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We theoretically study transport properties of voltage-biased one-dimensional superconductor–normal metal–
superconductor tunnel junctions with arbitrary junction transparency where the superconductors can have trivial
or nontrivial topology. Motivated by recent experimental efforts on Majorana properties of superconductor-
semiconductor hybrid systems, we consider two explicit models for topological superconductors: (i) spinful p-
wave, and (ii) spin-split spin-orbit-coupled s-wave. We provide a comprehensive analysis of the zero-temperature
dc current I and differential conductance dI/dV of voltage-biased junctions with or without Majorana zero
modes (MZMs). The presence of an MZM necessarily gives rise to two tunneling conductance peaks at voltages
eV = ±�lead, i.e., the voltage at which the superconducting gap edge of the lead aligns with the MZM. We find that
the MZM conductance peak probed by a superconducting lead without a BCS singularity has a nonuniversal value,
which decreases with decreasing junction transparency. This is in contrast to the MZM tunneling conductance
measured by a superconducting lead with a BCS singularity, where the conductance peak in the tunneling limit
takes the quantized value GM = (4 − π )2e2/h independent of the junction transparency. We also discuss the
“subharmonic gap structure”, a consequence of multiple Andreev reflections, in the presence and absence of
MZMs. Finally, we show that for finite-energy Andreev bound states (ABSs), the conductance peaks shift away
from the gap bias voltage eV = ±�lead to a larger value set by the ABSs energy. Our work should have important
implications for the extensive current experimental efforts toward creating topological superconductivity and
MZMs in semiconductor nanowires proximity coupled to ordinary s-wave superconductors.
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I. INTRODUCTION

In recent years there has been great interest in realiz-
ing topological superconductors that support Majorana zero
modes (MZMs) at boundaries or defects [1–7]. This is driven
mainly by the prospect of using MZMs as the building blocks
for a fault-tolerant topological quantum computer [8,9]. The
simplest model of a topological superconductor hosting MZMs
is the one-dimensional (1D) spinless p-wave superconductor
as originally envisioned by Kitaev [10]. Since electrons carry
a spin degree of freedom, intrinsic spinless p-wave pairing is
apparently uncommon in nature. However, it can be effectively
realized in spinful systems by a combination of spin-orbit
coupling and explicitly lifting the Kramer’s degeneracy of
the electrons (e.g., by Zeeman spin splitting through an
applied magnetic field). This idea has lead to a number of
proposals for realizing topological superconductor in various
hybrid structures with conventional s-wave superconductors
[11–27]. There are, however, significant differences between
a spinless p-wave superconductor and a spin-split s-wave
superconductor with spin-orbit coupling although they both
can have localized MZMs at the ends. One way of realizing
a spinful 1D topological superconductor is by proximity-
inducing superconductivity in a spin-orbit-coupled semicon-
ducting nanowire in a magnetic field [11–14]. In this setup, the
system can be tuned from a topologically trivial to a nontrivial
regime by raising the Zeeman field above a certain critical
value where the system undergoes a topological quantum
phase transition with the effective induced superconductivity
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in the nanowire changing from an s-wave (trivial) character
to a p-wave (topological) character. As the MZM exists as
a zero-energy edge mode in the topological superconductor,
tunneling conductance spectroscopy provides a simple way of
detecting the MZM. In a normal metal–superconductor (NS)
junction, the MZM mediates a perfect Andreev reflection at
zero energy, which in turn gives rise to a quantized 2e2/h

zero-bias conductance value [28–32], as long as the two MZMs
at the wire ends are far from each other with exponentially
small overlap between the MZM wave functions (the so-called
“topologically protected regime”). This quantized conduc-
tance is robust against changes to the junction transparency.
Several experimental groups have observed the appearance of
zero-bias tunneling conductance peaks in the semiconductor–
superconductor heterostructure as the Zeeman field is raised
beyond a certain value, which indeed indicates the existence
of zero-energy states [33–40]. Nevertheless, the observed
zero-bias conductance is substantially less than the MZM
canonical quantized conductance value. A plausible source
for this discrepancy is thermal broadening in the normal-metal
lead, which reduces the zero-bias conductance value and
widens the peak [28,31,41,42], although other possibilities
such as dissipation and MZM overlap may also be responsible
[42–44]. The ubiquitous absence of the predicted quantized
zero-bias conductance peak in topological NS junction (in spite
of there often being a weak zero-bias conductance peak) is the
central quandary in this subject, making it unclear whether
1D topological superconductivity with localized MZMs has
indeed been realized experimentally or not.

To mitigate the effect of thermal broadening, one could use
a superconducting lead instead of a normal lead in probing the
MZM tunneling conductance [45–48]. In a superconducting

2469-9950/2017/95(17)/174515(16) 174515-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.174515


SETIAWAN, COLE, SAU, AND DAS SARMA PHYSICAL REVIEW B 95, 174515 (2017)

lead, thermal quasiparticle excitations are exponentially sup-
pressed by the superconducting gap ∼exp(−�lead/T ), which
in turn suppresses the broadening effect. Peng et al. [45]
found that for a conventional s-wave superconducting lead, the
MZM conductance measured in the tunneling limit (or small
junction transparency) appears as two symmetric peaks with a
quantized value GM = (4 − π )2e2/h at the gap-bias voltage
eV = ±�lead, i.e., when the BCS singularity of the probe
lead aligns with the MZM. The quantized value GM is the
conductance due to a single Andreev reflection from the MZM.
In Ref. [46], it was shown that in the presence of multiple
Andreev reflections (MAR), which are generically present
when the junction transparency is not small, the conductance
at the voltage eV = ±�lead is no longer quantized at GM .
This indicates that unlike the universally quantized 2e2/h

zero-bias conductance value for a normal metal–topological
superconductor junction, the quantized value GM of the MZM
tunneling conductance for a superconductor–normal metal–
superconductor (SNS) junction is not a topologically protected
robust quantity with the conductance value being dependent on
the details and thus making it difficult to identify MZMs using
SNS tunneling spectroscopy. These results prompt further
exploration of transport properties of various SNS junctions
involving different models of topological superconductors
where signatures of MZM can be fully investigated and charac-
terized. This is the goal of the current work where we provide
comprehensive details on the tunneling transport properties of
SNS junctions involving topological superconductors in order
to guide future experimental work in the subject.

