PHYSICAL REVIEW B 95, 174520 (2017)

Superconductivity mediated by quantum critical antiferromagnetic fluctuations:
The rise and fall of hot spots

Xiaoyu Wang,1 Yoni Schattner, Erez Berg,2 and Rafael M. Fernandes'
1School of Physics and Astrononty, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
(Received 13 December 2016; revised manuscript received 1 May 2017; published 25 May 2017)

In several unconventional superconductors, the highest superconducting transition temperature 7, is found in
aregion of the phase diagram where the antiferromagnetic transition temperature extrapolates to zero, signaling
a putative quantum critical point. The elucidation of the interplay between these two phenomena—high-7.
superconductivity and magnetic quantum criticality—remains an important piece of the complex puzzle
of unconventional superconductivity. In this paper, we combine sign-problem-free quantum Monte Carlo
simulations and field-theoretical analytical calculations to unveil the microscopic mechanism responsible
for the superconducting instability of a general low-energy model, called the spin-fermion model. In this
approach, low-energy electronic states interact with each other via the exchange of quantum critical magnetic
fluctuations. We find that even in the regime of moderately strong interactions, both the superconducting
transition temperature and the pairing susceptibility are governed not by the properties of the entire Fermi
surface, but instead by the properties of small portions of the Fermi surface called hot spots. Moreover, 7,
increases with increasing interaction strength, until it starts to saturate at the crossover from hot-spots-dominated
to Fermi-surface-dominated pairing. Our work provides not only invaluable insights into the system parameters
that most strongly affect 7., but also important benchmarks to assess the origin of superconductivity in both

microscopic models and actual materials.
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I. INTRODUCTION

In the two known families of high-temperature
superconductors—the copper-based and the iron-based
materials—the superconducting (SC) state is observed in
close proximity to an antiferromagnetic (AFM) state [1-4].
In the particular cases of iron pnictides and electron-doped
cuprates, the highest SC transition temperature 7, takes place
in the vicinity of a putative antiferromagnetic quantum critical
point (QCP) [5-7], i.e., a continuous AFM phase transition
that occurs at zero temperature (see Fig. 1). Although direct
detection of such a QCP is difficult, some of its manifestations
at nonzero temperatures, such as a nearly diverging magnetic
correlation length, are experimentally observed [8,9]. These
observations led to the proposal that quantum critical AFM
fluctuations may provide the glue binding the Cooper pairs in
an unconventional SC state [10—15], be it a nodal d-wave state,
as in the case of the cuprates, or a nodeless st~ -wave state, as
in the case of the iron pnictides.

The reasoning behind this theoretical proposal can be
understood from a straightforward extension of the con-
ventional weak-coupling BCS theory for phonon-mediated
s-wave superconductors. In contrast to the electron-phonon
coupling, which causes an attractive pairing interaction that
does not depend on momentum, AFM fluctuations generate a
repulsive pairing interaction strongly peaked at the momentum
corresponding to the AFM wave vector Q [1—4]. In this case,
the BCS gap equations only admit a solution if the gap function
A(K) changes its sign when the momentum is translated by Q,
ie., A(k + Q) o« —A(k). As a result, depending on the Fermi
surface geometry and on the wave vector Q, different types
of SC states are favored. While a d-wave state is obtained
for a large Fermi surface and Q = (ir,7), an s™~-wave state
arises for small Fermi pockets separated by Q = (7r,0)/(0,7).
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Despite its appeal, such a weak-coupling BCS-like approach is
not appropriate to describe these systems, since the proximity
to a QCP renders the interactions strong and, on top of that,
clouds the very concept of quasiparticles, which is a key
property of a Fermi liquid [16].

Thus, while there is little question that AFM fluctuations
can promote an unconventional SC state, the elucidation
of the microscopic mechanisms involved remain a major
challenge. Addressing this issue is important not only to
assess the relevance of quantum critical pairing to high-T7,
materials, but also to establish which of the many system
parameters should be ideally optimized to enhance 7. To
answer these important questions, microscopic models that
are expected to display AFM and SC ground states have been
widely studied, most notably the Hubbard model [17-20].
Alternatively, in the hope of elucidating universal features
of quantum critical pairing, many works have focused on a
general low-energy model in which the fermions associated
with the low-energy electronic states interact with each other
by exchanging magnetic fluctuations, which in turn arise
from high-energy states; this is the so-called spin-fermion
model [10,12]. Because these fluctuations are peaked at the
AFM ordering vector Q, not all low-energy states are equally
affected by this interaction. More specifically, only states near
the hot spots—special points on the Fermi surface that are
displaced from each other by the AFM ordering vector Q—can
exchange AFM fluctuations while remaining near the Fermi
level. This property lends support to the idea that the hot
spots may play a primary role in driving the superconducting
transition.

However, despite intense research activity in this front, the
extent to which hot-spots properties govern the SC instability
remains a hotly debated issue. One of the reasons is the diffi-
culty in developing a controlled strong-coupling theory for the
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FIG. 1. Schematic phase diagram of the spin-fermion model. The
antiferromagnetic (AFM) transition temperature is suppressed to zero
at r = r., giving rise to a quantum critical point. According to the
results of Ref. [25] for the spin-fermion model, a superconducting
(SC) dome then appears, hiding the antiferromagnetic quantum
critical point. The maximum 7, is found very close to r = r..

spin-fermion model, which is ultimately related to the absence
of a natural small parameter in the problem [12,21-23]. This
situation is to be contrasted with the phonon-mediated pairing
problem, where the clear separation between electronic and
lattice energy scales ensures the existence of a controlled
diagrammatic expansion—the celebrated Eliashberg theory.

In this paper, we combine extensive quantum Monte Carlo
(QMC) simulations and analytical calculations to shed light
on this problem. Our starting point is the two-band version
of the two-dimensional spin-fermion model, in which the
AFM fluctuations mediate interactions between electrons from
two different bands. The choice of a two-band model is
essential, because it does not suffer from the infamous sign
problem generally present in QMC simulations [24]. While
a recent study has established the existence of a SC dome
peaked at the AFM quantum critical point of this model [25],
similarly to Fig. 1, in this paper our goal is to elucidate
the microscopic mechanism responsible for this SC state.
Unveiling the pairing mechanism encoded in the spin-fermion
model is fundamental to advance our understanding of the
general problem of superconductivity in quantum critical
systems for several reasons. First, the sign-problem-free QMC
algorithm only works for the rather artificial two-band model.
Establishing the solution of this two-band spin-fermion model,
where the unbiased sign-problem-free QMC approach offers a
unique benchmark for analytical approximations, is the most
promising way to generalize the results to other types of
band structures. Second, being a low-energy model, the main
relevance of the spin-fermion model to the ongoing effort
to search for higher 7, materials is to provide robust trends
for how changes in the various system parameters affect 7;
e.g., is the density of states at the Fermi level more important
than the properties of the hot spots? Third, the spin-fermion
model is one among several models that have been proposed
to understand high-7, systems. Without knowing the precise
predictions of this model, it is very hard to rule out or confirm
that the physics encoded in the spin-fermion model is relevant
to the real systems.

