
applied successfully to a variety of challenging problems in the
field of frustrated magnetism and strongly correlated electrons
(see, e.g., Refs. [43–59], and references therein).

The iPEPS ansatz consists of a network of order-5 tensors
on a square lattice, with one tensor per lattice site. Each
tensor has a physical index carrying the local Hilbert space
of a site and four auxiliary indices which connect to the
four nearest-neighboring tensors. Each auxiliary index goes
over D elements, called the bond dimension, which controls
the accuracy of the ansatz. For translational invariant states
an ansatz with the same tensor on each lattice site can be
used, however, if translational symmetry in the ground state is
broken, a larger unit cell of tensors is required. For example, to
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FIG. 2. (a) iPEPS results (full update) for the local magnetic
moment m as a function of inverse bond dimension for different
values of θ . (b) Extrapolated values of m as a function of θ .

reproduce an antiferromagnetic state two different tensors (one
for each sublattice) are needed, whereas the three-sublattice
120◦ ordered state shown in Fig. 1 requires a unit cell with
three different tensors. In practice we run simulations using
different unit cells to find out which structure yields the lowest
energy state.

For more details on the method we refer to Refs. [39,48,60].
For the experts we note that the optimization of the tensors
has been done via an imaginary time evolution with the full
update optimization [39] (or fast-full update [60]), except for
the simulations of the anisotropic model where we used the
computationally cheaper simple-update optimization [61,62].
The contraction of the infinite tensor network is done by a
variant [52,63] of the corner-transfer matrix method [64,65].
We also exploited the U(1) symmetry [66,67] to increase the
efficiency [except in the three-sublattice phase which breaks
U(1) symmetry].

AF and three-sublattice phases. We first discuss the well-
established limits of the phase diagram in the range θ ∈
[0,π/4]. For θ = 0 the model reduces to the S = 1 Heisenberg
model where the ground state exhibits antiferromagnetic order.
Unlike for θ > 0, quantum Monte Carlo has no negative
sign problem in this limit, and the sublattice magnetization
m = √〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 in the thermodynamic limit has
been accurately determined: m = 0.805(2) [6]. Our iPEPS
result extrapolated to the infinite D limit (see Fig. 2), m =
0.802(7), is in agreement with this value. For θ = π/4 the
model is equivalent to the SU(3) Heisenberg model (with
the fundamental representation on each site), for which a
three-sublattice ordered state has been predicted by several
methods [35,36], including previous iPEPS simulations. For
θ slightly below π/4 this order corresponds to a 120◦ order
formed by the spins on three sublattices (see Fig. 1).

Intermediate phase. In Refs. [24,26] a direct transition
between the AF state and the three-sublattice state has been
predicted to occur around θ ≈ 0.2π based on exact diago-
nalization, linear flavor-wave theory, and series expansion.
We first attempt to reproduce this result with iPEPS by
determining the critical value θc for which the energies of the
two states—distinguished by different unit cells—intersect.
To do so, we initialize a simuluation from deep within the
AF (three-sublattice) phase, and slowly increase (decrease)
θ up to the point where the energies cross. The resulting

critical value θc ≈ 0.21π (for D = 10) is close to the previous
prediction. However, from a systematic analysis of the AF
order parameter shown in Fig. 2 we find that the AF order
actually vanishes long before θc, i.e., that the AF phase is only
stable up to θ = 0.189(2)π [68]. This indicates the presence
of an intermediate nonmagnetic phase in between the AF- and
the three-sublattice phase.

We next explore the region around θ = 0.2π in more detail.
When starting from different random initial states with a
two-sublattice ansatz, we observe a competition between a
weakly magnetized state and a nonmagnetized state which
breaks lattice rotational symmetry but preserves SU(2) and
translational symmetry [69]. This nonmagnetized state can
also be found by restricting the simulation to a one-site unit
cell [70]; it exhibits the lowest variational energy for large D.