In this paper, we calculate the dc current-voltage (I -V )
relation and corresponding differential conductance (G =
dI/dV ) of 1D SNS junctions, invoking two models for topo-
logical superconductors, i.e., the spinful p-wave superconduc-
tor (pSC) and the spin-orbit-coupled s-wave superconducting
wire (SOCSW). Specifically, we consider several possible
combinations for the junction, where each superconductor
can be either topologically trivial or nontrivial. We find
that unlike the case of s-wave superconducting probe lead
with BCS singularity (where

∑
σ=↑,↓ |uσ |2 = ∑

σ=↑,↓ |vσ |2
at the gap edge with u and v being the electron and hole
component of the superconducting wave function), the MZM
tunneling conductance measured using a superconducting
lead without a BCS singularity has a nonuniversal value,
which decreases with decreasing junction transparencies. Our
detailed theoretical and numerical results for the transport
properties of various types of SNS junctions should be a
useful guide for future experimental work on the tunneling
spectroscopy of topological SNS junctions.

The paper is organized as follows. In Sec. II, we present
a general scattering matrix formalism, which can be used to
calculate the transport properties of a general SNS junction.
In Sec. III, we discuss the subharmonic gap structure (SGS).
In the following sections, we study in detail the transport in
SNS junctions involving pSC (Sec. IV) and SOCSW (Sec. V)
and compare the dc current and conductance of junctions with
and without MZMs. In Sec. VI, we discuss the conductance
due to Andreev bound states (ABSs) in the SOCSW model
in order to distinguish between MZM and ABS signatures in
the tunneling experiment. Finally, we give the conclusion in
Sec. VII.
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FIG. 1. Schematic diagram of a superconductor–normal metal–
superconductor (SNS) junction with a δ-function potential barrier of
strength Z.

II. SCATTERING MATRIX FORMALISM

We begin by modeling the SNS junction by two semi-
infinite superconducting regions connected by a normal region
with a δ-function barrier of strength Z, as shown in Fig. 1.
The normal region is assumed to be infinitesimally short with
large chemical potential such that the propagating modes
in this region have constant group velocity independent
of energy. Quasiparticles can be injected from the left or
right superconducting lead, which become electrons or holes
(depending on their energy) when they enter the normal region.
Due to the voltage bias, these electrons (holes) will then gain
(lose) an energy eV as they are accelerated from the left (right)
to the right (left). As a result, after each Andreev reflection
at an NS interface, an incoming electron with an energy E

will be reflected as a hole back into the same region with an
energy E + 2eV . The quasiparticle reflects repeatedly inside
the normal region until it gains enough energy to be transmitted
into the superconductors. This mechanism is termed “multiple
Andreev reflections” (MAR) [49–51].

The scattering processes in the SNS junction can be split
among three spatial regions: (i) the left NS interface, (ii) tunnel
barrier, and (iii) right NS interface. We express these processes
in terms of the scattering matrices as

(
J out

L,ν(En)

J +
NL,ν(En)

)
= SL(En)

(
J in

L,ν(En)δn0δν,→
J −

NL,ν(En)

)
, (1a)

(
J −

NL,ν(En)

J +
NR,ν(En)

)
=

∑
n′

SN (En,En′ )

(
J +

NL,ν(En′)

J −
NR,ν(En′)

)
, (1b)

(
J out

R,ν(En)

J −
NR,ν(En)

)
= SR(En)

(
J in

R,ν(En)δn0δν,←
J +

NR,ν(En)

)
, (1c)

where En = E + neV are the energies of propagating modes
with n being an integer, J ρ

�,ν = (je,↑,ρ

�,ν ,j
e,↓,ρ

�,ν ,j
h,↑,ρ

�,ν ,j
h,↓,ρ

�,ν )T

is the current amplitude vector for region � = L (left su-
perconductor), NL (normal region to the left of the tunnel
barrier), NR (normal region to the right of the tunnel barrier),
and R (right superconductor) with ρ = +/− and ρ = in/out
being the right/left-moving modes and incoming/outgoing
modes indices, respectively, and ν =� denoting whether the
incoming quasiparticle is from the left or right superconductor.
We note that the scattering matrix formalism presented above
is completely general and can be utilized to study the transport
properties of any kind of SNS junctions with arbitrary topolog-
ical properties (including trivial superconductors). Moreover,
it can be easily interfaced with the numerical transport package
Kwant [52], which can be used to calculate the scattering
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matrices of the left (SL) and right (SR) NS interfaces [46,53].
For details on our numerical simulations, see the Appendix.

The scattering matrix SN (En,E
′
n) in Eq. (1b) incorporates

the scattering processes at the tunnel barrier and the increase
(decrease) of the electron (hole) energy by eV each time the
electron (hole) passes from the left to the right. In terms of the
electron (Se

N ) and hole (Sh
N ) component, it can be written as

SN (En,En′ ) = Se
N (En,En′ ) ⊗ σ0 ⊗ τ+

+ Sh
N (En,En′ ) ⊗ σ0 ⊗ τ−, (2)

where σ0 is the identity matrix in the spin subspace, τ± =
τx ± iτy are the Pauli matrices in the particle-hole subspace.
The scattering matrices Se

N and Sh
N are given by

Se
N (En,En′ ) =

(
rδn,n′ tδn,n′+1

tδn,n′−1 rδn,n′

)
,

Sh
N (En,En′ ) =

(
r∗δn,n′ t∗δn,n′−1

t∗δn,n′+1 r∗δn,n′

)
, (3)

where r = −iZ/(1 + iZ) and t = 1/(1 + iZ) are the re-
flection and transmission coefficients, respectively, with the
amplitudes depending on the δ-function barrier strength Z.
Note that Z should be considered an effective barrier strength
determining the interface transparency represented by a δ-
function potential, which is an unknown parameter in the
theory (as in the well-known Blonder-Tinkham-Klapwijk
(BTK) formalism [53]). In principle, Z can be calculated
from first principles if all information about the interface
is available, but in practice Z should be determined by
comparing theory and experiment. We change the junction
transparency in the simulation by tuning Z. Since sharp
changes of parameters across the junction, such as mismatch in
the Fermi level, spin-orbit coupling, p-wave pairing potential
etc., also effectively create barriers for the current, we use a
parameter-independent quantity GN to characterize the junc-
tion transparency, where GN is the normalized conductance of
the SNS junction at high voltages (in the unit of G0 = e2/h),
which is the conductance of the corresponding normal-normal
(NN) junction. We note that GN , which subsumes Z and other
possible unknown microscopic parameters, can be directly
measured experimentally allowing experiment and theory to
be quantitatively compared at arbitrary voltages. We refer to
GN as the “junction transparency” in the rest of this paper since
it denotes the conductance for the corresponding NN junction.
Note that GN = 2 or GN = 1 denotes perfect transparency
(corresponding to Z = 0) depending on the specific tunnel
junction one is considering.

