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Critical behavior at dynamical phase transition in the generalized Bose-Anderson model
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Critical properties of the dynamical phase transition in the quenched generalized Bose-Anderson impurity
model are studied in the mean-field limit of an infinite number of channels. The transition separates the
evolution toward ground state and toward the branch of stable excited states. We perform numerically exact
simulations of a close vicinity of the critical quench amplitude. The relaxation constant describing the asymptotic
evolution toward ground state, as well as asymptotic frequency of persistent phase rotation and number of cloud
particles at stable excited state are power functions of the detuning from the critical quench amplitude. The
critical evolution (separatrix between the two regimes) shows a non-Lyapunov power-law instability arising
after a certain critical time. The observed critical behavior is attributed to the irreversibility of the dynamics of
particles leaving the cloud and to memory effects related to the low-energy behavior of the lattice density of
states.
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The dynamics of correlated quantum systems that show
phase transitions at their equilibrium became a subject of
intensive investigations in the last decade. One of the key
differences between the classical and quantum ensembles
is that the latter can exhibit the undamped (persistent)
excitations such as, for example, vortices in the superfluids and
superconductors [1–3]. Therefore, whereas a generic nonlinear
classical system at finite temperature is ergodic, a quantum
fluid is not necessarily. This gives rise to phase transitions
seen in the asymptotic dynamics of an open quantum system:
dependent on initial conditions, it can either relax to its ground
state or not. The two regimes are separated by the dynamical
transition point. In a wider context, dynamical transitions are
singularities arising in the many-body quantum dynamics. In
particular, several models show a critical time t∗ after which
an instability develops [4–6].

The studies of how the criticality shows up in the dynamics
have a long history but firstly have been mostly devoted to
classical systems. It was found that the dynamical critical
exponents arise (see [7,8]). The most known is the Z index
relating the correlation length ξ and the relaxation time τ

via τ ∝ ξZ [7,9]. The values of dynamical indexes cannot
be expressed via static ones (that is, a dynamical effective
Hamiltonian obeys a larger number of relevant parameters
than its static counterpart). Moreover, varying parameters of
a system within the same static universality class, one can
obtain different values of dynamical indexes. To describe such
a situation the dynamical subclasses have been introduced [10].

The dynamical quantum criticality was reported in a
number of recent works [4,5,11] where the dynamics of
the transverse-field Ising model in low dimensions has been
studied. Loschmidt echo rate scaling [5] was described using
the renormalization group performed in a complex parameter
space. However, the universality of this procedure has been
questioned in a very recent work [12]. Unfortunately the
results of this work are also very model specific as the
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after-quench Hamiltonian is purely classical. Generic evidence
about the criticality emerged in quantum dynamics remains
very limited because of numerical issues. The quantum Monte
Carlo (QMC) method is almost the only numerically exact
approach to simulate a generic system on a lattice. However the
long-time QMC calculations of high accuracy are complicated
because of the growing sign problem. Nevertheless dynamical
transitions have been observed in QMC calculations of
Hubbard-like models [13,14], although the dynamical scaling
was not studied.

Phase transitions are usually associated with translationally
invariant systems, but in the quantum case they can also
emerge in so-called impurity problems, that is, in localized
(zero-dimensional) nonlinear systems coupled to a Gaussian
thermostat. In particular, this is the case for the Bose-Anderson
model [15], which describes a 2-4 nonlinear oscillator con-
nected to the Gaussian lattice obeying a power-law density of
states. This model is closely related to the celebrated Dicke
model [16,17]. Although the nonlinearity is localized at a
single spatial point, a spontaneous symmetry breaking of the
ground state can occur [18,19]. The phase diagram contains
high- and low-symmetry phases, respectively called local Mott
insulator (lMI) and local Bose-Einstein condensate (lBEC).