The rotational symmetry breaking manifests itself in energy
differences in the x and y direction, as illustrated by the
different thicknesses of the bonds in the middle panel of
Fig. 1, reminiscent of coupled 1D chains. Since the ground
state of the BBH chain for θ ∈ [0,π/4] is in the Haldane
phase, the question naturally arises whether the intermediate
2D phase could possibly be adiabatically connected to the
Haldane phase by continuously decreasing the y coupling to
zero. A first hint that this picture is correct comes from the
observation that when initializing the iPEPS as a product of
chains in the 1D Haldane phase the simulation converges to
the same nonmagnetized state as with randomly initialized
tensors. In order to confirm this picture we study the stability
of the Haldane phase in the anisotropic BBH model in the
following.

Anisotropic model. We introduce different coupling
strengths in the x and y direction and study the phase diagram
in the (θ,Jy) plane (setting Jx = 1 in the following). For Jy = 0
the model simply reduces to independent S = 1 chains, which
are known to lie in the Haldane phase (for θ ∈ [0,π/4[). The
goal is now to determine the critical coupling J c

y (θ ) separating
the Haldane phase from the AF phase (or the three-sublattice
phase for large θ ), for different values of θ . In order to obtain
an estimate of the phase transition for a fixed value of θ we
initialize the iPEPS in the Haldane phase and in the AF phase
(or three-sublattice phase), respectively, run simulations for
different values of Jy , and determine the value J c

y (θ ) for
which the energies of the two states intersect, using a fixed
bond dimension D = 10 and the simple update optimization
(see data in the Supplemental Material [71]). We note that
this approach provides only an approximate phase boundary,
in contrast to the extrapolated full update simulations used
in the isotropic case. However, it is computationally much
more efficient, which becomes significant when probing the
extended two-dimensional parameter space (θ,Jy). Moreover,
a comparison with Monte Carlo and full update results (see
below) indicates that the relative error on the phase boundary
is only a few percent, which is accurate enough for our current
purpose.

For θ = 0 we find a critical value J c
y (0) = 0.042 which

is close to the quantum Monte Carlo result 0.0436 from
Ref. [6] (see also Refs. [3–5,7]). This value lies far away from
the isotropic 2D limit Jy = 1. However, we find that J c

y (θ )
monotonously increases with θ as shown in the phase diagram
in Fig. 3, and that beyond θc = 0.200π no phase transition
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FIG. 3. The phase diagram of the anisotropic bilinear-biquadratic
S = 1 model. The phase boundaries were estimated based on D = 10
simple update simulations (see Supplemental Material [71]).

occurs, showing that the 1D Haldane phase can indeed be
adiabatically connected to the isotropic 2D limit. Finally, for
0.213π � θ < π/4 we find a finite transition value J c

y (θ )
between the Haldane and the three-sublattice phase which
decreases with increasing θ .

Comparing to the full update results (Fig. 2), which
predict the two transitions to be at 0.189(2)π and 0.217(4)π ,
respectively, we see that the simple update underestimates the
extent of the Haldane phase at the isotropic point. Moreover,
it does so by a margin of at most 0.01π (and by much less
for θ = 0), indicating that the continuous path that connects
the intermediate 2D phase to the 1D Haldane phase persists
also when taking the error margin on the phase boundary into
account.

Transition from Haldane to three-sublattice phase. We
next focus again on the isotropic 2D case (Jy = 1) and
accurately determine the transition from the Haldane to the
three-sublattice phase by pushing the simulations up to D = 16
(Haldane state) and D = 10 (three-sublattice state) using the
full update optimization, and compare the energies of the two
states in the infinite D limit. Figure 4(a) shows the energies
extrapolated in the so-called truncation error w (see Ref. [56]
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FIG. 4. (a) Energy per site (full update) of the Haldane and three-
sublattice (3-SL) state for two different values of θ , plotted as a
function of the truncation error w. (b) Local magnetic moment m

