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Unconventional magnetic order in the conical state of MnSi
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In the temperature-magnetic field phase diagram, the binary metallic compound MnSi exhibits three magnetic
phases below Tc ≈ 29 K. An unconventional helicoidal phase is observed in zero field. At moderate field intensity
a conical phase sets in. Near Tc, in an intermediate field range, a skyrmion lattice phase appears. Here we show
the magnetic structure in the conical phase to strongly depend on the field direction and to deviate substantially
from a conventional conical structure.
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Introduction. Since their discovery in the cubic binary
metallic compound MnSi (cubic space group P 213) in 2009
[1], the interest in magnetic skyrmions has been tremendous,
mainly explained by their potential applications as information
carriers for future magnetic memories [2,3]. In bulk material a
skyrmion lattice phase is observed when an external magnetic
field Bext is applied to the system. This phase is surrounded by
a conical magnetic phase in which the magnetic moments are
believed to have a component parallel to Bext and a transverse
component akin to the conventional helical structure assigned
to the zero-field phase. Interestingly, a skyrmion lattice is
described as a coherent superposition of three such helices. The
helical structure is theoretically interpreted by a competition
between a dominant ferromagnetic exchange interaction and
a weaker Dzyaloshinski-Moriya interaction authorized by the
absence of inversion symmetry in the space group P 213 [4,5].

Recent results show the magnetic structure of chiral
magnets in zero field to be only partly understood. While
the magnetic moments in planes perpendicular to the magnetic
propagation wave vector k are ferromagnetically aligned, their
in-plane orientation is not merely given by the scalar product
k · r, where r defines the position of a magnetic site. An
additional phase exists for some position, which was deduced
from an analysis of muon spin rotation (μSR) data in the case
of MnSi [6] for which k is parallel to the [111] crystal axis.
In the case where k ‖ [001], the symmetry of the crystal also
authorizes such a phase [7].

In the context where the current theories accounting for
the wealth of textures found in chiral magnets lead to the
conventional helical and conical states, a deeper study of the
conical phase is timely. Here we present a detailed refinement
of the magnetic structure in the prototypal system MnSi for
Bext applied along the [111] or [001] crystal axes. According
to neutron diffraction, and for high enough fields, we always
have k ‖ Bext. For the former direction, we find the additional
phase between the moments to be amplified when compared
to the zero-field case. For the [001] direction, not only may an
additional phase be present but the moments of the helical com-
ponent are found to rotate in planes not perpendicular to Bext.

The experiments were carried with μSR; for an introduction
to the method, see, e.g., Ref. [8]. With a probe—the muon—

sitting and measuring the magnetic field at interstitial sites, it
is ideally suited for the determination of possible deviations
relative to the conventional helices. Figure 1 illustrates the
sensitivity of μSR to such small angular deviations for
Bext ‖ [111].

The measurements were performed relatively close to
the magnetic ordering temperature Tc ≈ 29 K, with field
magnitudes chosen for a single magnetic domain to be present
in the crystal [9].

The Mn atoms in MnSi occupy 4a Wyckoff positions.
The coordinates of the four positions, labeled by γ ∈
{I,II,III,IV}, depend on a single parameter xMn = 0.138.
They are (xMn,xMn,xMn), (x̄Mn + 1

2 ,x̄Mn,xMn + 1
2 ), (x̄Mn,xMn +

1
2 ,x̄Mn + 1

2 ), and (xMn + 1
2 ,x̄Mn + 1

2 ,x̄Mn). The lattice parame-
ter is alat = 4.558 Å.

Possible magnetic structures in the conical phase. The
conical phase is characterized by an incommensurate prop-
agation wave vector k ≈ 0.36 nm−1 [1] describing the helical
component and a second vanishing wave vector responsible
for the macroscopic magnetization. We are left with the
determination of the magnetic structure compatible with
symmetry for the first component.

We shall specify the position of a unit cell by the cubic
lattice vector i and that of a Mn atom within a cell by dγ . For
a magnetic moment at position i + dγ we write

mi+dγ
= mu + mh

(
cos αi,γ adγ

− sin αi,γ bdγ

)
(1)

setting αi,γ = k · (i + dγ ). Vector mu denotes the uniform
component parallel to Bext and vectors adγ

and bdγ
together

with ndγ
≡ adγ

× bdγ
form a direct orthonormal basis. For

Bext ‖ [111], the simple solution where adγ
and bdγ

are
orthogonal to [111] will be found sufficient, as in zero field
[6]. This is not the case for Bext ‖ [001]. The Euler angles
defining adγ

