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Josephson effect in a multiorbital model for Sr2RuO4
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We study Josephson currents between s-wave/spin-triplet superconductor junctions by taking into account
details of the band structures in Sr2RuO4, such as three conduction bands and spin-orbit interactions in the bulk
and at the interface. We assume five superconducting order parameters in Sr2RuO4: a chiral p-wave symmetry
and four helical p-wave symmetries. We calculate the current-phase relationship I (ϕ) in these junctions, where
ϕ is the macroscopic phase difference between the two superconductors. The results for a chiral p-wave pairing
symmetry show that a cos(ϕ) term appears in the current-phase relation because of time-reversal symmetry (TRS)
breaking. On the other hand, this cos(ϕ) term is absent in the helical pairing states that preserve TRS. We also
study the dependence of the maximum Josephson current Ic on an external magnetic flux � in a corner junction.
The calculated Ic(�) obeys Ic(�) �= Ic(−�) in a chiral state and Ic(�) = Ic(−�) in a helical state. We calculate
Ic(�) in a corner superconducting quantum interference device (SQUID) and a symmetric SQUID geometry. In
the latter geometry, Ic(�) = Ic(−�) is satisfied for all the pairing states and it is impossible to distinguish a chiral
state from a helical one. On the other hand, a corner SQUID always gives Ic(�) �= Ic(−�) and Ic(�) = Ic(−�)
for a chiral and a helical state, respectively. Experimental tests of these relations in corner junctions and SQUIDs
may serve as a tool for unambiguously determining the pairing symmetry in Sr2RuO4.

DOI: 10.1103/PhysRevB.95.174518

I. INTRODUCTION

Strontium ruthenate (Sr2RuO4, or SRO) has attracted much
interest for its unconventional superconductivity below the
critical temperature Tc ∼ 1.5 K [1]. The constancy of the
Knight shift across Tc is strongly indicative of spin-triplet
pairing order [2–5]. Many theoretical studies have examined
the microscopic mechanism of spin-triplet pairings in this
material [6–20]. Exotic phenomena specific to spin-triplet
superconductors [21–25] are therefore naturally expected in
SRO. Although several studies have focused on the supercon-
ducting order parameter, the symmetry of a Cooper pair is
not yet fully understood. Five spin-triplet pairing states are
compatible with the tetragonal crystal structure of SRO [4].
One of these is a spin-triplet chiral p-wave state (denoted the
Eu state in the Mulliken notation) where the d vector is parallel
to c axis of the crystal. The other four candidates are called
spin-triplet helical states (denoted A1u, A2u, B1u, and B2u in
the Mulliken notation), where the d vectors lie in the ab plane
of the crystal.

According to the recently proposed topological classifi-
cation [26–30], all of the proposed superconducting states
are topologically nontrivial. Consequently, topologically pro-
tected Andreev bound states are expected at an SRO surface
[31]. Some experimental results are consistent with the
proposed pair potential. It has been suggested that the max-
imum Josephson current in Au0.5In0.5-SRO superconducting
quantum interference devices (SQUID) displays an odd-parity
pairing state [32].

Tunneling spectroscopy experiments also suggest the for-
mation of a dispersive surface Andreev bound state (SABS) at
the in-plane edges of SRO [31,33,34]. The dispersive SABSs
[35,36] are distinguishable from the dispersionless SABS in
a d-wave superconductor. The former generates a broad zero-
bias conductance peak (ZBCP) [37–39], whereas the latter
forms a sharp ZBCP [40–42]. Because SRO is a multiband
superconductor, the numerically determined energy dispersion
of an SABS in a multiband model is more complicated than
that in a single-orbital model [43,44]. Yada et al. successfully
explained the variety of conductance spectra observed in
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experiments [31] in terms of the three-band degrees of freedom
[45]. Several Josephson-junction experiments suggested the
presence of domain structures, detected from an anomalous
current-switching behavior [46–50]. These experimental find-
ings are consistent with the existence of both chiral and helical
p-wave pairing symmetries in SRO.

A chiral state is qualitatively different from the four helical
states because it breaks the time-reversal symmetry (TRS),
whereas the helical states preserve TRS [51]. Although the
presence or absence of TRS in SRO is an important issue,
experimental results remain controversial. TRS breaking can
be verified by observing a spontaneous magnetic field or a
spontaneous edge current. Theoretical studies have shown that
the amplitude of the spontaneous magnetization is detectable
experimentally [52] and that the edge current is robust with
respect to surface roughness [53]. Measurements of muon spin
resonance and of the Kerr effect have detected the presence
of an internal magnetic field [54,55], which in turn suggests a
chiral p-wave symmetry. On the other hand, scanning SQUID
experiments have not shown any signs of a spontaneous
magnetic field [56,57], which suggests a helical p-wave
symmetry. Several theoretical proposals have been put forward
to explain the absence of the edge current in SRO [16,58–61].
A resolution of this paradox requires an experimental test able
to distinguish unambiguously between a chiral and a helical
pairing symmetry.