In our recent paper [20], we have shown that impurity
models can exhibit dynamical phase transitions as well. We
have studied the generalized Bose-Anderson model, in which
N identical nonlinear oscillators are connected to the same
lattice site. For N → ∞ the mean-field treatment of the model
becomes exact, allowing for a simple numerical handling of
its real-time dynamics. It was found that the symmetry-broken
state of the system, being subjected to a quench of parameters,
either relaxes to the new ground state or reaches a stable excited
state, dependent on the quench amplitude. The two asymptotic
regimes are separated by a dynamical transition.

In the present Rapid Communication, we perform a
systematic study of the quenched generalized Bose-Anderson
model and conclude that the dynamical phase transition is a
generic property of the lBEC phase. Further, we investigate a
vicinity of the dynamical transition. We detect the power-law
dependence of the asymptotic evolution characteristics from
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the detuning of the quench amplitude from its critical value.
Moreover, after a critical time t∗ the evolution itself appears to
be unstable with a power-law type of instability. Our numerics
suggests that the observed critical indexes are simple fractions,
as one would expect for an N → ∞ case.

The Hamiltonian of the generalized Bose-Anderson model
reads [20]

Ĥ =
∑

j

HSI[â
†
j âj ] −

∑
j,k

V√
N

(â†
j b̂k + b̂

†
kâj ) +

∑
k

εkb̂
†
kb̂k,

(1)
where

ĤSI[â
†
j âj ] = ε0â

†
j âj + 1

2 â
†
j â

†
j âj âj (2)

is the Hamiltonian of a single component of the impurity,
â†,â and b̂†,b̂ are creation-annihilation operators acting as
impurities numbered with j and lattice modes numbered with
k, respectively, ε0 is the impurity on-site potential, and V

determines the coupling between impurities and the lattice.
Following our previous paper we consider a cubic lattice,
so that εk = 2h[3 − cos(kx) − cos(ky) − cos(ky)], and assume
h = 1. The k = 0 mode is excluded from the Hamiltonian to
remove the effects related to Bose-Einstein condensation in
the bulk of the lattice.

In the limit of N → ∞, the effect of the lattice is reduced
to a classical field λ acting on the impurity, so that the system
is described by the effective Hamiltonian

H eff = ε0â
†â + 1

2 â†â†ââ − λâ† − λ∗â. (3)

In the symmetry-broken lBEC phase the self-consistency
condition

λeq =
∑

k

V 2

εk

〈a〉 (4)

holds with a nonzero order parameter 〈a〉; the average is taken
over the ground state of (3) with λeq substituted. For the lMI
phase this equation is trivially fulfilled with 〈a〉 = 0, λeq = 0.

The equilibrium phase diagram of the model is shown in the
lower panel of Fig. 1. We study a type of quenches for which a
dynamical transition was reported in [20]. They correspond to
a sudden lowering −ε0 within the lBEC domain for the system
initially prepared in its ground state.

Out of equilibrium the field λ is time dependent and has a
memory about the past:

λ(t) =
∑

k

V 2 e−iεk t

εk

〈a(0)〉 + i
∑

k

V 2
∫ t

0

〈
a(t ′)

〉
e−iεk (t−t ′)dt ′.

(5)

Possible asymptotic states of the system described by (5) are
either the new equilibrium state, or the stable excited state with
a persistently rotating phase 〈a(t)〉 = a∞eiωt . The value of a∞
can be found by switching to the rotation frame [20], where
the chemical potential appears to be shifted; ε0 → ε0 + ω,
εk → εk + ω. After this shift is accounted for, a∞ satisfies the
“equilibrium” equations (3) and (4). As is immediately seen, ω
must be positive: the chemical potential shift causes instability
otherwise. An appearance of the stable excited states is related
to the relaxation mechanism of the model: the excited system
loses its energy by the emission of bosons away from the
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FIG. 1. Upper panel: time evolution of the real part of the
order parameter for three different quench amplitudes. The dotted
line depicts the time evolution for the critical quench amplitude
(separatrix); the black and red lines correspond to quenches with
detuning δε0 = ±0.002 from the critical value. The black line
corresponds to a solution relaxing to the new equilibrium state,
while the red line corresponds to a stable excited state (rotating
phase). Lower panel: critical quenches plotted on an equilibrium
phase diagram of the model. The dashed line and dots depict positions
on the phase diagram from which the critical quench takes place.

impurity and the surrounding cloud [20]. Stable excited states
have less particles than the equilibrium state and therefore
cannot relax. In particular, an increase of −ε0 always results
in an excited state, as the new ground state requires a larger
amount of particles than exists in the system.