Solving the coupled linear equations [Eq. (1)], we obtain
the current amplitudes J ρ

�,ν . The total current can be calculated
by adding up the contribution from the left- and right-
moving modes of the electrons and holes for the incoming
quasiparticles from the left and right superconductors, i.e.,

Iν(V ) = 2e

h

∫ 0

−∞
dETr

(∑
n

ρzτzJNL,ν(En)J †
NL,ν(En)

)
, (4)

where

JNL,ν = (
j

e,↑,+
NL,ν ,j

e,↓,+
NL,ν ,j

h,↑,+
NL,ν ,j

h,↓,+
NL,ν ,

j
e,↑,−
NL,ν ,j

e,↓,−
NL,ν ,j

h,↑,−
NL,ν ,j

h,↓,−
NL,ν

)T
(5)

is the current amplitude vector in the normal region to the
left of the barrier. It was proven in Ref. [46] that the current
is nonnegative for positive V . The differential conductance
(G = dI/dV ) can be computed by directly differentiating the
current I with respect to the voltage V . In general, we observe
that the differential conductance is particle-hole asymmetric
except for sufficiently small transparencies.

In this paper, we apply this scattering matrix formalism to
calculate the zero-temperature dc current and conductance of
junctions composed of spinful pSC (Sec. IV) and SOCSW
(Sec. V), considering scenarios where none, one, or both of
the superconductors are topologically nontrivial.

III. SUBHARMONIC GAP STRUCTURE

In general, for SNS junctions with asymmetric gap (�L �=
�R), where �L,R are the superconducting gap of the left
and right superconductors, when the junction transparency is
not small, there will be nonanalyticities in the I -V curve or
conductance [49–51] at specific voltages, which is termed the
“subharmonic gap structure” (SGS). The sharp change in the
conductance happens at voltages at which there is a change
in the number of Andreev reflections required to transfer
charge from the occupied to the empty band. For incoming
quasiparticles from the left superconductor, this number of
Andreev reflections changes when

e|V | = �L

n
, n � 1, (6)

and

e|V | = �L + �R

2n − 1
, 1 � n � �R

�R − �L

, (7)

while for incoming quasiparticles from the right superconduc-
tor, the change happens at voltages given in Eq. (7) and

e|V | = �R

n
, 1 � n � �R

�R − �L

. (8)

Without loss of generality, in the above we assume �R > �L.
The range of n in Eqs. (6)–(8) gives the voltage range for
“strong” SGS where all Andreev reflections happen inside the
superconducting gap. The SGS that occurs outside this range
of n is termed “weak” SGS because the Andreev reflections
that happen outside the gap have, in general, small amplitude.

The SGS (including both weak and strong) happens at the
voltages given in Table I (Refs. [54,55]), where �L,R can be
any of the gap values in the left and right superconductors

TABLE I. Voltages at which the subharmonic gap structure
appears for an asymmetric SNS junction.

SGS voltage e|V | Range of n

�L/n n � 1
(�L + �R)/(2n − 1) n � 1
�R/n n � 1
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when there are multiple superconducting gaps. In general, the
SGS is not apparent for near-perfect transparency junction and
becomes sharper in the intermediate range of transparencies.
Decreasing the transparency further into the tunneling limit
will diminish the SGS at small voltages.

IV. SPINFUL p-WAVE SUPERCONDUCTOR JUNCTIONS

In this section, we consider junctions between an s-wave
superconductor (sSC) and a pSC as well as junctions between
two pSCs, where the pSC can be topologically trivial or
nontrivial, depending on the strength of the chemical potential
and Zeeman field (i.e., the system is below or above the
topological quantum phase transition). Within the Bogoliubov-
de Gennes (BdG) formalism, we can write the Hamiltonian of
the system as

Hj (x) = 1

2

∫
dx


†
j (x)Hj
j (x), (9)

where 
j (x) = (ψj↑(x),ψj↓(x),ψ†
j↓(x),−ψ

†
j↓(x))

T
are

Nambu spinors, and ψ
†
jσ (x) and ψjσ (x) are the creation

and annihilation operators of an electron of spin σ for the
superconductor of type j = s,p (s-wave or p-wave). The
BdG Hamiltonians for the sSC and pSC are given by

Hs =
(

− h̄2∂2
x

2m
− μs

)
τz + �sτx, (10a)

Hp =
(

− h̄2∂2
x

2m
− μp

)
τz + VZσz − i�p∂xτxσx, (10b)

respectively. Here, m is the electron effective mass (for the
numerical simulations done in this paper, we set m = 0.015me,
which corresponds approximately to InSb nanowires [33],
where me is the bare electron mass), μs and μp are the chemical
potentials of the sSC and pSC, VZ is the Zeeman field, �s

and �p are the sSC and pSC pairing potentials, and τx,y,z

(σx,y,z) are Pauli matrices acting in the particle-hole (spin)
subspace. The effective chemical potential in each spin channel
of the pSC (μp ± VZ) determines whether that channel is
topological or not. The channel is topological if its chemical
potential is positive; otherwise, it is nontopological [10,56].
The spinful pSC can have zero, one, or two topological
channels, depending on the values of VZ and μp, i.e.,

(1) |VZ| < |μp| and μp < 0, no topological channel,
(2) |VZ| > μp and μp > 0, one topological channel,
(3) |VZ| < μp and μp > 0, two topological channels.

Throughout this paper, we denote the pSC in these three
different regimes as pi , where i = 0,1,2, refers to the number
of topological channels in the pSC. Since the spinful pSC
is essentially made up of two uncoupled spinless pSCs, the
spectrum of the spinful pSC then consists of the spectrum
of two spinless pSCs [32] with effective chemical potential
μp ± VZ as shown in Fig. 2. In the following we will denote
the smallest gap in the spectrum of the pi-SC by �pi

.

A. sN p0 junction

We begin by considering the s-wave superconductor–
normal metal–p0 superconductor (sNp0) junction. The p0-
SC is a spinful p-wave superconductor with no topological

0
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FIG. 2. Energy spectrum of a spinful pSC for different parameter
regimes: (a) |VZ| < |μp| and μp < 0 (p0-SC with no topological
channel), (b) |VZ| > μp and μp > 0 (p1-SC with one topological
channel), (c) |VZ| < μp and μp > 0 (p2-SC with two topologi-
cal channels).

channel: it has negative chemical potential (μp < 0) and
small Zeeman field |VZ| < |μp|. Its spectrum has a gap
at k = 0 with value |μp| ± |VZ| where the smallest gap is
[10,32,56] �p0 = |μp| − |VZ| as shown in Fig. 2. In general,
the current and conductance for SNS junctions involving
p0-SC, e.g., the sNp0 junction discussed here, increase with
the p0-SC pairing potential �p. Since the p0-SC is essentially
an insulator with small Andreev reflection amplitudes, the
current for this junction is generally small and the SGS is
strongly suppressed as can be seen in Fig. 3. At high voltages
(|V | � �s,�p0 ), the conductance approaches the conductance
GN of the corresponding NN junction (which we define as the
junction transparency throughout this paper). The current and
conductance decrease with decreasing junction transparency
GN as can be seen in Fig. 3. In the weak tunneling or small
transparency limit where MAR is suppressed, the current starts
to flow only when the voltage is e|V | = �s + �p0 , i.e., the
voltage where the superconducting gap edges of both sSC and
p0-SC line up.