In this paper, we present a theory of the Josephson effect
between a spin-singlet s-wave superconductor and a spin-
triplet p-wave superconductor by taking into account the three
bands of the SRO in addition to the spin-orbit interaction in
the bulk and at the interface. The importance of multiorbital
effects are apparent in various physical quantities [14,62].
Since spin-orbit coupling influences the current-phase relation
fundamentally, it is necessary that our theory consider a
three-band model. We calculated the current-phase relation
I (ϕ) in Josephson junctions, where ϕ is the macroscopic phase
difference between the two superconductors. We found that
cos(ϕ) appears in I (ϕ) for chiral p-wave pairing, owing to
TRS breaking, to ensure consistency with previous results [63].
However, cos(ϕ) is absent for helical pairing, thus reflecting
time-reversal invariance. In the case of helical pairing, sin(ϕ)
appears only in a three-band model. We also studied the
dependence of the maximum Josephson current Ic on an
external magnetic flux � in two types of SQUID geometries: a
corner SQUID and a symmetric SQUID. In a corner Josephson
junction and a corner SQUID, we found Ic(�) �= Ic(−�)
for a chiral state, whereas Ic(�) = Ic(−�) holds true for a
helical state. We show that the three-band character affects
the oscillation period of Ic(�). It is possible to determine the
pairing symmetry unambiguously by testing these relations
in SRO-based corner junctions and SQUIDs. In a symmetric
SQUID, the relation Ic(�) = Ic(−�) is satisfied in both chiral
and helical cases.

II. MODEL AND FORMULATIONS

This section introduces a model Hamiltonian for an
SRO/normal-metal (NM)/s-wave superconductor junction
system. First, we explain the Hamiltonian for bulk SRO,
which consists of three terms, Hkin, Hsoi, and Hpair. The first

term Hkin expresses the kinetic energy. Angle-resolved pho-
toemission spectroscopy (ARPES) measurements and first-
principles calculations have shown that SRO has three two-
dimensional Fermi surfaces [64–67]. These Fermi surfaces
were reproduced by considering three orbitals, i.e., the dxy ,
dyz, and dzx orbitals, in SRO. We can therefore consider a
three-band two-dimensional Hamiltonian constructed using
the tight-binding model:

Hkin =
∑
k,σ

ĉ
†
kσ

⎛
⎝εyz(k) g(k) 0

g(k) εzx(k) 0
0 0 εxy(k)

⎞
⎠ckσ , (1)

where k is a wave number, σ is the spin, and ĉkσ =
(cyz

k,σ ,czx
k,σ ,c

xy

k,−σ )T is the annihilation operator. The matrix
components of Eq. (1) are given by

εxy(k) = −2t1(cos kx + cos ky) − 4t2 cos kx cos ky − μxy,

(2)

εyz(k) = −2t4 cos kx − 2t3 cos ky − μyz, (3)

εzx(k) = −2t3 cos kx − 2t4 cos ky − μzx, (4)

g(k) = −4t5 sin kx sin ky, (5)

where t1, t2, t3, t4, and t5 are the hopping integrals up to
next-nearest-neighbor sites. The second term Hsoi denotes the
spin-orbit interaction in bulk SRO,

Hsoi = λ
∑

k,σ ĉ
†
kσ

⎛
⎝ 0 isσ −sσ

−isσ 0 i

−sσ −i 0

⎞
⎠ĉkσ , (6)

where sσ = 1 (sσ = −1) for σ = ↑ (σ = ↓). This term mixes
the spin and orbital degrees of freedom. The third term Hpair

expresses the pair potential in SRO. We chose spin-triplet
chiral and helical p-wave pairings in the following analysis.
In the chiral p-wave case, we considered a pair potential
which belongs to the Eu irreducible representation. In the
helical p-wave case, we considered two kinds of pair potentials
belonging to the Au and Bu irreducible representations. Using
the orbital-dependent d vector d�(k), the pair potential can be
expressed as

Hpair =
∑

�

ĉ�†

(
0̂ �̂�(k)

−�̂�∗(−k) 0̂

)
ĉ�, (7)

with ĉ� = (c�
k,↑,c�

k,↓,c
�†
−k,↑,c

�†
−k,↓)T , and �̂�(k) = id�(k) · σσy ,

where � denotes the orbital index. The five kinds of d vectors
are given by

dyz

Eu = ẑ�1(δ sin kx + i sin ky),

dzx
Eu = ẑ�1(sin kx + iδ sin ky), (8)

dxy

Eu = ẑ�2(sin kx + i sin ky),

dyz

A1u = x̂δ�1 sin kx + ŷ�1 sin ky,

dzx
A1u = x̂�1 sin kx + ŷδ�1 sin ky, (9)

dxy

A1u = x̂�2 sin kx + ŷ�2 sin ky,
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dyz

A2u = x̂�1 sin ky − ŷδ�1 sin kx,

dzx
A2u = x̂δ�1 sin ky − ŷ�1 sin kx, (10)

dxy

A2u = x̂�2 sin ky − ŷ�2 sin kx,

dyz

B1u = x̂�1 sin kx − ŷδ�1 sin ky,

dzx
B1u = x̂δ�1 sin kx − ŷ�1 sin ky, (11)

dxy

B1u = x̂�2 sin kx − ŷ�2 sin ky,

dyz

B2u = x̂δ�1 sin ky + ŷ�1 sin kx,

dzx
B2u = x̂�1 sin ky + ŷδ�1 sin kx, (12)

dxy

B2u = x̂�2 sin ky + ŷ�2 sin kx.

In these pair potentials, we only considered the intraorbital
pairing cases. Furthermore, we introduced anisotropy in the
pair potential in quasi-one-dimensional dyz and dzx orbitals by
setting δ < 1. In addition, the crystalline symmetry of SRO
allows different magnitudes of the pair potential for the two-
dimensional dyz orbital (�1) and the quasi-one-dimensional
dyz and dzx orbitals (�2).