Lowering −ε0, one observes the quenched dynamics toward
one of the two different asymptotic regimes. For a small
positive quench amplitude 	ε0 = ε0(t > 0) − ε0(t < 0), loss
of particles results in an evolution toward the new ground
state. Increasing 	ε0, with no change in ε0(t > 0), results
in the formation of the persistently rotating phase. The two
scenarios are separated by the dynamical transition singularity
occurring at certain 	εcrit

0 .
The lower panel of Fig. 1 shows critical quenches plotted

on the equilibrium phase diagram. We have performed simu-
lations for a number of final quench points (V, − ε0) along the
line −ε0 = 1 separating two local Mott lobes. The described
dynamical transition was observed for all points including
those lying between the lobes: smaller V corresponds to
narrower lBEC strip, and also to smaller critical quench value.
Inside the lBEC phase, the transition does not show a link to
the equilibrium phase diagram and is therefore interpreted as
a purely dynamical phenomenon. This makes quenches within
lBEC different from those involving the lMI phase [20], whose
transient dynamics is closely related with the equibrium phases
on the quench path.
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In our study we examined a close vicinity of the critical
quenches. Let us introduce the deviation of the quench
amplitude from the critical value δε0 = 	εcrit

0 − 	ε0; negative
(positive) δε0 corresponds to the quenches below (above) the
critical value. In our calculations, values of critical quench
amplitudes were estimated with an accuracy of at least 10−3.
The upper panel of Fig. 1 shows the time dependence of the
order parameter for three quench amplitudes: right at the
dynamical transition (δε0 = 0—this curve can be called
separatrix), slightly above and slightly below the critical
quench value. A closer look at the numerical data shows
that the three characteristic time intervals can be introduced.
Within the interval I, up to critical time t∗ (indicated by
the vertical dashed line in Fig. 1, upper panel) the deviation
δa(t) = 〈a(t)〉 − 〈acrit(t)〉 does not significantly change. For
t > t∗, the evolution becomes unstable: δa(t) increases with
time. We introduce time interval II, where δa grows in time, but
still remains small compared to 〈a〉. The asymptotic evolution
is realized in the interval III, where δa and 〈a〉 are of the
same order. Note that whereas t∗ is independent of δε0, the
crossover between the time intervals II and III occurs at larger
time arguments for smaller δε0.

We address the following questions: (i) concerning the time
interval III, how the equilibration occurs for small negative
δε0 and how asymptotic rotation frequency behaves for small
positive δε0; and (ii) concerning the time interval II, what is
the type of instability for the separatrix.

An analysis of the equilibration at δε0 < 0 has shown
that the asymptotic deviation of the order parameter from its
equilibrium value falls exponentially with time. The upper
panel of Fig. 2 provides an example of the exponential fit
〈a〉(t) = aeq − a1e

−σ t at δε0 = −0.0219 for the quench to
(V = 0.894, − ε0 = 1)—the quench 2 from Fig. 1. Values of
the relaxation constant σ obtained from the fitting procedure
show a square-root dependence on |δε0|, as the lower panel
of Fig, 2 shows: we plot σ 2 vs δε0 and observe a linear
dependence. The same panel presents our results for the
asymptotic rotation frequency for the system being quenched
with δε0 > 0 to the same point (V = 0.894, − ε0 = 1). In this
case ω3 (the right axis) exhibits linear dependence, so that we
conclude about ω ∝ (δε0)1/3.