In this paper, our general goal is to establish the general
solution of the spin-fermion model by a detailed comparison
between numerics and analytics. To achieve this goal, we
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study a family of band dispersions that interpolate between
closed nearly nested Fermi pockets to open Fermi surfaces,
passing through a Van Hove singularity, where the density of
states is strongly peaked. This nontrivial dependence of the
density of states on the band dispersion allows us to separate
phenomena associated with the Fermi surface as a whole
and with the hot spots only. Tuning the system to its AFM
quantum critical point, we extract from our QMC results both
the superconducting transition temperature 7., which in our
two-dimensional system is a Berezinskii-Kosterlitz-Thouless
transition, and the temperature dependence of the pairing
susceptibility, xpair. Similarly to previous works [24-26], we
find that the favored SC state is the one in which the gap
function changes sign from one band to the other, in qualitative
agreement with the weak-coupling arguments given above.
Our main results, however, are on the dependence of 7, and
Xpair ON the band dispersion parameters. Surprisingly, we find
that 7. is not sensitive to the density of states Ny, which
displays a sharp enhancement near the Van Hove singularity.
Instead, even when the interaction strength is comparable to
the bandwidth, T is found to depend only on the angle between
the Fermi velocities of a pair of hot spots, sin 6y, via

T, = A A% sin Oy, 6))

where A is the interaction parameter that couples magnetic
and electronic degrees of freedom, and A, is a universal
constant independent of the band dispersion. As for the
pairing susceptibility, we show that the QMC data for all band
dispersions collapse onto a single curve given by

T
Xpair(T) = Apairfpair(?) ’ (2)

where fpair(%) is a universal function that does not depend on
the band dispersion, whereas Ap,; is a constant that depends
weakly on the band dispersion. Equations (1) and (2) are
the main results of our paper, establishing that the hot-spots
properties govern not only the SC transition temperature but
also the temperature dependence of the SC fluctuations. To un-
derstand these results, we analytically study the spin-fermion
model via a hot-spots Eliashberg approximation introduced in
previous works for the one-band model [10,14]. Basically, this
approximation consists of assuming that the magnetic degrees
of freedom are much slower than the electronic ones, and
that the hot spots govern the critical properties of the system.
Despite being formally uncontrolled, this approximation not
only gives the same functional dependence of the SC transition
temperature on the spin-fermion parameters of Eq. (1), but it
also captures very well the universal function fp,i-(x) obtained
from the QMC results.

An immediate consequence of Eq. (1) is that 7. would
not have an upper limit upon increasing the interaction A. We
find, however, that when A2 becomes larger than the electronic
bandwidth, T, stops increasing and nearly saturates to a value
of the order of a few percent of the electronic bandwidth.
Combined with our analytical investigation of the spin-fermion
model, we attribute this behavior to the whole Fermi surface
behaving as a “large hot spot,” and to the failure of the hot-
spots-only approximation [27]. Therefore, our results indicate
that, within the spin-fermion model, the largest possible value
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of T, does not depend on the interaction strength, and is first
achieved at the crossover between hot-spots-dominated and
Fermi-surface-dominated pairing.

II. THE SPIN-FERMION MODEL

The spin-fermion model is a low-energy model widely
employed to study universal properties of pairing mediated
by AFM fluctuations [10,12,24]. It describes low-energy
electronic degrees of freedom interacting with magnetic
fluctuations that arise from high-energy degrees of freedom.
In this work, we consider a two-dimensional model with
two independent bands, yielding the following noninteracting
Hamiltonian:

HO = Z Ecvkcltacka + Z Edvkdliadkot' (3)
ka k,a

Here, the operator clta creates an electron with momentum k

and spin « at band c. The centers of the two bands are displaced
from each other by the AFM ordering vector Q = (7r,7), and
the dispersions are given by

gek = M — 2(t +8)cosk, — 2(t — §) cosk,,
4)
84 x+Q = —M + 2(t — §)cos ky + 2(t 4 §) cos ky,

where ¢ is the hopping parameter, u is the chemical potential,
and momentum is measured in units of the inverse lattice
constant 1/a. Note that this model is symmetric under the
combination of a 7 /2 rotation, a particle-hole transformation,
and the exchange of the two bands. Hereafter, we set u = .
By changing the parameter §, the band dispersions interpolate
between two closed nearly nested Fermi pockets (§ < #/4) and
two open Fermi surfaces (§ > #/4); see Fig. 2. For § = t /4, the
band dispersion has a saddle point at the Fermi level, implying
the existence of a Van Hove singularity, which is characterized
by a diverging density of states, Ny.

In the spin-fermion model the electrons interact with each
other only via the exchange of magnetic fluctuations. As a
result, the interaction action is given by

Sint = A Z / MjeiQ‘xj . (c}_aaaﬁdj,ﬁ + H.c.). (®)]
J T

Here, j denotes lattice sites, 7 is the imaginary time, A is the
(Yukawa) coupling constant describing the interaction between
electrons and magnetic fluctuations, o are Pauli matrices,
and M is the bosonic field associated with magnetic order
with wave vector Q. The spectrum of magnetic fluctuations is
determined by the magnetic action, which in turn arises from
high-energy electronic degrees of freedom:

1 1 2 2 2 U4
Smag = —/ |:_2(8TM) + (VM) " +rM°+ - M } (6)
2 Jxr LV? 2
In this expression, r is a tuning parameter that tunes
the system through the magnetic quantum critical point,
u =1/(2t) > 0 is a parameter penalizing strong amplitude
fluctuations, and vy = 4t is the spin-wave velocity. Note
that, in our notation, A2 has dimensions of energy. If X
was zero, Eq. (6) would describe a magnetic ordered phase

that, at 7 =0, undergoes a second-order quantum phase
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FIG. 2. The two-band spin-fermion model. Fermi surfaces corre-
sponding to the two bands (red and blue curves) in the first Brillouin
zone, for different values of §/¢. One of the bands (blue) is displaced
by the AFM wave vector Q = (r,7), which makes both Fermi
surfaces appear concentric. In this representation, a pair of hot spots,
defined by &y, = €4,1,,+Q = 0, correspond to the points at which
the two Fermi surfaces overlap. For the system parameters used here,
the hot spots are always along the diagonals of the Brillouin zone. By
changing the parameter §/¢, the system interpolates between closed
nearly nested Fermi surfaces (/¢ < 1/4) and open Fermi surfaces
(6/t > 1/4), crossing a Van Hove singularity at 6/t = 1/4. The angle
6 between the Fermi velocities of a pair of hot spots (red and blue
arrows) increases as function of §/¢ (note that one of the Fermi
velocities has been multiplied by —1 for clarity purposes).

transition to a paramagnetic state at r = r, (see Fig. 1). The
coupling to the electrons not only shifts the value of 7., but
it also promotes new electronic ordered phases, most notably
superconductivity. Additional details about the spin-fermion
model are given in Appendix A.