In the NM region between an SRO and an s-wave
superconductor, we considered a single-orbital model given
by

HNM =
∑
kσ

(εk − μ)c†kσ ckσ , (13)

where ckσ is the annihilation operator for an electron in the
NM. The energy dispersion of the NM is given by

εk = −2t1[cos(kx) + cos(ky)] − 4t2 cos(kx) cos(ky) − μn,

where t is the hopping integral between nearest-neighbor sites.
We took into account the interface Rashba spin-orbit coupling
in the NM layer next to the SRO, which is given by

HRSOI = λR sin kyσ̂z. (14)

In the spin-singlet s-wave superconductor region, we consid-
ered the on-site pair potential as well as the kinetic-energy
term in Eq. (13):

Hs-wave =
∑

k

�eiϕc
†
k↑c†−k↓ + c.c., (15)

where ϕ is the macroscopic phase of the pair potential relative
to the interface normal of the p-wave superconductor. These
three parts are coupled via hopping at the interface. The
magnitude of the hopping at the interface between the NM
and the s-wave superconductor was chosen to be the same
as in the NM. The SRO-NM interface displays three kinds
of hopping: txy , tyz, and tzx . The first, txy , corresponds to the
hopping between the NM and the dxy orbital of SRO. Likewise,
tyz (tzx) also denotes the interface hopping between NM and
dyz (dzx) orbital of SRO.

We calculated the current-phase relation of the Josephson
current in the single junction [see Fig. 1(a)] based on a lattice
Green’s-function method that takes into account the Andreev
reflection and Andreev bound states at the interface [68,69].
For that purpose, we calculated the Green’s function in the
superconducting SRO/NM/s-wave superconductor junction.
These three regions are aligned in the (100) direction, with

c

(y)

a

Ia(ϕa)
(b)

x−1 x0 x1 x2

NM

b

(x)
(z)

SRO s−wave

(a) NMSRO s−wave

x−2 x3

FIG. 1. (a) Lattice model of the junction considered in this paper.
(b) Schematic illustrations of an SRO (Sr2RuO4) /NM (normal
metal)/s-wave superconductor single Josephson junction.

the boundaries for the s-wave superconductor and SRO
located at x � x−2 and x � x3, respectively. In the numerical
calculations, four NM layers are inserted between these two
superconductors at x−1 � x � x2. Since we are considering
flat interfaces in the ballistic limit, ky is a conserved quantity.
In order to obtain the Green’s function in this junction, we first
calculated the surface Green’s functions of the semi-infinite
SRO and spin-singlet s-wave superconductor, where the
surfaces are not coupled to the NM layer. These calculations
were based on the recursive Green’s function method, using
Möbius transformation [70]. Next, we added the two NM
layers on these surfaces with the following recursive equation:

ĜL
n (ky,iωl) = (

iωl − ε̂n(ky) − t̂n,n−1Ĝ
L
n−1(ky,iωl)t̂n−1,n

)−1
,

(16)

ĜR
n (ky,iωl) = (

iωl − ε̂n(ky) − t̂n,n+1Ĝ
L
n+1(ky,iωl)t̂n+1,n

)−1
,

(17)

where GLI
n (ky,iωl) stands for the surface Green’s function for

the system on the left (right) side of the interface, with x � xn

(x � xn). The operators ε̂n(ky) and t̂n,n−1 represent the local
and nonlocal parts of the Hamiltonian. Then, we obtained
two surface Green’s functions, defined for x � x0 and x � x1.
These two systems are combined in the equations

Ĝ00(ky,iωl) = {[
ĜL

0 (ky,iωl)
]−1 − t̂01Ĝ

R
1 (ky,iωl)t̂10

}−1
,

(18)

Ĝ11(ky,iωl) = {[
ĜR

1 (ky,iωl)
]−1 − t̂10Ĝ

L
0 (ky,iωl)t̂01

}−1
.

(19)

Then, we obtained the nonlocal Green’s functions in the
s-wave/NM/SRO junction as follows:

Ĝ01(ky,iωl) = ĜL
0 (ky,iωl)t̂01Ĝ11(ky,iωl), (20)

Ĝ10(ky,iωl) = ĜR
1 (ky,iωl)t̂10Ĝ00(ky,iωl). (21)

The Fourier transforms of Ĝ01(ky,iωl) and Ĝ10(ky,iωl) are
given by

Ĝ01(ky,τ ) = 1

β

∑
l

Ĝ01(ky,iωl)e
−iωlτ , (22)
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Ĝ10(ky,τ ) = 1

β

∑
l

Ĝ10(ky,iωl)e
−iωlτ , (23)

with β = 1/(kBT ) and where T is the temperature. The above
formulas for Ĝ01(ky,τ ) and Ĝ10(ky,τ ) can be expressed as

Ĝ01(ky,τ ) = −〈Tτ [Ĉ0(τ )Ĉ†
1]〉, (24)

Ĝ10(ky,τ ) = −〈Tτ [Ĉ1(τ )Ĉ†
0]〉, (25)

with

Ĉ
†
0 = (C†

0e↑ C
†
0e↓ C

†
0h↑ C

†
0h↓), (26)

Ĉ
†
1 = (C†

1e↑ C
†
1e↓ C

†
1h↑ C

†
1h↓). (27)

Thus, we obtained the current-phase relation I (ϕ) by using
these Ĝ01(ky,τ ) and Ĝ10(ky,τ ):

I (ϕ) = iet

h̄

∫ π

−π

Tr′[Ĝ01(ky,τ = −0,ϕ)

− Ĝ10(ky,τ = −0,ϕ)]dky

= iet

h̄

∫ π

−π

Tr′
1

β

∑
l

[Ĝ01(ky,iωl,ϕ)

− Ĝ10(ky,iωl,ϕ)]dky, (28)

where Tr′ is a partial sum of the diagonal elements of the
Hamiltonian, including only those matrix elements that refer
to the electron space.