, bdγ
, and ndγ

are compiled in Table I for each
sublattice γ . As an example, the coordinates of ndγ

are
(cos ϕdγ

sin θdγ
, sin ϕdγ

sin θdγ
, cos θdγ

).
The magnetic field at the muon sites. The crystallographic

muon site in MnSi has been determined from earlier μSR
measurements [6,10]. A density functional theory computation
confirms this result [11]. The muon sitting at a 4a Wyckoff
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FIG. 1. Fourier amplitudes of MnSi μSR spectra simulated for
three values of ψ for Bext ‖ [111] with Bext = 200 mT. The angle ψ

is defined in Table I. The other parameters entering the simulations
are those obtained from this report except λX which was set to zero
for the sake of clarity.

position, four different magnetic sites exist in the cubic unit
cell. They are identified with the index η ∈ {1,2,3,4}. We will
denote r0,sη

the vector distance between a muon position sη

and the origin of the cubic lattice.
The local magnetic field Bloc,sη

at position sη comprises
Bext and the dipolar and contact fields associated with the Mn
magnetic moments. Traditionally the dipolar field is split into
three terms and accordingly [12–14]

Bloc,sη
= Bext + B′

dip,sη
+ BLor + Bdem + Bcon,sη

. (2)

Here B′
dip,sη

results from the dipolar interaction between
the muon magnetic moment and the localized Mn magnetic
moments inside the Lorentz sphere and Bcon,sη

is the contact
field which originates from the polarized conduction electron
density at the muon site. Finally, BLor and Bdem are the
macroscopic Lorentz and demagnetization fields. As usual
Bdem = −Nμ0M, where N (0 � N � 1) is the demagneti-
zation field factor, μ0 is the permeability of free space, and
M = 4 mu/a

3
lat is the macroscopic magnetization.

Rather than working in direct space, it is convenient to
proceed using the reciprocal space [6] with [8,15,16]

B′
dip,sη

+ BLor + Bcon,sη

= μ0

4π

1√
ncvc

∑
γ

∑
q∈BZ

Jdγ ,q,sη
mdγ ,q exp

(−iq · r0,sη

)
, (3)

TABLE I. Parameters for the description of the MnSi magnetic
structure in the conical phase for k ‖ Bext ‖ [111] or [001]. The
results are obtained from representation analysis; see Refs. [6,7].
The table gives the Euler angles ϕdγ

, θdγ
, and ψdγ

characterizing the
(adγ

,bdγ
,ndγ

) basis in the crystal cubic axes. While the value of θ0 is
fixed (cos2 θ0 = 1/3; θ0 ≈ 54.7◦), the angles ψ , ϕ2, θ1, θ2, and ψ2 are
free parameters of this study.

Bext ‖ [111] Bext ‖ [001]

γ I II III IV I II III IV

ϕdγ
45◦ 45◦ 45◦ 45◦ 0 0 ϕ2 ϕ2

θdγ
θ0 θ0 θ0 θ0 θ1 −θ1 −θ2 θ2

ψdγ
0 ψ ψ ψ 0 0 ψ2 ψ2

where mdγ ,q is the Fourier component of the sublattice
magnetic moment. Here nc is the number of unit cells in the
crystal under study and vc = a3

lat is their volume. The sum in
Eq. (3) is performed over the q vectors of the first Brillouin
zone (BZ). The unitless tensor Jdγ ,q,sη

= Fdγ ,q,sη
+ Hdγ ,q,sη

is the sum of two unitless tensors: Hdγ ,q,sη
describes the

contact interaction parametrized by the quantity rμH/4π

[6,10], where rμ is the number of nearest neighbors used to
model the contact interaction, and Fdγ ,q,sη

is expressed as a
function of a tensor Cdγ ,q,sη

. In recognition of the different
nature of the ferro- and antiferromagnetic components of
the magnetization the relation between the latter two tensors
takes two distinct, albeit related, forms. In terms of the tensor
Cartesian components αβ, Fαβ

dγ ,q,sη
= −4π [ qαqβ

q2 − C
αβ

dγ ,q,sη
] for

q 	= 0, and Fdγ ,q=0,sη
= 4πC

αβ

dγ ,q=0,sη
[8]. The Cdγ ,q,sη

tensor
components are computed following the Ewald summation
technique [15–18]. This ensures a fast and exact evaluation of
the lattice sum which otherwise converges slowly.