Our conclusions allow one to estimate how the number
of particles asymptotically remaining in the lBEC cloud
NlBEC scales with δε0. The rotation-frame analysis [20] gives
the expression NlBEC ∝ ∫

d3k
(ω+εk)2 . It leads to the divergence

NlBEC ∝ ω−1/2. We consequently conclude about the scaling
law NlBEC ∝ (δε0)−1/6 at small positive δε0.

Now let us turn to the analysis of the instability of the critical
evolution at t > t∗, i.e., in the interval II. Figure 3 presents a
log-log plot of |δa(t − t∗)| calculated for a set of quenches
with different impurity-lattice coupling V ; the values of t∗ vs
V are plotted in the inset. For each quench, we have considered
two values of δε0 = ±5 × 10−4. It appears that the sign of δε0

almost does not affect the absolute value of |δa|. For each
quench, Fig. 3 shows two dependencies of |δa(t − t∗)|, which
correspond to the positive and negative δε0, but these two
dependencies are almost indistinguishable from each other.
Besides small high-frequency oscillations, possibly related to
the upper cut-off introduced by a discrete lattice, the log-log

FIG. 2. Upper panel: exponential fit of equilibration asymptotic
dynamics. Red curve shows the dynamics of the real part of the order
parameter, while the black dashed one depicts exponential fit. Lower
panel: power-law dependencies of relaxation parameter σ (blue dots)
and frequency ω (red dots) as functions of quench amplitude 	ε0. In
this picture the critical quench amplitude is 	εcrit

0 = 0.8719. As seen
from the picture, σ ∝ (δε0)1/2 and ω ∝ (δε0)1/3.

curves shown in Fig. 3 remain linear while the time argument
is changed by two orders of magnitude; however, this range is
narrowed for the quench 9 performed for the smallest V , i.e.,
closer to the lMI region.

We conclude about the power-law dynamical instability
ln |δa| ∝ ln(t − t∗) with the index being the same for all
quenches. We remind one that the usual scenario known
from the nonlinear dynamics of classical finite systems is
the Lyapunov instability [21]: a small deviation from the
separatrix trajectory grows in time exponentially. For the
system considered, this does not appear to be the case.

The exact index value extracted from the numerical data
slightly depends on how the values of t∗ are chosen. A
finite value of δε0 used in calculations corresponds to a finite
region where a stable evolution passes into the power-law
instability; this results in certain error bar for the value t∗.
We have performed estimations of the index for t∗ taken
within this region and obtained the index close to 1.30 with
an error bar of about 0.03. The mean value 1.30, as well
as the log-log dependencies shown in Fig. 3, are obtained
for t∗ fitted to minimize the crossover region between the
stable and power-law evolution. For comparison, we have
drawn straight lines in Fig. 3 corresponding to the indexes 1.3
and 4/3.

We interpret the index obtained as a critical exponent of
the dynamical transition occurring at t∗. Additional comments
are needed at this point, because it is not a priori clear if
the concept of criticality is applicable for the system studied.
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FIG. 3. The dependence of |δa(t − t∗)| = |〈a(t − t∗)〉 −
〈acrit(t − t∗)〉| on t − t∗, where |〈a〉|crit corresponds to critical quench
with δε0 = 0. One can consider this quantity as a divergence of
trajectories in phase space (as is commonly considered in nonlinear
dynamics), which shows the kind of instability of a critical point.
Numbers of curves correspond to numbers of critical quenches
shown in Fig. 1. Two lines with the same color (almost on top of each
other) depict curves for quenches with δε0 = ±0.0005. The dashed
line shows a power-law fit with power 4/3 and the dash-dotted line
depicts a power-law fit with power 1.3 for these dependencies. Inset:
dependence of critical time t∗ on V .