III. SIGN-PROBLEM-FREE QUANTUM MONTE
CARLO SIMULATIONS

Equations (3), (5), and (6) define the two-band spin-fermion
model. Because the total fermionic action Sy + S, commutes
with an antiunitary operator for every configuration of M,
all eigenvalues of the fermionic determinant are complex-
conjugate pairs, implying that determinant QMC simulations
do not suffer from the sign problem [24]. Here, S, is the
noninteracting action associated with H in Eq. (3). Previous
QMC studies have shown conclusively that, in this type of
model, the sign-changing SC pairing susceptibility is strongly
enhanced near the magnetic QCP [24-26]. Because the
system is two-dimensional, at finite temperatures only quasi-
long-range SC order is stabilized, which happens below the
Berezinskii-Kosterlitz-Thouless (BKT) transition temperature
T.. The latter was shown to be maximum very close to the
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putative quantum critical point r = r. [25]. More recently,
similar sign-problem-free QMC approaches have been used to
study charge fluctuations near an AFM-QCP and the onset of
SC near a nematic QCP [26,28-30].

Here, our goal is to establish which band structure
parameters determine 7, and Xpu, in order to shed light
on the microscopic mechanism by which quantum critical
AFM fluctuations promote superconductivity. Our procedure
is the following: for a given band dispersion, labeled by
8/t, we first determine the approximate location of the AFM
quantum critical point r. by analyzing both (M?) and the
Binder cumulant. To save computational time, we consider
an easy-plane AFM order parameter, restricting M to lie in
the XY plane. We verify that the system is in the magnetically
disordered state and very close to the QCP by computing the
renormalized mass term of the magnetic propagator. Note that
for the system to be in a quantum critical regime, it is enough
that the magnetic mass term be much smaller than n7./y,
where y is the Landau damping. As long as this condition
is satisfied, even if at T = 0 the AFM transition becomes
weakly first order, the system’s behavior at finite temperatures
would still be nearly indistinguishable from a quantum critical
one. The static pairing susceptibility in the sign-changing SC
channel, xpir, is obtained by direct computation of the pair
correlation function, while the superfluid density p, is obtained
from the current-current correlation function. We study square
lattices of sizes L = 8, L = 10, L = 12, and L = 14. Spurious
finite-size effects are diminished by threading a fictitious
magnetic flux quantum through the system. Technical details
of the QMC implementation are similar to those in Ref. [25],
and are summarized in Appendix B.

For each system size L, we associate a transition temper-
ature T,(L) to the temperature at which the BKT condition is
met, p; = 2T, /7. In Fig. 3, we show the behavior of 7.(L) at
the AFM-QCP as function of the parameter §/¢ introduced in
Eq. (4) for a moderately strong interaction parameter A> = 8¢.
For most band dispersion parameters, 7.(L) of the two largest
system sizes are coincident within the QMC statistical error
bars. In these cases, our best estimate for the thermodynamic
value of T, = T.(L — 00) is the value corresponding to the
largest system size, T, (Lmax) (filled symbols in the figure). For
the band dispersion parameters in which 7, does not seem to
fully converge with system size, namely §/¢ = 0.6 and §/t =
0.8, T, (Lmax) should be understood as an upper bound on 7. In
these cases, we also provide a lower bound on 7, represented
by stars in the figure (see Appendix B for more details of
this procedure). Clearly, the finite-size effects seem to affect
mostly the band dispersion with §/¢ = 0.8, which has a more
pronounced one-dimensional character, as shown in Fig. 2(d).
Interestingly, analytical studies of the spin-fermion model
suggested a strong competition between SC and charge order
for quasi-one-dimensional band dispersions [12,13]. Whether
this is related to the stronger finite-size effects observed for
8/t = 0.8 is an interesting topic for future investigation.

Surprisingly, Fig. 3 reveals that T, is not sensitive to the
noninteracting density of states N s, which diverges at the Van
Hove singularity at §/¢ = 0.25, as shown in the same figure
(as shown in Appendix B, even for our finite systems, Ny
is also peaked at the Van Hove singularity). Instead, we find
that 7, increases linearly with sin 6,5, where 6y is the angle
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FIG. 3. The superconducting transition temperature 7, at the QCP
for different band dispersion parameters. (a) The QMC results for 7,
and the calculated density of states N (calculated directly from
the band dispersions) as function of the band dispersion parameter
8/t (see Fig. 2). We associate a transition temperature 7,(L) with the
temperature at which the BKT condition is met for a system of size L,
and denote T,(L.x) by filled symbols. Analysis of finite-size effects
reveals that for most values of §/¢, T.(L.y) is a very good estimate
for the thermodynamic-limit value 7. For the systems in which 7,.(L)
does not fully converge, namely 6/t = 0.6 and 6/t = 0.8, T.(Lax)
are upper bound values for 7., whereas the stars are lower bound
values on 7. Note the enhanced N, at the Van Hove singularity point
8/t = 1/4. (b) The linear relationship between 7, and sin 6, where
6Ohs s the angle between the two Fermi velocities of a pair of hot spots,
calculated directly from the band dispersions.

between the noninteracting Fermi velocities of a hot-spot pair
(see Fig. 2). In contrast to N s, which varies nonmonotonically
as function of §/¢, sin 65 changes monotonically according to

. 28
sin Gpg = l+((6//lz))2'

The results shown in Fig. 3 imply that the SC transition
is rather insensitive to what happens across the entire Fermi
surface, but very sensitive to the properties of the hot spots. To
further investigate the SC properties of the system, in Fig. 4 we
plot the temperature-dependent inverse pairing susceptibility
Xl;ailr( T) for all band dispersions at their respective QCPs. We
find that, for a rather wide temperature range, the normalized
susceptibilities X, (T)/ Xpair (3T plotted as function of T/ 7,
collapse onto a single curve, for all values of §/¢ and of L. As
aresult, it follows that the pairing susceptibility must be of the
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FIG. 4. Universal temperature dependence of the pairing suscep-
tibility xpqir at the QCP. (a) Temperature dependence of Xp_ai]r extracted
from QMC simulations for all band dispersion parameters 6/¢. The
system size is L = 12. (b) Collapse of the scaled x,i(T)/Xpat(3T2)
as function of T/ T, for all values of §/¢ and all system sizes L. For
each value of L, we used the corresponding 7..(L). The black dashed
curve is the analytical function f&)(T/T.)/f4%)(3) obtained from
the hot-spots Eliashberg approximation of the spin-fermion model.
(c) The behavior of the QMC-extracted prefactor Apur X Xpair(37:)

of Eq. (2) as function of §/1.

form of Eq. (2). While the constant Ay, which determines
the overall amplitude of the SC fluctuations, depends weakly
on 6/t (see Fig. 4), the function fp.i:(T/ T.), which determines
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the temperature dependence of the SC fluctuations, is universal
and independent of the band dispersion. Therefore, these
results imply that for a wide range of temperatures, the SC
fluctuation spectrum is determined by the same energy scale
that determines 7,—which, according to the analysis in Fig. 3,
is related to the hot-spots properties.