(triangles) of the three-sublattice state, and the difference in bond
energies �E in the x and y direction in the Haldane state (squares),
plotted as a function of 1/D. Note that m and �E are zero in the
Haldane and three-sublattice states, respectively.

for details). For θ = 0.21π the state in the Haldane phase
is clearly lower than the three-sublattice state, whereas for
θ = 0.22π the opposite is true. By linear interpolation of
the energies, taking into account the extrapolation error, we
find a critical value of θc = 0.217(4)π . Finally, the squares in
Fig. 4(b) show the difference in bond energies �E = Ey − Ex

in the x and y direction of the Haldane state. In the infinite
D limit �E tends to a finite value, e.g., �E = 0.07(1) for
θ = 0.21π , which shows that the rotational symmetry in the
Haldane phase is indeed spontaneously broken.

Nature of the phase transitions in the isotropic case. Be-
cause the Haldane and three-sublattice phases break different
translational and rotational symmetries, the corresponding
phase transition is expected to be first order. This picture is
confirmed by the occurrence of hysteresis around the transition
point, which allows us to simulate both phases on both sides
of the phase transition. Moreover, the sublattice magnetization
is strictly positive throughout the three-sublattice phase [see
Fig. 4(b)]—even for θ = 0.21π where the three-sublattice
state is no longer the lowest energy state—implying that
the magnetization does not go to zero when approaching the
transition from above. Since the magnetization is zero in the
Haldane phase, it jumps to zero at the transition, showing that
the transition is clearly of first order.

As for the AF to Haldane phase transition, the absence of a
clear hysteresis in the full update simulations and the fact that
the sublattice magnetization in the AF phase goes to zero as we
approach the Haldane phase indicates either an unconventional
second-order or a weak first-order phase transition. However,
due to the error bars in Fig. 2(b) close to the critical point, we
cannot exclude one of the two based on our data.

Conclusion. We have studied the S = 1 BBH model on a
square lattice where, in contrast to previous predictions, we
found an intermediate quantum paramagnetic phase between
the AF and three-sublattice 120◦ magnetically ordered phases
in the parameter range θ/π ∈ [0.189(2),0.217(4)]. This inter-
mediate phase is characterized by (1) translational symmetry,
(2) an absence of magnetic and quadrupolar order, i.e., SU(2)
spin symmetry is preserved, and (3) a spontaneous rotational
symmetry breaking with stronger bonds in x (or y) direction
(i.e., lattice nematic order). The above features are reminiscent
of the ones of weakly coupled S = 1 chains in the Haldane
phase, which motivated us to study the anisotropic BBH model.
With increasing θ we found that the critical coupling J c

y (θ )
separating the Haldane and AF phases monotonically increases
up to θ = 0.189(2)π , after which no phase transition occurs
as a function of Jy , i.e., the Haldane phase persists all the
way up to the isotropic 2D limit. From this we identified
the intermediate phase as a continuous 2D extension of the
Haldane phase.

It is interesting to note that a similar situation has previously
been encountered in the J1−J2 S = 1 Heisenberg model on
a square lattice [72], in which an intermediate Haldane phase
between an AF and a stripe phase appears that also survives
up to the isotropic limit. Moreover, our findings provide an
additional example of a nematic quantum paramagnet which
in Ref. [73] was proposed to likely emerge in spin-1 systems
with competing interactions and suggested to be potentially
relevant to understand the nematic phase in the iron-based
superconductor FeSe.
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Finally, our results further highlight the potential of iPEPS
as a powerful tool for challenging open problems in frustrated
magnetism where quantum Monte Carlo suffers from the
negative sign problem. As a future work it will be interesting to
see whether the Haldane phase can also be found in or nearby
the isotropic 2D limit on the triangular lattice, potentially
offering further understanding of the unusual behavior of
NiGa2S4 [27] and Ba3NiSb2O9 [29].
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