B. sN p1 junction

The p1-SC has one topological channel with a pair of MZM:
one at each end of a finite wire. The energy spectrum of the
p1-SC is given in Fig. 2(b). The plots of the current and
conductance for the sNp1 junction (i.e., with one isolated
MZM in the junction) in the limit of large and small Zeeman
field are plotted against bias voltage in Figs. 4 and 5,
respectively. The conductance plots for the sNp1 junction
have already been given in Ref. [46]; we include them here for
completeness and, more importantly, a comparison with other
SNS junctions. In the large Zeeman limit [(|VZ| − μp) � μp],
the p1-SC is effectively a spinless topological pSC [10,56].
In this limit, MAR are totally suppressed and only single
Andreev reflections are allowed for the sNp1 junction because
the sSC allows only spin-singlet Andreev reflections, while
the spinless pSC allows only spin-triplet Andreev reflections.
This results in a step jump in the conductance from zero to the
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FIG. 3. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for an sNp0 junction with
various values of transparencies GN . The parameters used for the sSC
are μs = 20 K and �s = 0.01 K. The parameters used for the p0-SC
are μp = −0.01 K, VZ = 0 K, �p = 0.2 eV Å, where the smallest
gap is �p0 = 0.01 K. The smallest gap in the junction is �min =
0.01 K.

quantized value GM = (4 − π )2e2/h at the threshold voltage
e|V | = �s [45–47] as shown in Fig. 3(b). The quantized value
GM corresponds to the conductance due to a single Andreev
reflection from the MZM which happens at the voltage when
the BCS singularity and MZM are aligned. In this large Zee-
man limit, since MAR are suppressed, the quantized value GM

is robust against the junction transparency. The conductance,
in general, decreases with decreasing junction transparency
and for sufficiently small transparency, the conductance can
become negative for voltages near the threshold voltage
e|V | = �s . Our results for the sNp1 junction in the large
Zeeman limit, calculated using the scattering matrix formal-
ism, are similar to those of the s-wave superconductor–normal
metal–spinless p-wave superconductor junctions calculated
using the Green’s function formalism [47]. Recently, the
conductance of the spinless p-wave superconductor has been
measured using an s-wave superconducting tip in a scanning
tunneling microscopy experiment [57]. The reported results
are qualitatively consistent with our theoretical findings. In the
limit of small Zeeman field [(|VZ| − μp)  μp], and when
the junction transparency is not small, MAR are allowed.
As a result, there is a finite current and conductance with
SGS below the threshold voltage e|V | = �s . However, the
current and conductance near zero voltage are zero due to the

C
u
rr

en
t,

I/
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(b)

FIG. 4. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for an sNp1 junction with
various values of transparencies GN in the limit of large Zeeman
field (VZ = 2μp). The red dashed line at GM = (4 − π )2e2/h is the
conductance value due to a single Andreev reflection from the MZM.
The parameters used for the sSC are μs = 200 K and �s = 2.5 K.
The parameters used for the p1-SC are μp = 20 K, VZ = 40 K, �p =
0.0785 eV Å, where the smallest gap is �p1 = 4 K. The smallest gap
in the junction is �min = 2.5 K.

difference in the Andreev reflection spin-selectivity of the sSC
and MZM, i.e., the sSC allows spin-singlet Andreev reflection
and the MZM favors spin-triplet Andreev reflection [58,59].
In this limit, due to MAR, the conductance at the voltage
e|V | = �s is no longer robust against increasing junction
transparency. The current and conductance generally decrease
with decreasing junction transparency. For sufficiently small
transparency that only single Andreev reflection contributes,
we recover G(e|V | = �s) = GM .

C. sN p2 junction

The p2-SC has two topological channels, and thus two
MZMs at each end of a finite wire. The energy spectrum for the
p2-SC is shown in Fig. 2(c). The current and conductance plots
for the sNp2 junction are depicted in Fig. 6. In the tunneling
limit, the conductance for the sNp2 junction develops a step
jump from 0 to 2GM at the threshold voltage e|V | = �s due to
single Andreev reflections from a Majorana Kramers pair, with
each spin channel contributing a conductance of GM . For large
or intermediate transparencies, due to MAR, the conductance
at e|V | = �s is no longer quantized at 2GM and there is
an SGS in the current and conductance profile. In contrast
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FIG. 5. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for an sNp1 junction with
various values of transparencies GN in the limit of small Zeeman
field (VZ = 1.1μp). The red dashed line at GM = (4 − π )2e2/h is
the conductance value due to a single Andreev reflection from the
MZM. The parameters used for the sSC are μs = 200 K and �s =
2.5 K. The parameters used for the p1-SC are μp = 20 K, VZ = 22 K,
�p = 0.0785 eV Å, where the gaps are 2 K and 3.4 K with the smallest
gap for the p1-SC being �p1 = 2 K. The smallest gap in the junction
is �min = 2 K.

to the sNp1 junction where the current and conductance
are zero near zero voltage, when the transparency is not
small the current and conductance for the sNp2 junction
is nonzero near zero voltage. This is because unlike the
case of the sNp1 junction where there is only one MZM
which facilitates the spin-triplet Andreev reflection in one spin
channel, there are two MZMs in sNp2 junctions facilitating
Andreev reflections in both spin channels. As a result, the MAR
are not suppressed near zero voltage. The SGS associated
with MAR develops at specific voltages as given in Table I.
Similar to the conventional s-wave superconductor–normal–
s-wave superconductor junction [51,54,55], in the perfectly
transparent limit (GN = 2), the current at small voltages for
the sNp2 junction asymptotically approaches

I (V → 0) = 4e �min

h
, (11)

which corresponds to the transfer of a charge of 2e across the
junction where �min = min(�s,�p2 ) is the smallest gap in the
junction.
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FIG. 6. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for an sNp2 junction
with various values of transparencies GN . The red dashed line
at 2GM = (4 − π )4e2/h is the conductance value due to a single
Andreev reflection from two MZMs. The parameters used for the
sSC are μs = 20 K and �s = 0.01 K. The parameters used for
the p2-SC are μp = 20 K, VZ = 0 K, �p = 2 × 10−4 eV Å, where
the gap is �p2 = 6.3 × 10−3 K. The smallest gap in the junction is
�min = �p2 = 6.3 × 10−3 K.