IV. COMPARISON WITH THE HOT-SPOTS ELIASHBERG
ANALYTICAL APPROXIMATION

To gain a deeper understanding of the origin of our QMC
results, we analytically solve the spin-fermion model within
the hot-spots Eliashberg approximation introduced in previous
works [10,14,31]. Physically, the main assumptions of this
approximation are that the magnetic degrees of freedom
are much slower than the electronic degrees of freedom,
and that the pairing instability arises only from the hot
spots (see Appendix A for technical details). Formally, the
first assumption can be justified if the number of electronic
“flavors” is extended from 1 to NV, and N is taken to be infinitely
large—although recent works have raised important issues on
the general validity of a 1/N expansion [12,21,22].

One of the main outcomes of the hot-spots Eliashberg
approximation is that the dynamics of the quantum magnetic
fluctuations ceases to be ballistic and, instead, becomes
overdamped due to the decay of spin fluctuations into electron-
hole excitations [32]. The strength of this process is encoded
in the Landau damping parameter y o< v% sin6hs/A%, which
depends on the Fermi velocity at the hot spots v, on the
interaction parameter A, and on the hot-spot angle sin 6. The
latter is nothing but a constraint on the phase space available for
the decay of the spin fluctuations into electron-hole pairs. This
property already suggests that the dependence of 7, on sin 6y
observed in the QMC results must be connected to the Landau
damping. Indeed, a full analysis reveals that, at the QCP, the
only energy scale in the hot-spots Eliashberg approximation is
given by

2\ 2

Aqcp < ) y X 22 $in By, @)
which does not depend on the density of states or the Fermi
velocity. Consequently, the superconducting transition temper-
ature at the QCP can only depend on this energy scale [14,31],
yielding 7.8 = A®22 sin 6y, in agreement with the QMC
results. We use the superscript (hs) to distinguish the calculated
T from the numerically obtained T,. If we plug in the bare
value of the interaction parameter on the hot-spots Eliashberg
approximation, we obtain 7,1/t = 0.14 sin 65, which is very
close to the linear fitting in Fig. 3, T/t = 0.13 sin Oys.
However, in comparing 7" with our QMC results, it is
important to recognize that the BKT physics is absent in the
hot-spots Eliashberg approximation. Of course, if the phase
fluctuations responsible for the suppression of 7.") are only
weakly sensitive to the band structure parameters [33], then the
Eliashberg transition temperature 7" and the BKT transition
temperature 7, should be simply related by a constant «,
T. = aTC(hS). The fact that T, scales linearly with sin 6y in
our QMC simulations suggests that this is indeed the case.

We can also compute the pairing susceptibility x%(T)

within the hot-spots Eliashberg approximation. At the QCP, we

Vfp
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FIG. 5. Dependence of the superconducting transition tempera-
ture on the interaction strength. For three values of the band dispersion
parameter §/¢, we show the QMC results for 7., in units of the
hopping parameter ¢ and normalized by the corresponding value of
sin By, as function of the squared coupling constant A2 (in units of 8¢)
describing how strong the electrons interact with AFM fluctuations.
The system size is L = 12. The dashed line, which denotes a A2
dependence, has the same slope as in Fig. 3(b), and is expected
from the analytical hot-spots Eliashberg solution of the spin-fermion
model. The absence of the data point corresponding to /¢ = 0.8 and
A% = 4.5¢ is because 7, did not converge as a function of the system
size for these parameters.

obtain an expression of the form of Eq. (2), with the universal
function f{%)(T'/T.) plotted together with the collapsed QMC
points in Fig. 4. The overall agreement between the two
curves is evident and, surprisingly, holds over a rather wide
temperature range. This confirms our previous conclusion
that f.;(x) arises from hot-spots properties. The fact that
the analytical function f$(T/T.), which is insensitive to
BKT physics, captures well the behavior of the QMC-
derived function fp.;(T/T.) suggests that vortex-antivortex
fluctuations characteristic of the BKT transition do not play
a major role in our QMC simulations. Indeed, for all system
sizes studied, xpair(7) does not show any indication of an
exponential temperature dependence near 7.

An important prediction of the hot-spots Eliashberg ap-
proximation is that 7, increases not only with sin 6 but also
with A2. As a result, if the hot-spots Eliashberg approximation
is correct, T, would not be bounded and could increase
indefinitely as function of the interaction parameter A. To
verify this property, we chose three band dispersion parameters
and obtained T, for several values of A. As shown in Fig. 5, we
find a reasonable scaling of 7,/ sin 6,s with A? for moderately
large values of the interaction parameter, i.e., A2 of the order
of the bandwidth 8¢. The slope of this line is the same as
that in Fig. 3(b). Note that for A =0, we have a system
of noninteracting electrons with yp.i = 2Ny In (%), implying

that 7, = 0. More interestingly, for % 2 2, we start observing
strong deviations from the A2 behavior, signaling the failure of
the hot-spots Eliashberg approximation. Furthermore, in this
regime, T, increases very mildly and seems to saturate.

To shed light on this behavior, we note that a key

approximation of the hot-spots Eliashberg approach is that
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the momentum associated with the hot-spots typical energy
scale—also called the hot-spots width, 8gy, ~ a~'/T./y—is
small compared to the Fermi momentum g ~ 1/a. However,
because both 7. and )/’1 increase with A2, the hot-spots
width 8qy also increases with A2, and eventually becomes
comparable to g for large enough values of A. In this situation,
the whole Fermi surface becomes hot and effectively behaves
as a “large hot spot.” In this case, as shown in Appendix B, the
system still has a single energy scale at the QCP, but instead
of Eq. (7) it is given by

2
Aqep x Po(%)y X poUF $in By, (8
where p( is a momentum scale associated with the size of
the Fermi surface, and therefore is not a hot-spot property.
Thus, in this limit, 7" becomes independent of A and
saturates. A similar behavior was found in Ref. [27] for the
one-band spin-fermion model. Therefore, we can attribute
the near saturation of 7, observed in our QMC results to a
crossover from pairing dominated by the hot spots to pairing
dominated by the entire Fermi surface. Naively, in the latter
case, one would expect 7, to be more sensitive to the Van Hove
singularity. Interestingly, our QMC results for g—: =4 do not
reveal a sharp enhancement near § = ¢/4 (see Appendix B).
One possible reason for this behavior is that the Fermi surface
properties become less important when interactions become
too strong. While a detailed analysis is beyond the scope of this
paper [34], future analytical studies of the spin-fermion model
near a Van Hove singularity could shed light on this behavior.