Below, we define the model parameters that were used in the
calculations. For the hopping parameters in SRO, we assumed
t2/t1 = 0.395, t3/t1 = 1.25, t4/t1 = 0.125, and t5/t1 = 0.15,
based on first-principles calculations. Here, t1 is the nearest-
neighbor hopping parameter in the dxy orbital in SRO, which
first-principles calculations estimate as being approximately
230 meV [4]. Furthermore, the chemical potentials in each
orbital in SRO, μyz, μzx , and μxy , were chosen to yield the
following numbers of electron: nyz = nzx = nxy = 2/3. The
chemical potential in the normal metal, μn, was chosen so
that the number of electron is 2/3. The magnitude of the
spin-orbit interaction in the bulk SRO, expressed as λ, changes
these values. We set λ = 0.3 for consistency with quasi-
particle spectra obtained by angle-resolved photoemission
spectroscopy [4]. We chose the magnitudes of the pair potential
for the dyz and dzx orbitals in SRO to exceed that of the dxy

orbital, as determined previously by tunneling spectroscopy
[31,45]. The magnitude of the pair potential in the dyz and
dzx orbitals was set to �1 = 0.001t1. We set the magnitude of
the pair potential for the dxy orbital to �2 = 0.4�1. For the
quasi-one-dimensional nature of the pair potential for the dxy

orbital, we set δ = 0.1, based on the ratio of t3 to t4.
We assumed that an s-wave superconductor and an NM

are described by the same single-orbital model as that of the
dxy orbital in SRO. We set their chemical potentials μn to the
same level as the dxy orbital in SRO, in the absence of spin-orbit
interaction in the bulk SRO. The magnitude of the pair potential
of the s-wave superconductor was set to �s = 10�1. The
magnitude of the Rashba spin-orbit interaction at the interface
between NM and SRO, λR , depends on the microscopic

I/I
0

ϕ/π

1

0

−1

I/I
0

0−1 −11 10
ϕ/π

(a)Chiral (Single band)

(c)Helical (Single band) (d)Helical (Multiband)

(b)Chiral (Multiband)

−1

1

0

FIG. 2. Current-phase relation in the absence of interface Rashba
spin-orbit interaction (λR) for (a) the chiral p wave (Eu) in the single-
band model, (b) the chiral p wave (Eu) in the multiband model, (c)
the helical p wave (A1u) in the single-band model, and (d) the helical
p wave (A1u) in the multiband model.

electronic properties of the junction and was set to 0.3 in
this study.

III. RESULTS

A. Current phase relation

Figure 2 shows the current-phase relation in the absence of
interface Rashba spin-orbit interaction. Here, the Josephson
current I (ϕ) is decomposed into the Fourier series

I (ϕ) =
∞∑

n=1

I s
n sin(nϕ) + I c

n cos(nϕ). (29)

It is then normalized by I0, the maximum value of the Fourier
coefficients. Table I shows which of the Fourier coefficients
have nonzero values.

As shown in Figs. 2(a) and 2(c), the Josephson current is
almost proportional to sin(2ϕ) in the case where the first-order
Josephson coupling is absent. In fact, Table I shows that only
the sinusoidal terms with an even-number order are nonzero.
On the other hand, odd-order terms are nonzero in the case of

TABLE I. Fourier series of current-phase relation in the absence
of interface Rashba spin-orbit interaction.

√
(−) denotes coefficients

with a nonzero (zero) value.

I s
1 I c

1 I s
2 I c

2

(a) Chiral (single band) − − √ −
(b) Chiral (multiband)

√ √ √ √
(c) Helical (single band) − − √ −
(d) Helical (multiband)

√ − √ −
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I/I

0

ϕ/π

1

0

−1

I/I
0

0−1 −11 10
ϕ/π

(a)Chiral (Single band)

(c)Helical (Single band) (d)Helical (Multiband)

(b)Chiral (Multiband)

−1

1

0

FIG. 3. Current-phase relation I (ϕ) in the presence of interface
Rashba spin-orbit interaction (λR > 0) for (a) the chiral p wave (Eu)
in the single-band model, (b) the chiral p wave (Eu) in the multiband
model, (c) the helical p wave (A1u) in the single-band model, and (d)
the helical p wave (A1u) in the multiband model.