D. p2 N p2 junction

For a p2Np2 junction, both superconductors have two
topological channels with two MZMs at each end (4 MZMs
in the junction). The plots of the current and conductance for
this junction are depicted in Fig. 7. In the perfectly transparent
limit (GN = 2), the current at small voltages asymptotically
approaches I (V → 0) = 4e�min/h, where �min is the small-
est gap in the junction. This asymptotic value of the dc
current is the same as the value obtained for the conventional
s-wave-normal-s-wave superconductor junction [51,54,55].
As V → 0, the current in the p2Np2 junction is transferred via
a Majorana Kramers pair where each of the MZMs transfers
a charge of unit e giving a total charge of 2e, the same
total amount of charge as that carried by a Cooper pair. As
a result, the current I (V → 0) is the same as that for the
conventional SNS junction [51,55,60]. Away from perfect
transparency (GN �= 2), the dc current approaches zero as the
voltage approaches zero.

The SGS associated with the MAR develops at specific
voltages given in Table I, where for the p2Np2 junction with
symmetric gaps, the voltages are |V | = �p2/en as shown in
Fig. 7. The SGS is suppressed in the tunneling limit and the
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FIG. 7. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a p2Np2 junction with
various values of transparencies GN . The parameters used for both
p2-SCs are μp = 20 K, VZ = 0 K, �p = 2 × 10−4 eV Å, where the
gap is �p2 = 6.3 × 10−3 K. The smallest gap in the junction is �min =
6.3 × 10−3 K.

current becomes nonzero only when the voltage is above the
threshold voltage |V | = �p2/e, i.e., when the quasiparticles
have sufficient energy to undergo single Andreev reflections
from the MZMs. This is contrary to the case of the junc-
tion between two nontopological superconductors where the
tunneling current can flow only when the voltage is above
|V | = 2�/e, i.e., when the gap edge of the unoccupied band
lines up with that of the occupied band. Since the p2-SC does
not have a BCS singularity, the conductance at |V | = �p2/e

in the tunneling limit is not quantized at GM . Instead, it has a
nonuniversal value, which decreases with decreasing junction
transparency.

E. p2 N p1 junction

The current and conductance for a p2Np1 junction are
depicted in Fig. 8. For the p2Np1 junction in the perfectly
transparent limit (GN = 1), the current near zero voltage
approaches I (V → 0) = 2e�min/h, which is half of the
current for the p2Np2 or s-wave superconductor−normal
metal−s-wave superconductor junction. The reason is that
the p1-SC has only one MZM which can transfer a charge
in the unit of e in one spin channel. The SGS appears at
voltages given in Table I. Since the p2Np1 junction considered
here has asymmetric gap, the current and conductance in the
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FIG. 8. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a p2Np1 junction
with various values of transparencies GN . The parameters used for
the p1-SC are μp = 20 K, �p = 2 × 10−4 eV Å, and VZ = 40 K,
where the gap is �p1 = 0.011 K. The parameters for the p2-SC
are μp = 20 K, �p = 2 × 10−4 eV Å, VZ = 0 K, where the gap is
�p2 = 6.3 × 10−3 K. The smallest gap in the junction is �min =
�p2 = 6.3 × 10−3 K.

weak tunneling limit develop jumps at the voltages |V | =
�p1/e and |V | = �p2/e (which correspond to the voltages
where the MZMs are aligned with the p1-SC and p2-SC
superconducting gap edge). The conductance values at these
jumps have nonuniversal values, which decrease with the
junction transparency.

F. p1 N p1 junction

Figure 9 displays the current and conductance plots for a
p1Np1 junction. Similar to the p2Np1 junction, for a perfectly
transparent p1Np1 junction (GN = 1) the current at small
voltages asymptotically approaches I (V → 0) = 2e�min/h.
This is due to the fact that a charge of e is transferred between
the MZMs on both sides of the junction. For a symmetric
p1Np1 as considered here, the SGS develops at voltages
|V | = �p1/ne. In the weak-tunneling limit, there is a step
jump in the conductance at |V | = �p1/e to a nonuniversal
value that decreases as the junction transparency decreases.

G. p0 N p2 junction

The current and conductance plots for the p0Np2 junction
are given in Fig. 10. The MAR for this junction are suppressed
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FIG. 9. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a p1Np1 junction with
various values of transparencies GN . The parameters used for both
p1-SCs are μp = 20 K, �p = 2 × 10−4 eV Å, and VZ = 40 K, where
the gap is �p1 = 0.011 K. The smallest gap in the junction is �min =
�p1 = 0.011 K.

since p0 is essentially an insulator. There is a conductance
peak at |V | = �p0/e, which corresponds to a single Andreev
reflection from the MZMs. However, unlike the case of the
sNp2 junction, the tunneling conductance at the threshold
voltage |V | = �p0/e assumes a nonquantized value which
decreases with decreasing junction transparency. We note
again that the MZM tunneling conductance quantization
GM = (4 − π )2e2/h holds only if the superconducting probe
has a BCS singularity (as derived in Ref. [45]).

H. p0 N p1 junction

The current and conductance plots for the p0Np1 junction
are given in Fig. 11. The conductance for this junction
looks similar to those of the p0Np2 junction. The MAR
for this junction are suppressed and in the tunneling limit,
the conductance has a step jump at the threshold voltage
e|V | = �p0 to a nonquantized value, which decreases with
decreasing junction transparency.

I. p0 N p0 junction

For the p0Np0 junction, the plots of the current and
conductance versus the bias voltage are displayed in Fig. 12.
Since the p0Np0 junction is essentially a junction between
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FIG. 10. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a p0Np2 junction
with various values of transparencies GN . The parameters used
for the p0-SC are μp = −0.01 K, VZ = 0 K, �p = 0.2 eV Å, where
the gap is �p0 = 0.01 K. The parameters used for the p2-SC
are μp = 20 K, VZ = 0 K, �p = 2 × 10−4 eV Å, where the gap is
�p2 = 6.3 × 10−3 K. The smallest gap in the junction is �min =
6.3 × 10−3 K.

two insulators, the current and conductance for this junction
are generally small and MAR are strongly suppressed. In the
limit of small transparencies, the current and conductance
for a symmetric p0Np0 junction rise to a nonzero value at
e|V | = 2�p0 , i.e., when the density-of-state singularity of the
occupied band of one p0-SC is aligned with the singularity of
the empty band of the other p0-SC.