V. CONCLUDING REMARKS

In summary, we showed that within the spin-fermion model
the SC properties near an AFM quantum critical point, includ-
ing both the transition temperature 7, and the temperature-
dependent pairing susceptibility xpir, are dominated by the
properties of the hot spots, while being rather insensitive to the
global properties of the Fermi surface. More specifically, the
functional dependencies of T, and xp;r inferred from our QMC
results, given by Eqgs. (1) and (2), are very well captured by
an approximate analytical solution of the spin-fermion model
that focuses on the impact of the Landau damping on the
pairing interaction. In other words, the hot-spots Eliashberg
approach provides an excellent approximate solution to the
spin-fermion model, which presumably should hold also for
systems with different types of band dispersions beyond the
rather artificial two-band case. It is surprising that such an
approximation works well even for moderately large values
of the interaction A% between the AFM fluctuations and the
low-energy electronic states. However, our combined QMC-
analytical analysis also reveals that when A% becomes larger
than the electronic bandwidth, the hot-spots approximation
fails. Interestingly, at this crossover from hot-spots-dominated
pairing to Fermi-surface-dominated pairing, 7, seems to start
saturating, signaling that the maximum possible 7, value for
this model has been achieved.

Our results have important implications for the understand-
ing of quantum critical pairing in general. On the one hand,
by establishing that the properties of the hot spots govern the
SC properties of the low-energy spin-fermion model, it offers
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important insights into which of the many system parameters
should be changed to optimize T, in an ideal system. For in-
stance, it becomes clear that systems with nearly nested Fermi
surfaces, where sin 6y is small, despite having an abundance of
low-energy magnetic fluctuations, have a much smaller transi-
tion temperature than systems with non-nested Fermi surfaces,
where sin 6y is larger. Conversely, our results establish robust
and well-defined benchmarks that allow one to assess whether
the SC state obtained in other microscopic models—or even
the superconducting state observed in actual materials—falls
within the “universality class” of the low-energy spin-fermion
model. Two such benchmarks, for instance, are the linear
dependence of 7. on sin6 and the saturation of 7, for
large interactions. Large-cluster DMFT simulations of the
Hubbard model [18-20] may be able to test these benchmarks
and elucidate whether the superconducting properties of the
Hubbard model are determined by hot-spots properties or
whether they depend on physics beyond the spin-fermion
model. On the experimental front, the most promising material
candidates that show signatures of AFM quantum criticality
near optimal doping are electron-doped cuprates and isovalent-
doped pnictides. As for hole-doped cuprates, although they do
have a putative AFM quantum critical point, they also display
phenomena that have yet to be observed in QMC simulations
of the spin-fermion model, such as additional intertwined
ordered phases [35] and a transition from small to large Fermi
surface without an obvious accompanying order [36]. One
interesting possibility is to investigate how pressure affects
T, in these compounds, and correlate these changes with the
pressure-induced modifications of the hot-spots properties.
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APPENDIX A: SPIN-FERMION MODEL: HOT-SPOTS
ELIASHBERG APPROXIMATION

1. Calculation of T,

The hot-spots Eliashberg approximation consists basically
of three steps (see for instance Refs. [10,14]): (i) the bosonic
self-energy TI1(q,w,) is computed within one loop; (ii) the
normal and anomalous parts of the fermionic self-energy
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2(q,w,) are solved self-consistently within one loop, without
vertex corrections; (iii) the resulting gap equations are solved
only at the hot spots. In this approximation, the electronic band
dispersions are linearized in the vicinities of the hot spots,
ik ~ vp,; - (kK — Kys). For the specific band dispersions of our
model, because the hot spots are always along the diagonal
|ke| = |ky|, we have |vp ;| = v for all hot spots, with

o= () ]

Another quantity that also depends on the band dispersion
parameter § is the angle between the Fermi velocities of a
hot-spot pair:

(AD

2(8/1)
1+ 8/1)*

Note that the angle is always defined such that sin 6y > O.
After computing the one-loop bosonic self-energy, we find the
renormalized propagator:

sin Gy = (A2)

Q
XN @iR) =7+ qCa’ + % (A3)

where 7 = r — I1(0,0) is the renormalized mass term, and the
Landau damping coefficient is given by
v sin Gy
Y=""aN (A4)

Here, A is the Yukawa coupling constant, and N is the
number of hot-spots pairs, which in our model is N =
4. To compute the one-loop self-consistent self-energy, it
is conven@ent to work on Nambu space, defined by the
spinors V7, = (cl];T,c,ki), and ], = (dy, gr-d-x—q))- The
self-energy is then given by

« 22 A

s = "gv > xtk = p)Gap

P

where n, = 1,2,3 for Ising, XY, and Heisenberg spins,
respectively. Here, B is the inverse temperature, V = L? is
the volume of the system, and k = (w,,Kk). Hereafter, we will
measure all momenta in units of the inverse lattice spacing
1/a. To proceed, we parametrize the fermionic self-energy
as f]i,k =1 —Zipiw,to + i xt3 + ¢i k71, where T are Pauli
matrices in Nambu space. The normal components of the
self-energy are thus expressed in terms of Z; ; and £; x, whereas
the anomalous part, proportional to the superconducting gap, is
expressed in terms of ¢; . From Dyson’s equations, we obtain
the dressed Green’s function:

A Zijiwy + & kT3 + @ik T
G =T e 1 92
ik@n T T Py

(AS5)

(A6)

with renormalized &;x — &;x + ¢ k. Substitution back into
Eq. (AS) and linearizing in ¢;, we find the self-consistent
equations

np)? . :
BV > x(k—pio, — iwy)
WO, P

qupl'a)m
N2 2.2 )
ZZ,pwm+82,p

(I-Zpiw, = —
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np)? : ,
e =— > x(k—pio, — ioy)

BV i~

(%)
x | =—F—— ).
ngw%—f—sip

Analogous equations hold for Z, ; and ¢, ;. Note that in the
Eliashberg approximation, the bosonic propagator yx is not
calculated self-consistently; i.e., the bosonic self-energy is
computed using the noninteracting Green’s functions [10].