the multiband model, as shown in Fig. 2 and Table I [(b) and
(d)]. We confirmed that these odd-order terms are zero in the
absence of spin-orbit interaction (LS coupling) in bulk SRO.
We note that the cosine terms appear in the chiral p-wave case
but are absent in the helical p-wave case. The cosine terms
in the chiral p-wave case are nonzero even in the absence of
Rashba spin-orbit coupling λR . This is because the hopping
integral t5 (i.e., corresponding to interorbital hopping between
the dyz and dxz orbitals) is nonzero and spin-orbit coupling
in bulk SRO λ enhances the magnitude of the cosine terms.
When the opposite chirality of the pair potential is chosen with

dyz

Eu = ẑ�1(δ sin kx − i sin ky),

dzx
Eu = ẑ�1(sin kx − iδ sin ky), (30)

dxy

Eu = ẑ�2(sin kx − i sin ky),

the signs of I c
1 and I c

2 are reversed.
We plot the current-phase relations in the presence of

interface Rashba spin-orbit coupling (λR > 0) in Fig. 3.
Figure 3(c) shows no qualitative difference between the
Josephson currents in the presence or absence of interface
Rashba spin-orbit interaction, in the single-band model, and
in the case of helical pairing. On the other hand, cosine terms
appear as a result of the interface Rashba spin-orbit coupling
in the case of the chiral p-wave shown in Fig. 3(a) [63].
By contrast, there is no qualitative difference between the
current-phase relations in the presence or absence of interface
Rashba spin-orbit interaction in the multiband model, as shown
in Figs. 3(b) and 3(d) and Table II [(b) and (d)]. In the
most general case, where both the interface Rashba spin-orbit
interaction and bulk LS coupling in the multiband model exist,
we observe a qualitative difference between the chiral and

TABLE II. Fourier series of the current-phase relation in the
presence of interface Rashba spin-orbit interaction.

I s
1 I c

1 I s
2 I c

2

(a) Chiral (single band) − √ √ −
(b) Chiral (multiband)

√ √ √ √
(c) Helical (single band) − − √ −
(d) Helical (multiband)

√ − √ −

helical p-wave cases. The cosine terms I c
1 and I c

2 appear only
in the case of chiral p-wave pairing. This difference is due to
the broken TRS that occurs in chiral p-wave pairing. In the
following calculations for various junctions, we considered the
interface Rashba spin-orbit interactions and used the multiband
model.

In order to take into account the corner structure of the
junction, we show the relation between the current phase
relations in different orientations in Table III. The orientation
dependence affects the maximum Josephson current in a corner
junction or SQUID when it is written as a function of the
external magnetic flux �. Although the calculation of the �

dependence will be shown in next subsection, we first show
the relation between Ia(ϕa) and Ib(ϕb) indicated in Fig. 4.
This relation depends on the pairing symmetries specified in
Table III. This relation in chiral p-wave pairing is different
from that in helical p-wave pairing. Furthermore, in the helical
p-wave cases, the relation between Ia(ϕa) and Ib(ϕb) depends
on the irreducible representations of the pair potentials. This
affects the properties of the corner junction or corner SQUID,
as shown in the next subsection. Next, we show the relation
between the Ia(ϕa) and Ia(ϕa) indicated in Fig. 1. The equation
Ia(ϕ) = Ia(ϕ + π ) is valid for all pairings. This fact influences
the properties of a symmetric SQUID.

B. Magnetic-field dependence of the maximum Josephson
current in various junctions

In this subsection, we calculate the magnetic-field depen-
dence of the maximum Josephson current in corner junctions,
corner SQUIDs, and symmetric SQUIDs.

We calculated the relation between the external magnetic
flux � and the maximum Josephson current Ic by a standard
method. In the Josephson junctions shown in Figs. 1 and 4, we
assumed that the external magnetic field was applied parallel
to the z axis. The vector potential is then given by

A = Ay(x) y. (31)

On the other hand, the phase γ of the pair potential obeys

∇γ = m∗vs

h̄
+ 2π

�0
A. (32)

TABLE III. Relations between Ia(ϕa) and Ib(ϕb) shown in Fig. 1
for chiral (Eu), helical (A1u, B2u), and helical (A2u, B1u) pairings.

Type of pairing Relation between Ia(ϕa) and Ib(ϕb)

Chiral (Eu) Ia(ϕa) = −Ib(−ϕb + π/2)
Helical (A1u, B2u) Ia(ϕa) = Ib(ϕb)
Helical (A2u, B1u) Ia(ϕa) = Ib(ϕb + π )
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c

b

a

NM

s−wave

(b)

Ia(ϕa)

Ia(ϕa)

(c)

(a)
Ib−(ϕb−)

SRO NM s−wave

NMs−wave SRO

SRO

FIG. 4. Schematic illustrations of the SRO /NM/s-wave su-
perconductor single Josephson junctions considered in this paper.
Current-phase relations in junctions (a)–(c) were calculated indepen-
dently. The results were then combined to calculate the magnetic-field
dependence of the corner junction, corner SQUID, and symmetric
SQUID.

Since the magnetic field is screened inside the superconductor
because of the Meissner effect, Ay(x) takes the constant value
Ay(∞) found at locations far from the interface. Using these
properties, we integrated both sides of the y component of
Eq. (32) with respect to y,

γ (y) = γ (0) + 2π

�0
A(∞)y. (33)

The phase difference between the s-wave superconductor and
the SRO is therefore given by

ϕ(y) = ϕ(0) + 2π

�0
[A2(∞) − A1(∞)]y. (34)

Here, A1 and A2 represent the vector potentials far from the
interface in the SRO and s-wave superconductor, respectively.
The Fourier components of the Josephson current, I s

n and I c
n ,

defined in Eq. (29), were obtained in the previous subsection in
the absence of a magnetic field. In the presence of a magnetic

NM

s−wave

Φ

I

c

b

a

Ib−(ϕb−)

Ia(ϕa)SRO

FIG. 5. Schematic illustration of an SRO/NM/s-wave corner
junction.