V. SPIN-ORBIT-COUPLED SUPERCONDUCTING
WIRE JUNCTIONS

Pure spinless or spinful p-wave topological superconduc-
tors as considered above do not exist in nature although
they could be approximate models for some real systems.
It is, however, known that effective 1D or 2D topological
superconductors closely mimicking spinless topological su-
perconductors can be artificially engineered by combining s-
wave superconductivity with spin-orbit coupling and Zeeman
splitting [11–13,15]. We therefore now consider a more physi-
cally realistic model for topological superconductors, namely,
a spin-orbit-coupled 1D semiconducting nanowire placed in
proximity to an s-wave superconductor in the presence of
magnetic field [11–14]. The s-wave superconductor induces
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FIG. 11. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a p0Np1 junction with
various values of transparencies GN . The parameters used for the
p0-SC are μp = −0.01 K, VZ = 0 K, �p = 0.2 eV Å, where the gap
is �p0 = 0.01 K. The parameters used for the p1-SC are μp = 20 K,
VZ = 40 K, �p = 2 × 10−4 eV Å, where the gap is �p1 = 0.011 K.
The smallest gap in the junction is �min = 0.01 K.

superconductivity in the nanowire through proximity effect,
and this proximity-induced nanowire superconductivity is
converted to topological superconductivity by the Zeeman
splitting in the nanowire (provided it is large enough to
overcome the induced s-wave superconductivity) in the pres-
ence of spin-orbit coupling. The BdG Hamiltonian for the
SOCSW is

HSOCSW =
(

− h̄2∂2
x

2m
− μ0

)
τz − iα∂xτzσy + VZσx + �0τx,

(12)

where μ0 is the chemical potential of the nanowire, α is
the strength of the spin-orbit coupling, VZ is the Zeeman
field, and �0 is the proximity-induced s-wave pairing po-
tential. The Hamiltonian above is written in the same basis
as that in Eq. (9). The SOCSW can be tuned from the
nontopological to the topological regime by simply changing
the Zeeman field VZ or chemical potential μ0. The critical
value VZ =

√
μ2

0 + �2
0 marks the topological quantum phase

transition between the topologically trivial (VZ <
√

μ2
0 + �2

0)
and topologically nontrivial phase (VZ >

√
μ2

0 + �2
0). In the

topological regime, there is one MZM at each end of the
nanowire (if the wire is long enough with well-separated
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FIG. 12. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a p0Np0 junction with
various values of transparencies GN . The parameters used for both
p0-SCs are μp = −0.01 K, VZ = 0 K, �p = 0.2 eV Å, where the gap
is �p0 = 0.01 K. The smallest gap in the junction is �min = 0.01 K.

MZMs, the system is in the topologically protected regime).
The BdG spectrum of the SOCSW is given in Fig. 13. In
what follows, we are going to denote the minimum gap in
the SOCSW spectrum by �SOCSW. Below we calculate the
current and conductance of several SNS junctions between
two SOCSWs where the SOCSW can be either in the

0
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0

0
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(c) (d)

momentum, k momentum, k

E
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FIG. 13. Energy spectrum of SOCSW for different parameter
regimes: (a) VZ = 0 (nontopological), (b) VZ <

√
μ2

0 + �2
0 (non-

topological), (c) VZ = √
μ2

0 + �2
0 (transition), (d) VZ >

√
μ2

0 + �2
0

(topological).
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FIG. 14. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a nontopological–
nontopological SOCSW junction with various values of transparen-
cies GN and no Zeeman field. The parameters used for both SOCSWs
are μ0 = 0 K, VZ = 0 K, �0 = 0.01 K, α = 0.5 eV Å, where the gap
is �

nontopo
SOCSW = 0.01 K. The smallest gap in the junction is �min =

0.01 K.

nontopological or topological regime. The results given in
the subsections below are our most relevant theoretical results
for the currently ongoing MZM experiments in the literature,
which mostly involve semiconductor nanowires.

A. Nontopological–nontopological SOCSW junction

In this subsection, we consider the junction between two
SOCSWs where both of them are in the nontopological regime
(i.e., VZ <

√
μ2

0 + �2
0). As shown in Fig. 14, the current and

conductance of this junction with no Zeeman field (VZ = 0)
is the same as that of an s-wave superconductor–normal
metal–s-wave superconductor junction [51,54,55]. The SGS
for the symmetric nontopological–nontopological SOCSW
junction occurs at voltages |V | = 2�

nontopo
SOCSW/ne. For a perfectly

transparent junction (GN = 2), the current at small voltages
approaches the value

I (V → 0) = 4e�min

h
. (13)

In the limit of small transparency, the current and conductance
develop a step jump at |V | = 2�

nontopo
SOCSW/e for junctions with

symmetric gaps.
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FIG. 15. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a nontopological–
nontopological SOCSW junction with various values of transparen-
cies GN and finite Zeeman field. The parameters used for both
SOCSWs are μ0 = 0 K, VZ = 0.002 K, �0 = 0.01 K, α = 0.5 eV Å,
where the gap is �

nontopo
SOCSW = 0.008 K. The smallest gap in the junction

is �min = 0.008 K.

Figure 15 shows the current and conductance for the
nontopological–nontopological SOCSW junction in the pres-
ence of Zeeman field. Increasing the Zeeman field smooths out
the SGS. In the limit of small transparencies, the conductance
has a smooth rise from zero instead of a step jump at the
threshold voltage.

B. Nontopological–topological SOCSW junction

Here, we consider junctions between a nontopological
and a topological SOCSW. The current and conductance for
such junctions are given in Figs. 16–18. We first consider
the case of the junction with the nontopological SOCSW
having no Zeeman field where the energy spectrum for this
nontopological SOCSW has the minimum gap at the Fermi
momentum with a BCS singularity [as shown in Fig. 13(a)].
As shown in Figs. 16 and 17, the conductance in the tunneling
limit for this junction develops a step jump from 0 to GM =
(4 − π )2e2/h at the gap-bias voltage e|V | = �

nontopo
SOCSW similar

to the case of sNp1 junction. This quantized value GM is
due to a single Andreev reflection from the MZM of an
electron coming from the gap edge with a BCS singularity.
In the limit where the Zeeman field in the topological SOCSW
is small, for intermediate and large transparencies, there are
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FIG. 16. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a nontopological–
topological SOCSW junction with various values of transparencies
GN . The red dashed line at GM = (4 − π )2e2/h is the conductance
value due to a single Andreev reflection from the MZM. The
nontopological SOCSW is not subjected to any Zeeman field and the
topological superconductor has a small Zeeman field. The parameters
used for the nontopological SOCSW are μ0 = 0 K, VZ = 0 K,
�0 = 0.5 K, α = 0.5 eV Å, where �

nontopo
SOCSW = 0.5 K. The parameters

used for the topological SOCSW are μ0 = 0 K, VZ = 15.0 K, �0 =
10.0 K, α = 0.05 eV Å, where the gap is �

topo
SOCSW = 0.75 K. The

smallest gap in the junction is �min = 0.5 K.