To proceed, we solve these equations only at the hot
spots, and therefore ignore the momentum dependence of the
quasiparticle weight Z and of the gap ¢. Within the Eliashberg
approximation, we only need to consider the variation of the
bosonic propagator with respect to the momentum parallel to
the Fermi surface, x(q,i€2,) ~ x(q),iS2,). These key aspects
of the hot-spots Eliashberg approximation highlight the fact
that the bosonic degrees of freedom are much slower than
the fermionic ones. Using these approximations, one can
then perform the integration over momentum in the previous
expressions by changing coordinates to (py, p ), i.e., momenta
parallel and perpendicular to the Fermi surface near the hot
spots. As aresult, &; , = vpp,, and one obtains

(A7)

Z(n) =1+ "”)‘ a = > Veseon wm)sgrf”"’), (A8)
n,,,\ T P(wm)
P(w,) = Z Vosr(@n = 0n) oo (A9)

(2

To write these expressions, we note that Z; = Z,, since the
Fermi velocities are the same at both points of the hot-spot
pair, and ¢, = —¢; is the only possible solution to the gap
equations. The pairing interaction is given by

Po

2 dp 1
Vpair(Qn) =/ —1

= e (A10)
o wptAF A+ |Qul/y

where pp ~ O(1) is an upper momentum cutoff related to the
size of the Fermi surface in the Brillouin zone. This momentum
scale is to be compared to the typical “momentum width” of
the hot spots, Spns = +/27 1, /y, determined by comparing
the frequency and momentum dependent terms in Eq. (A3)
for the energy scale 2, = 2w T,. In the hot-spots Eliashberg
approximation, py >> 8pps, and we can replace py — oo in the
previous expression, yielding

1
Vi air(Qn) =i\l = s (All)
’ 7+ 1ul/y
Therefore, the Eliashberg equations become
A sgn(w,,
Zo =1+ 5/ 22 Y enten),
|n—m|—|—2nT n+;
(A12)
A m
Sln) = —— / QCP (W)
w fin—m| + 2% Z(wn)lm + 3|’
(A13)
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where we introduced the energy scale:

A . npA? 2 y
=) 32 -

The key point is that at the QCP, 7 = 0, and the only energy
scale in the problem is given by Aqcp (a similar behavior is
found slightly away from the QCP, as long as 7 < 27w T./y).
Therefore, the superconducting transition temperature at the
QCP is set by the only energy scale in the problem, i.e.,
T. = aAqcp, wWhere « is a number (no cutoff is necessary, in
contrast to the BCS case). According to our numerical solution
of the Eliashberg equations, we find o & 0.56, in agreement
with previous calculations [14,31]. Note that, as pointed out in
Ref. [14], when 7 = 0, the term m = n in the sum that appears
in the determination of Z(w,) is exactly canceled by the term
m = n in the sum that appears in the determination of ¢(w,).
This is easily seen by defining the pairing gap A = ¢/Z, and
separating out the m = n term from Eqgs. (A12):

Z( ) AQCP 2T
W) — ,/
Fy o n+ l|
/AQCP sgn(w,,)
n—+ % '

wm5éwn |n - m| + 57 27TT

A 2n T
A(wn>[2(wn>— == fy |n+
/AQCP

Therefore the m = n term does not enter into the linearized
gap equation, and that there is a finite superconducting
transition temperature in the limit » — 0. It is important to
note that A2/ N does not necessarily have the same bare value
that enters the Hamiltonian in the QMC simulations, since
magnetic fluctuations are known to effectively renormalize
the interactions. If nevertheless we use the bare values of A
and N to estimate 7., i.e., A2 =8¢ and N = 4, we would
get T, /t ~ 0.14 sin 6y, which is about 10% larger than the
BKT superconducting transition temperature obtained from
the QMC simulations.

It is also instructive to consider the opposite limit in which
the entire Fermi surface becomes hot, i.e., pg < §pns. This
is certainly the case when 27 T, > y; since T,y ~! o A2, this
means that this limit is achieved for large values of the Yukawa
coupling. In this case, the pairing interaction becomes

nikz Sin By
32N

(Al4)

(A15)

A (wnl )

_ 7y Im+ 3
|n m|+2nT 2

(A16)

o ;ﬁwn

Po/ T
F+1Qul/y

As aresult, at the QCP, 7 = 0, there is still only one energy
scale in the Eliashberg equations, now set by

Vpair(Qn) = (A17)

_ A2 in Gy
Aqcp = @("b )L = R, (A18)

2 8T N
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The Eliashberg equations become

o, L (Ager 1 sgn(w,)
Z(a)n)_1+27r( 7 )Z ,

|I’l - m| + 57 27rT n+ %
(A19)
_1 [\QCP> ! P(@n)
(A20)

Therefore,at7 =0, T, = 6{1~\Qcp becomes independent of the
Yukawa coupling, and may depend on additional properties
of the Fermi surface, as indicated by the presence of the
momentum scale py in 1~\Qcp. Note that due to similar
arguments described in Eq. (A15), the n = m term does not
appear in the linearized gap equation.

2. Calculation of the pairing susceptibility

To compute the static pairing susceptibility in the sign-
changing gap channel, we first introduce in the Hamiltonian
the pairing field A:

SH = =20 (cxye—ky — dipd—xy + Hee).
k

(A21)

Here the factor of 2 is included so that the definition of
the pairing vertex is consistent with that used in the QMC
simulations. In Dyson’s equation, this term can be incorporated
in the self-energy, 3, — 3; — 2A1,. Repeating the same steps
as above, the only modification is in the gap equation:

d(wm)

(W, — — 1L 2A.
par 0 = ) Som]

¢(wn) =

W

(A22)

We considered the linearized equation because we are
interested only in the susceptibility of the disordered state,
where ¢ = 0. Defining n(w,) = d¢(w,)/dA, we obtain a
self-consistent equation for n(w,):

nbk T n(wn)
n(w,) = wZ Vosr(@n = @) 70 = +2, (A23)
1 [Aqcp 1 n(wm)
n) — 5 2
n(on) = 30\ =7 %:«/ﬁn—ml Z(wm)|m + 1| *
(A24)

Now, the static pairing susceptibility is given by
Xpair = X(q = 0.iQy — 0) = da Y 2{ckrciy — dird—y,).
k

(A25)

&Pk
where k = (w,,k)and )", =T )", [ Gy Because the mean
value is precisely minus the anomalous part of the Green’s

function, ¢; x, given by Eq. (A8), we obtain

d’k n(wy)
y=A4T .
Ko ;/ Q27n)? Z(w,)?w? + &}

(A26)
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Note that, for A = 0 (noninteracting electrons), we have
Z(wy) = 1, n(w,) = 2, and the equation above reduces to the
well-known BCS expression

Xpair = 8T Z
wy k

=4 GG (—k)

ik

w? —i—ek

=2NsIn é (A27)
T

where Ny =4 f %5(81() is the total density of states at
the Fermi level. The factor of 4 arises due to band and spin
degeneracies.

For A # 0, it is convenient once again to integrate along
directions parallel and perpendicular to the Fermi surface,
yielding

n(wn)

Po
A28
2m2vp wz Z(wy)|n + 3 (A28)

Xpair =

where pg is the same quantity as defined in the previous

section. Because the equations for n(w, ) and Z(w, ), Eqs. (A23)

and (A12), depend only on T /Aqcp T/TC, it follows that

the susceptibility is of the form yp.ir(T) = Apair fpalr( ), where

Apair depends on the Fermi surface properties (as 51gnaled by
Do above), but fpqir( TL-) is a universal function.