Indeed, transitions at equilibrium, for which the theory of
criticality was initially developed, occur in (on average)
uniform systems, whereas we deal with a localized one.
Another seminal example of a critical behavior is known from
the Feigenbaum’s [21,22] theory for the transition between the
periodic and chaotic one-dimensional mapping. In this case,
the localized in space system is out of equilibrium, but the
very difference from our case is that the Feigenbaum’s theory
describes a steady process. Nevertheless our data reported
above suggest that our system shows a critical behavior. The
power-law instability signals that the phenomenon exhibits
collective behavior: a few-body dynamics at finite time scale
would be likely characterized by a Lyapunov exponent [21].
In this regard we emphasize that the memory kernel of the
lattice response in Eq. (5) obeys a long memory which makes
the mathematical difference of our model from a finite set
of differential equations common for nonlinear dynamics.
Furthermore, the very same dependence of |δa| on |δε0| on
different sides of the transition reported in Fig. 3, excludes
scenarios related to locking of some states. etc. On the
other hand, it resembles the transitions at equilibrium, when
fluctuations show the same behavior below and above the
transition point.

Another property worth discussing is that the dynamical
transition studied is not followed by a symmetry change: the
order parameter does not equal zero either at the lBEC ground
state, or in the state with the persistently rotating phase. The
latter can be seen as a ground state of the Hamiltonian in the
rotating frame, where the spectrum is gapped with the gap ω.
The situation, when the two states have the same symmetry,
but one of them is gapped and another is not, is known for the
equilibrium quantum phase transitions. For example, this is the

case for Mott metal-insulator transitions [23,24] (here we refer
to the Mott transition which does not break the translational
symmetry and leave out possible antiferromagnetism in Mott
systems). As well, equilibrium quantum transitions occurring
inside a symmetry-broken phase are known: an example
is ferroelectic transitions in the crystals lacking inversion
symmetry (e.g., in ArCrS2 [25]).

Finally, possible experimental relevance is to be discussed.
In this context we consider of high importance the finding that
the dynamical transition was observed in a large part of the
lBEC phase, including the weak-coupling limit V → 0. In this
limit the generalized Bose-Anderson Hamiltonian is closely
related to the Dicke model [3,16], as just two impurity levels
are important. That is, the dynamical transition can be looked
for in qubit systems where spontaneous symmetry breaking
emerges (provided proper density of photon states). Another
possibility is to operate with ultracold atoms. In this case, a
Josephson current [26] between the lBECs of two systems with
slightly different quench values can be used to measure their
relative phase.

Let us present some preliminary argumentation about the
applicability of our results to finite-N systems, although
a consideration beyond mean field is out of the scope of
this Rapid Communication. We expect that the dynamical
transition studied can also be found away from mean field,
in the impurity systems obeying two properties: (i) the
symmetry-broken phase is characterized by an infinite number
of particles in the lBEC cloud surrounding the impurity and
(ii) an irreversibility of dynamics of the particles leaving the
cloud, which gives rise to stable excited states having less
particles and higher energy than the ground state. The first
property was indeed observed in the numerical renormalization
group calculations for the single-impurity Bose-Anderson
model [18]. The second is a simple property generic to all
systems where the particles evaporate in vacuum. Quantitative
properties of the transition, such as index values, can be altered
from the N → ∞. However, we mention that in some cases
even index values found from mean-field grounds appear to
be quite accurate; a good example is the Flory description of
self-avoiding chains [27].

To summarize, using the mean-field approach we have
studied the dynamical phase transition, arising within the
symmetry-broken phase of the generalized Bose-Anderson
impurity model. We have studied a vicinity of the transition
point and found that characteristics of the asymptotic
evolution (namely, the relaxation parameter and the frequency
of persistent oscillations) are power functions of the detuning
from the critical quench amplitude. Furthermore, the critical
evolution (separatrix) also shows a non-Lyapunov power-law
instability, arising after a critical time t∗. We attribute the
observed phenomena to the irreversibility of the dynamics of
particles leaving the lBEC cloud and to the memory effects
related to the low-energy behavior of the lattice density of
states.

We acknowledge useful discussions with Pedro Ribeiro,
Georg Rohringer, and Yulia Shchadilova. The authors thank
the Dynasty Foundation and RFBR (Grant No. 16-32-00554)
for financial support.
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