MAR and the conductance below the voltage e|V | = �
nontopo
SOCSW

is nonzero except for small voltages (see Fig. 16). Near
zero voltage, the current and conductance vanish due to a
mismatch in the Andreev reflection spin-selectivity between
the nontopological SOCSW and the MZM. In the limit of
large Zeeman field in the topological SOCSW, where the
MAR are suppressed and only single Andreev reflections are
allowed, the conductance for this junction develops a step jump
from 0 to GM = (4 − π )2e2/h independent of the junction
transparency. We note that this result is similar to the case
where the nontopological SOCSW is replaced by an s-wave
superconductor [46].

For the case where there is Zeeman field in the nontopo-
logical superconductor, the gap edge of the superconductor
no longer has the BCS singularity. As a result, the MZM
tunneling conductance measured using this nontopological
superconductor will not be quantized at GM for the gap-bias
voltage e|V | = �

nontopo
SOCSW. Instead, the tunneling conductance
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FIG. 17. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a nontopological–
topological SOCSW junction with various values of transparencies
GN . The red dashed line at GM = (4 − π )2e2/h is the conductance
value due to a single Andreev reflection from the MZM. The
nontopological SOCSW is not subjected to any Zeeman field and the
topological superconductor has a large Zeeman field. The parameters
used for the nontopological SOCSW are μ0 = 0 K, VZ = 0 K,
�0 = 0.5 K, α = 0.5 eV Å, where �

nontopo
SOCSW = 0.5 K. The parameters

used for the topological SOCSW are μ0 = 0 K, VZ = 60.0 K, �0 =
10.0 K, α = 0.05 eV Å, where the gap is �

topo
SOCSW = 0.42 K. The

smallest gap in the junction is �min = 0.42 K.

assumes a nonuniversal value which decreases with decreasing
junction transparency as shown in Fig. 18.

C. Topological–topological SOCSW junction

The current and conductance plots for a topological–
topological SOCSW junction are shown in Fig. 19. Our
results for this junction, calculated using the scattering matrix
formalism, are identical to previous results for the same
SNS junction calculated using a Green’s function method
[61] and similar to the results obtained in Ref. [62] for
a topological Josephson junction between superconductors
connected through the helical edge states of a 2D topological
insulator in the presence of a magnetic barrier.

Similar to the p1Np1 junction, in the limit of perfect trans-
parency (GN = 1), the current for a topological–topological
SOCSW junction asymptotically approaches

I (V → 0) = 2e�min

h
, (14)
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FIG. 18. Plots of (a) dc current I and (b) normalized differential
conductance G/G0 versus bias voltage V for a nontopological–
topological SOCSW junction with various values of transparencies
GN . The nontopological SOCSW has a finite Zeeman field and the
topological superconductor has a small Zeeman field. Note that
the MZM tunneling conductance is not quantized at GM = (4 −
π )2e2/h. The parameters used for the nontopological SOCSW are
μ0 = 0 K, VZ = 0.2 K, �0 = 0.5 K, α = 0.5 eV Å, where �

nontopo
SOCSW =

0.3 K. The parameters used for the topological SOCSW are μ0 =
0 K, VZ = 15.0 K, �0 = 10.0 K, α = 0.05 eV Å, where the gap is
�

topo
SOCSW = 0.75 K. The smallest gap in the junction is �min = 0.3 K.

which is half the value of the current in the conventional SNS
junction. The reason is because there is only one MZM at both
sides of the junction which transfer charges in unit of e. The
SGS for this junction happens at voltages |V | = �min/ne.
In the weak tunneling limit, there is a step jump in the
conductance at |V | = �min/e. We note, however, that since
there is no BCS singularity in the superconducting lead, the
conductance at the voltage |V | = �min/e is not quantized at
GM = (4 − π )2e2/h.

VI. ANDREEV BOUND STATES

In this section we compare the conductance of an MZM
with that of an ABS. We mention that the possible existence
of ABS in the system can never be ruled out a priori, and it is
therefore important to take into account their possible effects
on transport properties. In particular, we consider the ABS that
may arise in the SOCSW model with a finite topological region
and a semi-infinite nontopological region as shown in the right
side of the SNS junction in Fig. 20(a). This model can happen
naturally in an SOCSW with varying chemical potential, where
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FIG. 19. Plots of (a) dc current I and (b) normalized differen-
tial conductance G/G0 versus bias voltage V for a topological–
topological SOCSW junction with various values of transparencies
GN . The parameters used for both SOCSWs are μ0 = 0 K, VZ =
15 K, �0 = 1.17 K, α = 0.05 eV Å, where the gap is �

topo
SOCSW =

0.01 K. The smallest gap in the junction is �min = 0.01 K.

the chemical potential varies from the topological regime to the
nontopological regime resulting in the domain walls between
the topological and nontopological regions [63]. The ABSs can
be found at the end of the topological region. For simplicity,
here we consider a step jump in the chemical potential in
going from the topologically nontrivial (|μ0| <

√
V 2

Z − �2
0)

to the topologically trivial value (|μ0| >
√

V 2
Z − �2

0) keeping
all the other parameters in these two regions to be the same.
The ABS closest to zero energy in this model has energy
oscillating with the chemical potential in the topological region
as shown in Fig. 20(b), where the zero-energy ABS can be
found at specific values of system parameters [64]. In this
section, we compare the conductance of an MZM with that
of an ABS. We mention that the possible existence of ABS
in the system can never be ruled out a priori, and it is
therefore important to take into account their possible effects
on transport properties. In particular, we consider the ABS that
may arise in the SOCSW model with a finite topological region
and a semi-infinite nontopological region as shown in the right
side of the SNS junction in Fig. 20(a). This model can happen
naturally in an SOCSW with varying chemical potential where
the chemical potential varies from the topological regime to the
nontopological regime, resulting in the domain walls between
the topological and nontopological regions [63]. The ABSs can
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FIG. 20. (a) Schematic diagram of an sSC–SOCSW junction with a pair of ABS (one at each end of the topological region). The chemical
potential of the topological and nontopological regions are |μtopo| <

√
V 2

Z − �2
0 and |μnontopo| >

√
V 2

Z − �2
0 , respectively. The parameters

used for the sSC are μs = 50 K and �s = 0.67 K. The SOCSW parameters are μnontopo = 211.18 K, VZ = 15 K, �0 = 10 K, α = 0.05 eV Å,
and length of the topological region, Ltopo = 0.6 μm. We use a dissipation term i�τ0 ⊗ σ0 in the BdG Hamiltonian of both the left and right
superconductors with a dissipation strength � = 0.05K to broaden the van-Hove singularity. (b) The energy of the Andreev bound state closest
to zero energy versus the chemical potential μtopo in the topological region. The red, green, and purple dots indicate the value of the topological
chemical potential used in (c), (d), and (e), respectively. Normalized differential conductance G/G0 for the SOCSW for several chemical
potential values in the topological region: (c) μtopo = 0 K, (d) μtopo = 1.697 K, and (e) μtopo = 4.5 K. Inset: the ABS conductance in the weak
tunneling limit, which is the conductance for the smallest transparency in the main plot.

be found at the end of the topological region. For simplicity,
here we consider a step jump in the chemical potential in
going from the topologically nontrivial (|μ0| <

√
V 2

Z − �2
0)

to the topologically trivial value (|μ0| >
√

V 2
Z − �2

0), keeping
all the other parameters in these two regions the same. The ABS
closest to zero energy in this model has energy oscillating with
the chemical potential in the topological region as shown in
Fig. 20(b), where the zero-energy ABS can be found at specific
values of system parameters [64].