In computing xp.; numerically, it is important to keep in
mind that as higher temperatures are considered, the effect
of the bandwidth becomes more important, as the bandwidth
8t provides a natural energy cutoff for the Matsubara sum.
Note that this is not an issue for the computation of T, since
T, < 8t always. Because 8¢ is a hard cutoff in real frequency
space, to capture its effects in Matsubara frequency space, we
follow Ref. [31] and introduce a soft cutoff:

1
exp [(w, — 8t)/wp] +1°

This function appears not only in the Matsubara sum present
in Xpair, but also in the self-consistent equation for ¢ (w,) via

Y(wy) = (A29)

_ I [Aqce
n(w,) = 2T (w,) + =V T
» Z T (@,) Y (wn) n(wm)
Vin=ml  Z(wn)|m + 3|

(27

]. (A30)

For the plot in Fig. 4(b) of the main text, we used wy =
1.6¢. Changing this parameter slightly does not affect the main
properties of Xpair-

APPENDIX B: DETERMINANT QUANTUM
MONTE CARLO

The technical details of the implementation of the de-
terminant quantum Monte Carlo (QMC) for the two-band
spin-fermion model with XY spins are the same as those
extensively presented in Ref. [25], co-authored by two of
us. As explained in the main text, in this work our goal is
to establish the band structure parameters that determine 7,
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and )pair- Our procedure is the following: for a given set
of parameters, we first determine the approximate location
of the AFM quantum critical point 7. and then determine
T, from the condition that the superfluid density p, reaches
the BKT value 27./m. The static pairing susceptibility is
computed directly. In this appendix, we provide more details
on how these three quantities are determined for a given set of
parameters (3, L, A2), characterized by the band parameter
6/t =0.2,0.3,0.4,0.5,0.6,0.7,0.8, the system size L =
8, 10, 12, 14, and the squared coupling constant Az/t = 8.

1. Antiferromagnetic quantum critical point (AFM-QCP)

The AFM-QCP is reached by tuning the bare mass term
of the magnetic propagator to r =r.; see Eq. (6) of the
main text. Determining the precise location of the QCP is
a very difficult task, not only due to the BKT character of the
AFM transition at finite temperatures (since we are dealing
with XY spins), but also because once superconductivity sets
in, it competes with AFM order and shifts the location of
the QCP from r. to 7. < r.. This last behavior was indeed
observed in the previous QMC studies of Ref. [25]. However,
for our purposes, it is not necessary to precisely determine
the position r. of the QCP. As explained in the previous
section, the onset of superconductivity within the hot-spots
Eliashberg approximation of the spin-fermion model depends
on two parameters, Aqcp X A2 sin 6y, and the renormalized
mass of the magnetic propagator, 7; see for instance Eqs. (A11)
and (A12). Thus, as long as 7 < 27 T, /y, the superconducting
properties of the system are effectively the same as those at the
QCP. Therefore, to probe quantum critical pairing, we search
for a value of r sufficiently close to r. such that 7 is very small,
but nonzero, since we must ensure that the system is not in the

AFM ordered phase.
For this purpose, we first define the uniform magnetization:
_ 1
M= e Xr:/dr M(r, 7). (B1)

To obtain a good estimate of 7., we extract from the QMC
simulations both the Binder cumulant,

2
2(1\7[2)2 >

and the static spin susceptibility,

(B2)

1 _
xm = W<Z Y M(r,7)- M(r/,f’)> = BL*(MP). (B3)

r,T r,t

Here, (---) denotes thermal averaging. For XY spins deep
in the ordered phase, 5 = %, whereas B =0 deep in the
disordered phase. Similarly, in the ordered phase, x,; scales
with BL>~", where n changes continuously as function of  and
T, approaching n = 0 deep in the ordered phase. Therefore, at
any finite temperature, a rough estimate for the AFM transition
is given by the value of r in which yx,,/(BL?) shows a kink
and B changes sharply from 0 to 1/2. In Fig. 6, we show
the behavior of these two quantities, plotted as function of
r for different fixed temperatures, for the set of parameters
6/t, L, Az/t) = (0.6, 12, 8). On the scale shown in this figure,
both B and y,/(BL?) are nearly temperature independent at
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FIG. 6. Binder cumulant B3 (a) and static spin susceptibility xu
(b) as a function of r for various inverse temperatures. The set of
parameters used here is (§/¢, L, A2/t) = (0.6, 12, 8). The inverse
temperature f is in units of 1/¢.

low temperatures (but still above T), therefore providing an
estimate for r..

Next, to improve our estimate of r., we compute the r
dependence of the mass of the bosonic propagator at low
temperatures, ¥ = X;(q = 0,i2,, = 0), as shown in Fig. 7(a).
The estimated r, corresponds to the r value that has the smallest
7, before however it reaches zero, since we want to study the
system in the nonmagnetically ordered state.

In the same figure we also present the frequency and
momentum dependencies of x A;](q,iQ,,). In agreement with
a recent study by some of us [32], Xﬁjll(q =0,i2,) shows
a rather linear dependence on the Matsubara frequency,
indicating the presence of Landau damping, which in turn
plays a key role in the hot-spots Eliashberg approximation;
see Eq. (A3). Similarly, X&l(q,iQn = 0) is consistent with a
¢* behavior for small momentum.

2. Pairing susceptibility and superfluid density
The static pairing susceptibility is defined as

1
(@) — E tood ot
Xpair = ,BLz — \/ryr/(ra(ryt)ra(r , T ))3 (B4)
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FIG. 7. Panel (a) shows the renormalized mass term of the
magnetic propagator, 7, as function of r.. The set of parameters
used here is (8/¢, L, A%/t) = (0.6, 12, 8). The inverse renormalized
magnetic propagator ¥ ~'(q,if2,) at r = r.. is plotted as function of
2, for @ = 0 (b) and as function of ¢ for €, = 0 (¢). In (b) and (c),
the inverse temperature is 8 = 7/1.

where

Cu(r,7) = iagﬂ[ca(r,r)cﬂ(r,r) + (—1)dy(r,7)dp(r,7)]
(BS)

is the pairing field associated with the sign-changing gap
function (¢ = 1) or with the sign-preserving gap function
(a =2). o, is the Pauli matrix in spin space. In Fig. 8, we
plot both pairing susceptibilities, in units of the noninteracting
susceptibility Xpair0, as a function of r and as a function
of temperature for the set of parameters (8/7, L, kz/ 1) =
(0.6, 12, 8). Compared with Fig. 6, it is clear that while
XSake/ Xpair,0 s strongly peaked at r = re, 3/ Xpair.0 is always
smaller than 1, implying that there is no enhancement in the
sign-preserving channel.