The dependence of Bloc,sη
on the magnetic structure is solely

described by mdγ ,q:

mdγ ,q = √
nc

(
δq,k m̃dγ ,+ + δq,−k m̃dγ ,− + δq,0 mu

)
, (4)

with

m̃dγ ,± = mh

2

(
adγ

± ibdγ

)
. (5)

This implies that mdγ ,q vanishes unless q = ±k or q = 0.
Until now we have considered the muon to probe a unique

mean magnetic field. However, in a typical μSR experiment
millions of muons are implanted in the specimen under
study, which localize in different unit cells of the crystal.
Therefore, the different muons probe the incommensurate
magnetic structure for different phases and accordingly we
must consider a distribution of local fields rather than a single
field. The following field vector distribution is relevant [6]:

Dv(B) =
∫ 2π

0
δ
[
B − Bq=0,sη

(0) − Bk,sη

(−k · r0,sη
− ζ

)

−B−k,sη

(
k · r0,sη

+ ζ
) − Bext − Bdem

]
dζ, (6)

where ζ is the magnetic structure phase just men-
tioned. From Eq. (3) we derive Bq,sη

() = μ0

4π
1√
ncvc∑

γ Jdγ ,q,sη
mdγ ,q exp(i).

The transverse-field (TF) polarization function. The mea-
surements were performed with a standard TF setup [8]
in which the initial muon polarization has a component
perpendicular to Bext [19]. Conventionally, the direction of Bext

defines the Cartesian Z axis of the spectrometer. The positrons
resulting from the anisotropic decay of the muons are detected
in counters set along the X axis, perpendicular to Z. We denote
as θμ and ϕμ the polar and azimuthal angles of the muon spin
at the instant of implantation. Due to the in-flight precession of
the muon spins in Bext prior to their implantation, ϕμ depends
on Bext. The evolution of the projection SX(t) of the muon spin
in the local field is given by the solution of the Larmor equation
[20]. The polarization function associated with muons stopped
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at position sη is obtained after averaging over Dv(B):

PX,sη
(t) =

∫
SX(t)

S
Dv(B) d3B. (7)

Here PX,sη
(t) is written in the spectrometer reference frame,

while in the previous sections the magnetic structure was
expressed in the crystal reference frame. Obviously, proper
geometrical transformations of B in the spectrometer frame
are required before evaluating Eq. (7).

We still need to include the effect of three physical
phenomena. We shall do it phenomenologically. As usual, we
account for the longitudinal dynamical relaxation with an extra
exp(−λZt) factor in the nonoscillating components of SX(t)/S.
The oscillations are damped by the field distribution produced
by the nuclear spins of the compound. Assuming a Gaussian
field distribution with a root-mean-square �N, we include an
exp(−γ 2

μ�2
Nt2/2) factor to the oscillating terms in SX(t)/S.

Two damping sources of electronic origin are also possible.
The first arises from the imperfection of the magnetic structure
[6]. However, since our data are recorded relatively close to
Tc, we only need to account for the second overwhelming
damping induced by magnetic fluctuations. This is achieved
by including an exp(−λXt) factor to each of the oscillating
terms in SX(t)/S.

We cannot distinguish the contribution of the four sη

positions in the crystallographic unit cell of MnSi; hence
the measured polarization results from the average PX(t) =
〈PX,sη

(t)〉η.
Results. Before proceeding to the analysis of the TF μSR

spectra, we expose a few experimental details.
The platelet-shaped samples were cut from crystals grown

by Czochralski pulling and already used in previous mea-
surements [6,10,21]. The field was applied perpendicular to
the platelets. With this geometry we expect N � 1. The
measurements were performed at 28.14 (1) K for Bext ‖ [111],
and at 27.70 (1) and 27.85 (1) K for Bext ‖ [001]. For each
of them, the field was systematically applied at 35 K and the
sample subsequently cooled down to the desired temperature.

TF asymmetry spectra are displayed in Figs. 2 and 3,
together with the Fourier transforms of the precessing compo-
nent.

For the fits, the following parameters entering in the
computation of PX(t) were fixed to values obtained in previous
works [6,10]: the muon 4a position parameter xμ+ = 0.532,
rμH/4π = −1.04, and �N = 1.11 mT. The initial asymmetry
a0, a parameter strongly correlated to θμ, was fixed to its
theoretical value 0.28. In a first instance the model was fit to
individual spectra: some free parameters varied with Bext and
others were independent of it. Among the latter parameters,
for Bext ‖ [001], are θ1, θ2, and ψ2. Moreover, we also found
θ1 ≈ −θ2 and ψ2 ≈ 0 within error bars. In a second step,
new fits were performed with field-independent parameters
common to all spectra recorded for a given Bext direction. The
results are shown as solid lines in Figs. 2 and 3. Figure 4(a)
and Table II display the parameters.