NM

NM

s−wave

Φ

(a)

(b)

s−wave

Φ

I

c

b

a

NMNM

I

c

b

a

Ia(ϕa)

Ib−(ϕb−)

SRO

SRO Ia(ϕa)Ia−(ϕa−)

FIG. 6. Schematic illustration of SRO/NM/s-wave SQUIDs:
(a) corner SQUID and (b) symmetric SQUID.

field, the Josephson current becomes a function of y. We
integrated this function with respect to y:

I (�,ϕ(0)) = Z

∫ Y/2

−Y/2
I (y)dy

= YZ

∞∑
n=1

{
sin(nπ�/�0)

nπ�/�0

[
I s
n sin (nϕ(0))

+ I c
n cos (nϕ(0))

]}
, (35)

where, Y and Z are the sizes of the junction. It is evident
that Eq. (35) displays a periodicity of 2π with respect to ϕ(0).
Therefore, by changing ϕ(0) over the range −π � ϕ(0) �
π , the maximum Josephson current Ic can be obtained as a
function of the external magnetic flux �.

Next, we calculated the maximum Josephson current Ic in
the corner junction shown in Fig. 5 as a function of �, using
a similar approach to that described in [71]. We obtained the
current-phase relations Ia(ϕa) and Ib(ϕb) indicated in Fig. 5.
By calculating the following equation instead of Eq. (35), we
obtained the maximum Josephson current Ic as a function of
the external magnetic flux � based on I (�,ϕ(0)), given by

I (�,ϕ(0)) = Z

[∫ Y/2

0
Ia(y)dy +

∫ 0

−Y/2
Ib(y)dy

]
.
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I c/
I 0

Φ/Φ0

1

0

0−4 4−2 2

I c/
I 0

1

0

(b)Chiral (Eu)

(c)Helical (A1u) (d)Helical (A2u)

420−2−4
Φ/Φ0

NM
s−wave

SRO

ΦΙ
(a)

FIG. 7. Fraunhofer pattern in the SRO/NM/s wave. (a) Schematic
illustration of a corner junction, and the corresponding Fraunhofer
pattern for (b) chiral (Eu) pairing, (c) helical (A1u) pairing, and
(d) helical (A2u) pairing.

Finally, we calculated the maximum Josephson current Ic

as a function of the external magnetic flux � in the two types of
SQUIDs shown in Fig. 6. The macroscopic phase differences
of the two superconductors ϕa and ϕb obey the following
relation:

ϕb − ϕa = 2π�

�0
. (36)

The total current in these parallel circuits is therefore given by

I (�,ϕ) = Ia(ϕ) + Ib

(
ϕ + 2π�

�0

)
. (37)

By evaluating the maximum value of Eq. (37) for a given ex-
ternal magnetic flux �, we obtained the maximum Josephson
current as a function of �.

The Ic functions for the corner junction of SRO are plotted
in Fig. 7. In the cases of the helical p wave, the positions of
the minima depend on the d vector as shown in Figs. 5(b)
and 5(c). This is because the relation between the Josephson
currents Ia(ϕa) and Ib(ϕb) in Fig. 7 is different for each
pairing symmetry. In particular, Ia(ϕ) = Ib(ϕ) for the A1u

and B2u pairings, while Ia(ϕ) = Ib(ϕ + π ) for the A2u and
B1u pairings. For all the helical p-wave cases, the Fraunhofer
patterns are symmetric functions of �. On the other hand, I (�)
is not a symmetric function of � for chiral p-wave pairing. This
difference results from the existence of the cosine terms in the
current-phase relation. In other words, the broken TRS causes
the asymmetry of Ic = Ic(�), i.e., Ic(�) �= Ic(−�). These
results are summarized in Table IV. As seen from this table,
there are qualitative differences between the helical and chiral
p-wave pairings. The asymmetry of the Josephson current
is due to the existence of cosine terms in the current-phase
relation for the chiral p-wave pairings. These cosine terms can

TABLE IV. � dependence and zero points of I (�) in an
SRO/NM/s-wave corner junction for (b) chiral (Eu), (c) helical (A1u,
B2u), and (d) helical (A2u, B1u) pairings in SRO. Schematic illustration
of corner junction (a).

Type of pairing � dependence Zero points of I (�)

(a) Chiral (Eu) asymmetric ±2�0, ±4�0, . . .

(b) Helical (A1u, B2u) symmetric ±�0,±2�0, . . .

(c) Helical (A2u, B1u) symmetric ±2�0, ±4�0, . . .

be nonzero unless both λ and λR are nonzero owing to the
presence of interorbital hopping in the multiband model. The
magnitudes of these cosine terms and the resulting asymmetry
of I (�) are enhanced by the spin-orbit interactions, expressed
through λ and λR .

Next, we discuss Ic in the corner SQUID shown in
Fig. 8. This Ic is symmetric or asymmetric with respect to
� for the helical and chiral cases, respectively. As in the
case of the SRO/NM/s-wave corner junction, the existence
of the cosine terms in the current-phase relation in chiral
pairing causes the asymmetry of Ic(�). The chiral pairing
is consistent with a previous study based on a single-band
model [72]. In the cases of helical pairing, the position of
the maximum or minimum in Ic(�) depends on the pairing
symmetry (irreducible representation), i.e., the d-vector as
shown in Figs. 8(b) and 8(c) (see Table V). We note that the
�0 periodicity in the helical pairing case appears only for a
three-band model.