Because the system is two-dimensional, the superconduct-
ing phase transition is of the BKT type. Therefore, to determine
T, we search for the temperature where the BKT condition is
satisfied:

2
ps(Tc) = —T,
T

where py is the superfluid density. As explained in Ref. [25],
the latter can be extracted from our QMC simulations via
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FIG. 8. Static pairing susceptibility x\¢, in the sign-changing
gap channel [a = 1; panel (a)] and in the in the sign-preserving
gap channel [a = 2; panel (b)] as function of the distance to the
QCP at r = r.. The inverse temperature § is in units of 1/¢ and the
susceptibilities are normalized by the noninteracting susceptibility
Xpair,0 Obtained by setting A = 0. The set of parameters used here is
(8/t, L, A*/t) = (0.6, 12, 8).

the current-current correlation function A;; according to o, =
limz . pg(L), with

1 2
XOEEDS <AM (qa = 03 = 0.i%, = 0>> (B6)

a=x,y

1 27 .
- g Z <Aaa (qa = O,% = Tvlgn = O>>v (B7)

a=x,y

where @ = y,x whena = x,y and

1
Ajj(r,7) = W<./ dt Zji(l‘—F r;, 7+ Tl)j_/(l‘l,fl)>,

(B8)

with j; denoting the standard current operator. Note that the
model studied here is symmetric under the combination of a
7 /2 rotation, a particle-hole transformation, and the exchange
of the two bands, implying A..(r,7) = A, (F,7), where r
and T are related by a m/2 rotation. Figure 9 shows p, for
various system sizes for the band dispersion 6/f = 0.6 and
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FIG. 9. Superfluid density p,(L,T) as function of temperature 7
for the band dispersion §/¢ = 0.6 and coupling constant A> = 8¢ for
various system sizes L. The BKT transition temperature for each
system size is determined by the condition p,(L,T,) = %TC

the interaction parameter A2 = 8¢. The estimated transition
temperature T.(L) for each system of size L is determined
as the intersection between the interpolated curve of p,(L,T)
and %T. The error bars in p; arising from the QMC sampling
are used to estimate the error bars of 7, in the following way:
besides the interpolation curve passing through the average
values of p;, we also determine two additional interpolation
curves passing through the top and the bottom of each error bar
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FIG. 10. (a) The QMC extracted T,.(L) as function of the inverse
system size 1/L for all band dispersion parameters §/¢. Interpolated
ps(T) curve for §/t = 0.4 (b) and for §/t = 0.8 (¢).
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related to py. The error bars in 7, are estimated by determining
when these two additional curves cross %T.

3. Thermodynamic limit of the BKT transition temperature

To estimate the thermodynamic value of the BKT transition,
we first plot the extracted T.(L) as a function of 1/L in
Fig. 10(a). For most of the values of §/¢ that we studied—
specifically, 6/t =0.2,0.3,0.4,0.5,0.7—we found a near
saturation of T.(L) for the two largest system sizes studied,
ie, L=12 and L =14 for 0.4 < §/t < 0.8, and L =10
and L = 12 for 0.2 < §/t < 0.3. We verified that the reason
for this behavior is that the superfluid density curves for
the two largest system sizes agree within statistical error
bars near the BKT transition. We illustrate this behavior for
the case §/t = 0.4 in Fig. 10(b). Therefore, for these band
dispersions, we estimate the thermodynamic value for the
transition temperature to be given by 7¢.(Lax)-

For the band dispersion with 8/t = 0.6, even though
T, nearly saturates for the two largest system sizes, the
corresponding superfluid density curves are not on top of
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FIG. 11. (a) Xg;féz) of the finite-size system L = 12 plotted as
a function of the inverse temperature 8 (in units of 1/¢) at the Van
Hove point (§/¢t = 0.25) and at §/t = 0.6. (b) Comparison between
the density of states of the finite-size system, N;L:m, and the density
of states computed analytically, N;. The results match except very
close to the Van Hove singularity, where the divergence is cut off by

finite-size effects.
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each other within the QMC statistical error bars. This is also
the case for the band dispersion with §/¢ = 0.8, as shown
in Fig. 10(c). Moreover, for this band dispersion, 7, does
not really seem to saturate for the two largest system sizes,
as shown in Fig. 10(a). For these two systems, 7.(Lyax)
should therefore be understood as an upper bound value for
the thermodynamic value of 7,. In these cases, we can also
estimate the lower bound value by the condition that the
ps (T, Lmax) curve becomes larger than p,(7T, L) for one of the
smaller system sizes studied (in our case, L = 12). Such a
criterion is based on the fact that, in the disordered phase,
finite-size effects generally make p,(7,L) larger for smaller
system sizes. The extracted lower boundary values for 7, are
depicted as the stars in Fig. 3 of the main text. Clearly, the
only system where finite-size effects are more pronounced is
the one with §/t = 0.8.

4. Density of states of the finite-size system

Here we demonstrate that the bare pairing susceptibility
Xpair,0 N our simulations is sensitive to the proximity to the
Van Hove singularity, despite the modest sizes of the systems.
From Eq. (A27), we have

Xpair0(B) = 2Ny In AB, (B9)

where A is an upper cutoff related to the band structure. In
Fig. 11(a), we show the exactly calculated pairing susceptibil-
ity for a system of size L = 12, Xéﬁ;m. We also show linear
fittings to the expression above, from which we can extract
the density of states of the finite-size system, N}L:m. In

Fig. 11(b), we compare N}Lzm to the analytically calculated

Ny = —% Dk lims_.o, G(k,id) as afunction of §/¢. The factor
of 4 arises from spin and band degeneracies. The agreement
between N"='? and Ny is evident, and the only effect of the
finite size of the system is to cut off the divergence of N, at
the Van Hove point.
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FIG. 12. T, as a function of sin(6,,) for A?/8¢ =1, where
T. scales with A2, and A?/8t =4, where T. is in the saturation
regime (see Fig. 5 of the main text). The linear dependence
of T, on sinfs remains robust for larger values of the inter-
action parameter A. The results in this figure are obtained for
L=12.

5. Behavior of T, for larger interaction parameters

To complement the discussion in Fig. 5 of the main text,
in Fig. 12 we present T, as a function of sin6fy for both
2%/8t =1 and A?/8t =4, which is the largest interaction
parameter studied. For the latter, T, is in the saturation regime,
as shown in Fig. 5 of the main text. Note, however, that T, is
still linearly proportional to sin 8y, without any enhancements
due to the Van Hove singularity at §/¢t = 0.25. Interestingly,
the extension of the hot-spots Eliashberg calculation discussed
in Eq. (A19) still predicts a linear dependence of 7, with sin 6y
even when 7, becomes independent of A.
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