As expected, ϕμ increases linearly with Bext; its magnitude
is in accord with the spectrometer characteristics [22]. This is
an independent test of the validity of our analysis. Considering
θ [Fig. 4(a)], which essentially characterizes the opening angle
of the conical structure, its decrease with Bext for the two

FIG. 2. (a) TF asymmetry spectra recorded at 28.14 (1) K in the
conical phase of MnSi for different values of Bext with Bext ‖ [111].
Circles are experimental data while solid lines represent fits as
explained in the main text. (b) Real part of the Fourier transforms of
the asymmetry spectra precessing component. The solid lines derive
from the fits of the asymmetry spectra, i.e., we did not fit the Fourier
transforms. In line with the large sample size, the contribution of
muons stopped in the sample surrounding which can be distinguished
for the 180 mT data is negligible. In both panels, the data for
consecutive fields are vertically shifted for better visualization.

orientations is anticipated since at high field the magnetic
structure tends to be collinear ferromagnetic, i.e., mh → 0. Re-
markably, θ decreases almost linearly with Bext. Interestingly,
the magnetic moment is found smaller for Bext ‖ [001] than
for [111] despite being measured at a lower temperature. The
angle ψ [23] characterizing the shift between the two orbits for
Bext ‖ [111] is about three times as large as at low temperature
in zero field [6]. For Bext ‖ [001], several solutions with similar
confidence parameter χ2 are found to fit the data equally well
for 20◦ � θ1 � 35◦, always with θ1 ≈ −θ2. This substantial
value shows that the helical component of the moment is not
perpendicular to Bext [Fig. 4(b)]. This is the main result for
this field orientation. The phase shift ϕ2 resulting from the fit
is correlated to θ1 and θ2 and can be as large as ≈20◦.

FIG. 3. Same caption as for Fig. 2, but here the data concern
measurements recorded for T = 27.70(1) K and Bext ‖ [001]. The
contribution of muons implanted in the sample surroundings is more
important than for Bext ‖ [111] owing to the smaller sample size.
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FIG. 4. (a) Parameters characterizing the conical phase of MnSi
for Bext ‖ [001]: ϕμ, θ ≡ arctan(mh/mu), and m0 ≡ (m2

u + m2
h)

1/2
.

The horizontal scale is the internal field Bint ≡ Bext − μ0NM . The
helical components at each of the sublattices is pictured in (b). The
normal to the rotation plane is at angle ±θ1 or ±θ2 from the [001]
direction.

Discussion. While the equation for a magnetic moment,
i.e., Eq. (1), is generic, the angles are widely different between
the two field orientations. The difference in the moment
values is also noticeable. Both differences reflect the magnetic
anisotropy of the system. Relevant to this discussion, we
previously suggested an additional term to the symmetric and
antisymmetric ferromagnetic exchanges and weak anisotropic
exchanges to contribute to the microscopic spin Hamiltonian
[6]. Thinking in terms of free energy, it would be worthwhile to
investigate the effect of anisotropy energy as also proposed for
the skyrmion lattice [24]. The two types of deviations from the
regular conical structure consistent with representation anal-
ysis which are required for the interpretation of experimental
data were also derived in a microscopic level theoretical study
[25,26]. For Bext ‖ [001], the magnetic moment magnitude

TABLE II. Model parameters obtained from refinements. While
a value common to all field intensities is used for the angles, the
relaxation rates slightly depend on Bext. Ranges for θ1 and θ2 are
given. The demagnetization field factor is N = 0.96.

T λZ λX ψ θ1 ≈ −θ2

Bext (K) (μs−1) (μs−1) (deg) (deg)

[111] 28.14(1) �0.21 ≈2.3 −6.24(15)
[001] 27.70(1) �0.1 ≈3.8 [20, 35]
[001] 27.85(1) �0.56 ≈4.7 [20, 35]

depends slightly on the Mn position since the (adγ
,bdγ

) plane is
not normal to [001]. An alternative fit was performed replacing
Eq. (1) with mi+dγ

= mMndγ
+ mh(cos αi,γ adγ

− sin αi,γ bdγ
),

i.e., with a conserved moment. The fit quality is equivalent
to that of Fig. 3 and the fit parameters are similar to those of
Fig. 4(a) and Table II. Therefore, we cannot definitively decide
between these two related models.

Conclusions. A μSR study of the conical phase in bulk
MnSi is reported. A quantitative analysis is performed using
symmetry analysis. For Bext ‖ [111], the phase of the helical
component is not solely given by the scalar product k · r.
The deviation is enhanced compared to the zero-field case.
For Bext ‖ [001] the magnetic components associated with the
helix rotate in planes which are not perpendicular to Bext. This
information should be helpful for the determination of the
microscopic magnetic Hamiltonian. This work suggests the
use of μSR as a three-dimensional microscopic magnetometry
tool, in particular for the helimagnets. Applying this method
to the characterization of the skyrmion lattice in MnSi is
obviously of great interest.
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