Finally, we consider the case of the so-called symmetric
SQUID [73]. Figure 9 shows the � dependence of Ic in
the symmetric SQUID shown in Fig. 6(b). In this junction,
there is no qualitative difference between the cases of chiral
and helical pairing since Ia(ϕ) = Ib(ϕ + π ) is satisfied. The

I c/
I 0

Φ/Φ0

1

0

0−1 1
Φ/Φ0

0−1 1

I c/
I 0

(b)Chiral (Eu)

(c)Helical (A1u) (d)Helical (A2u)
1

0

Φ

Ι

s−wave

NM

NMSRO

(a)

FIG. 8. (a) Maximum Josephson current Ic in a corner SQUID
for (b) chiral (Eu), (c) helical (A1u), and (d) helical (A2u) pairings.
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TABLE V. � dependence and period of the maximum Josephson
current Ic in a corner SQUID.

Type of pairing � dependence Period

(a) Chiral asymmetric �0

(b), (c) Helical symmetric �0

resulting Josephson current Ic is symmetric for both chiral
and helical pairings, including in the presence of the cosine
terms. Thus, we do not find any qualitative difference in Ic for
the chiral and helical pairings in this symmetric SQUID (see
Table VI).

IV. DISCUSSION AND SUMMARY

Here, we discuss the multiband effect on the Josephson
current in the present calculations, starting with the chiral
p-wave case. As shown in Tables I and II, the spin-orbit
interaction in the bulk SRO (λ) and the interface Rashba
spin-orbit interaction (λR) generate I s

1 for chiral p-wave
pairing. We found that the coefficient of the sin(φ) term I s

1
has the form

I s
1 = αλ + βt5λR + O(λ2) + O

(
t2
5 λ2

R

)
, (38)

which is confirmed by Fig. 10. This form suggests that λ

directly induces I s
1 , whereas the existence of interorbital

hopping t5 is needed to produce I s
1 from λR . In the single-band

model, I s
1 is absent while I c

1 is induced by λR in chiral
p-wave pairing. In the multiorbital model, t5 induces the
effective phase shift of the pair potential. A part of I c

1 is then
converted to I s

1 by t5. Thus, we can conclude that the existence
of I s

1 results from the multiband model in SRO. This term
becomes dominant in the limit of low transmissivities, where
the higher-order Josephson couplings are strongly suppressed.

Φ/Φ0

0−1 1
Φ/Φ0

0−1 1

I c/
I 0

(b)Chiral (Eu) (c)Helical (A1u)
1

0

SRO NMNM

Φ

I(a)

s−wave

FIG. 9. (a) Symmetric SQUID and the corresponding Ic for
(b) chiral (Eu) and (c) helical (A1u) pairings.

TABLE VI. � dependence and period of the maximum Josephson
current Ic in a symmetric SQUID.

Type of pairing � dependence Period

(a) Chiral symmetric �0

(b) Helical symmetric �0

Next, we discuss the helical p-wave case, where I s
1 is

given by

I s
1 = αλ + O(λ2). (39)

This is because I c
1 does not exist in the single-band model

owing to the TRS of the helical p-wave pairing. Since t5 only
gives the effective phase shift of the pair potential, I s

1 cannot
be produced by λR . On the other hand, λ directly induces I s

1
in a similar manner as in the case of the chiral p-wave pairing.

I 1s /I 0
 [

10
3 ]

λR/t1 [ 102]

0

0
λ/t1 [ 104]

t5/t 1=0
λR/t1=0

t5/t 1=0.15
λ/t1=0

λR/t1=0.3
λ/t1=0

1−1 0
λ/t1 [ 104]

1−1

I 1s /I 0
 [

10
3 ]

0

2

−2
−1 −1

I 1s /I 0
 [

10
3 ]

λR/t1 [ 102]

0

t5/t 1 [ 104]

0 1

0 1−1

0 1

0 1−1
t5/t 1 [ 104]

(a)Chiral (b)Helical

t5/t 1=0

λR/t1=0

2

−2

6

−6

0

6

−6

0

2

−2
0 1−1

0 1−1

t5/t 1=0
λR/t1=0

t5/t 1=0.15
λ/t1=0

λR/t1=0.3
λ/t1=0

(d)Helical

(f)Helical

(c)Chiral

(e)Chiral

FIG. 10. I s
1 [the coefficient of sin(ϕ) in the Fourier series of the

current-phase relation in the junction] is plotted as a function of λ

(a), (b), λR (c), (d), and t5 (e), (f). Chiral pairing applies in (a), (c),
and (e), and helical pairing with A1u symmetry in (b), (d), and (f).
t5 = 0 and λR = 0 in (a) and (b). t5/t1 = 0.15 and λ = 0 in (c) and
(d). λ = 0 and λ/t1 = 0.3 in (e) and (f).
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We explain the physical origin of the term proportional to λ

in Eqs. (38) and (39) on the basis of the following arguments.
Since calculation of the Josephson current in multiorbital
system is a complicated problem, let us concentrate on the first
term proportional to λ in Eqs. (38) and (39). For this purpose, it
is useful to focus on the symmetry of pair amplitude of Cooper
pair. The first-order Josephson coupling term proportional
to sin ϕ is nonzero only when the same symmetry of pair
amplitude exists both in the left side Sr2RuO4 and the right
side s-wave superconductors. It is known that for a single-
orbital superconductor, the symmetry of Cooper pairs can
be classified into four cases: (i) even-frequency spin-singlet
even-parity (ESE) state, (ii) even-frequency spin-triplet odd-
parity (ETO) state, (iii) odd-frequency spin-triplet even-parity
(OTE) state, and (iv) odd-frequency spin-singlet odd-parity
(OSO) state [25,28,74,75]. In our model, there is only one
orbital in the considered spin-singlet s-wave superconductor,
which is in an even-frequency spin-singlet even-parity (ESE)
state. On the other hand, we consider three orbitals in the
left Sr2RuO4 superconducting electrode. With account of an
orbital degree of freedom, Cooper pairs can be classified into
eight classes: (i) even-frequency spin-singlet even-parity even-
orbital (ESEE), (ii) even-frequency spin-triplet odd-parity
even-orbital (ETOE), (iii) odd-frequency spin-triplet even-
parity even-orbital (OTEE), (iv) odd-frequency spin-singlet
odd-parity even-orbital (OSOE), (v) even-frequency spin-
singlet odd-parity odd-orbital (ESOO), (vi) even-frequency
spin-triplet even-parity odd-orbital (ETEO), (vii) odd-
frequency spin-triplet odd-parity odd-orbital (OTOO), (viii)
odd-frequency spin-singlet even-parity odd-orbital (OSEO)
[76,77]. Due to the absence of orbital degree of freedom,
the single orbital superconductor can be regarded as even
parity with respect to exchange of orbitals. Thus, single orbital
spin-singlet s-wave pairing belongs to the ESEE class. The
symmetry breaking term in Hamiltonian converts original
pairing symmetry into the other one. A bulk spin-orbit coupling
term proportional to λ can mix spin-singlet and spin-triplet
states with simultaneous change of an orbital parity. Trans-
lational symmetry breaking mixes even and odd-frequency
pairing by changing spatial parity. Orbital hybridization also
mixes even and odd-frequency pairing by changing orbital
parity [76,77]. By using these properties, we can discuss the
origin of λ term in Eqs. (38) and (39). Symmetry of pair
potential of Sr2RuO4 is classified as ETOE. Due to the presence
of the bulk spin-orbit coupling the λ ESOO pairing state is
generated, which in turn gets an admixture of OSEO state
near the interface due to the translational symmetry breaking.
Finally, OSEO pairing can generate the ESEE one at the
interface, since three orbitals in Sr2RuO4 are not equivalent
and the symmetry of orbital space in Sr2RuO4 is broken. In
other words, spin-orbit coupling, orbital inequivalence, and
broken translational symmetry are needed to generate ESEE
pairing. The resulting ESEE state in Sr2RuO4 on the left side
of the interface can couple to the ESEE state in an s-wave
superconductor on the right side of the interface. This is the
origin of the appearance of the first-order Josephson coupling
term proportional to λ in Eqs. (38) and (39).

In summary, we have studied Josephson currents in
SRO/NM/s-wave junctions. We found that the first-order
Josephson coupling is induced by the spin-orbit interaction
for the cases of both chiral and helical p-wave pairings. Note
that the sin(ϕ) term, which is absent in the single-band model,
appears as a result of the spin-orbit interaction and interband
hopping. In the case of helical pairing, the first-order Josephson
term appears only in the three-band model. Owing to the ex-
istence of the first-order Josephson coupling, the period of the
Josephson current, as the magnetic flux � is varied, is expected
to become the period of the conventional junctions. For the case
of chiral p-wave pairing, the Josephson current shows asym-
metric behavior in the corner junction and the corner SQUID,
owing to broken TRS. This asymmetry is enhanced by the
spin-orbit interaction in the bulk SRO or at the interface in the
junction. Since the magnitude of the spin-orbit interaction in
SRO is not very small, it is possible to detect the asymmetry ex-
perimentally if the TRS breaking by chiral pairing is realized.

Recently, there has been a theoretical proposal about
the momentum dependence of a chiral p-wave Cooper pair
made from relatively distant sites, where the pair potentials
given by sin 3kx + i sin 3ky or sin kx cos ky + i cos kx sin ky

are considered [78]. This Cooper pair is thought to be hopeful
for understanding the disappearance of the edge current. Since
these pairings belong to the same irreducible representation of
pair potential given by sin kx + i sin ky where a Cooper pair is
formed between nearest neighbor sites, it is natural to consider
that the current phase relation of Josephson current between
s-wave superconductors does not change qualitatively. Thus,
the magnetic-field dependence of a corner Josephson junction
satisfies I (�) �= I (−�).

In this paper, we assumed ballistic junctions with flat
interfaces. Surface roughness and impurity scattering are
known to influence the charge transport in spin-triplet p-wave
superconductor junctions [79,80] due to the anomalous
proximity effect with enhanced zero energy local density of
states driven by the induced odd-frequency spin-triplet s-wave
pairing generated near the interface [21,22]. Then, the resulting
Josephson current displays a low-temperature anomaly
[21–23]. Taking into account the impurity-scattering effect in
the multiband model is an interesting prospect for future work.
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