We consider this SOCSW in a junction with an s-wave
superconducting lead. To calculate the conductance here, we
first introduce a dissipation term −i�τ0 ⊗ σ0 into the BdG
Hamiltonian. The dissipation term is used to broaden the
van Hove singularity of the BdG spectrum, so that we do
not need to use a very fine energy grid in the numerical
calculation. This dissipation term has been used previously
to calculate conductance in topological NS junctions [43,44],
though for different reasons. Our using a dissipation here
could either be physically motivated as in Ref. [44] or simply
a technical artifice in handling the van Hove singularity.
Figures 20(c)–20(e) show the conductance of the SOCSW cal-
culated for several chemical potential values in the topological
region with all other parameters the same. The conductance
for the zero-energy ABS may resemble the MZM tunneling
conductance, i.e., it has a sharp rise at the voltage e|V | = �s

to a peak with a value near GM = (4 − π )2e2/h (see the

inset in Fig. 20(d) or Ref. [46]). One needs to be careful,
therefore, in interpreting experimental data since accidental
near-zero-energy ABS would produce tunneling conductance
signatures quite similar to MZM themselves. For nonzero
energy ABS, the ABS tunneling conductance peak shifts away
from the threshold voltage e|V | = �s (where �s is the s-wave
superconducting gap) toward a larger voltage value by the ABS
energy normalized by the tunnel coupling between the lead and
the system; see Figs. 20(c) and 20(e).

VII. CONCLUSION

In this paper, we have calculated the zero-temperature
dc current and conductance in various 1D voltage-biased
SNS junctions involving topological and nontopological su-
perconductors, considering both ideal spinful p-wave and
realistic spin-orbit-coupled s-wave superconducting wires. For
junctions with small transparencies, the presence of an MZM
gives rise to a jump in the current and conductance at the gap-
bias voltage e|V | = �lead where the superconducting gap edge
is aligned with the MZM. If the superconducting lead has a
BCS singularity at the gap edge then the tunneling conductance
at the gap-bias voltage takes the value GM = (4 − π )2e2/h

due to a single Andreev reflection from the MZM. However,
this quantization no longer holds if the superconducting lead
gap edge does not have the BCS singularity, e.g., p-wave
superconductor or SOCSW with finite magnetic field. For SNS
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junctions where both of the superconductors are topological
(i.e., with one or two MZMs at each end), there is SGS in the
I -V curve or conductance profile due to MAR. However, for
nontopological–topological superconductor junctions where
the topological superconductor has only one MZM at each end,
the SGS at small voltages is suppressed due to the mismatch
in Andreev reflection spin-selectivity of the superconducting
lead and the MZM.

In contrast to the conventional SNS junction, where Cooper
pairs are transferred across the junction with a charge of 2e, for
the topological SNS junction, the charge is transferred via the
MZM in the units of e. As a result, for a perfectly transparent
junction with an MZM at each end, the MZM contributes
to a near zero-voltage current I (V → 0) = 2e�min/h, where
�min is the smallest gap in the junction. We note that this MZM
near-zero voltage current is by no means universal or quantized
because of the generic presence of the gap �min, which surely
varies from junction to junction. The same is also true for the
case where there are two MZMs on one side and one MZM on
the other side. This near zero-voltage dc current is half of the
value for the conventional s-wave superconductor–normal–s-
wave superconductor junction. However, for the case where
there are two MZMs on both sides of the junction, the near
zero-voltage current is I (V → 0) = 4e�min/h because each
MZM can exchange a charge of e between each other. For
the case where there is a conventional s-wave superconductor
on one side and one MZM on the other side of the junction,
the current is zero because of the difference in the Andreev-
reflection spin selectivity of the s-wave superconductor and
MZM, i.e., the s-wave superconductor allows only opposite-
spin Andreev reflections and MZM favors equal-spin Andreev
reflections. However, for the junction between a conventional
s-wave superconductor and a Majorana Kramers pair the
near-zero current for a perfect transparent junction is not zero
but it is I (V → 0) = 4e�min/h. This is due to the fact that
the MZM pair can facilitate Andreev reflections in both spin
channels.

We also calculated the conductance with an ABS in the
SOCSW model arising from a finite topological and a semi-
infinite nontopological region. For this junction, the energy of
the ABS closest to zero energy oscillates with the chemical
potential in the topological region. For the parameters where
the ABS is at zero energy, the tunneling conductance may
resemble that of Majorana, i.e., it has a step jump to a value
GM at the gap-bias voltage e|V | = �lead. However, when the
energy of the ABS is nonzero, the conductance peak shifts
away from the gap-bias voltage towards a larger voltage value
by the ABS energy.

In conclusion, the tunneling conductance peaks for a
conventional SNS junction [49–51,54,55] occur at voltages
eV = ±(�nontopo

L + �
nontopo
R ), where �

nontopo
L,R are the super-

conducting gaps of the left and right nontopological super-
conductors. For an SNS junction with an MZM at one side
of the junction [45–48], the tunneling conductance peaks
occur at voltages eV = ±�nontopo and for an SNS junction
with one MZM on both sides of the junction [61,62,65], the
tunneling conductance develops peaks at eV = ±�

topo
L and

eV = ±�
topo
R , where �

topo
L and �

topo
R are the superconducting

gaps of the left and right topological superconductors. For

an SNS junction where both of the superconductors are
identical SOCSWs, in the nontopological regime close to the
topological phase transition, as the Zeeman field increases the
zero-momentum gap (� =

√
μ2

0 + �2
0 − VZ) shrinks and the

tunneling conductance peaks move towards zero voltage with
a rate d(e|Vtcp|)/dVZ = −2, where Vtcp is the voltage at which
the tunneling conductance peak occurs. In the topological
regime near the transition, as the zero-momentum gap (� =
VZ −

√
μ2

0 + �2
0) reopen, the tunneling conductance peaks

move away from zero voltage with a rate d(e|Vtcp|)/dVZ = 1.
This change in the dependence of the position of the tunneling
conductance peaks with Zeeman field near the topological
phase transition can serve as an evidence for the appearance
of MZMs in the system.

To this end, we would like to highlight the new finding
of our paper. First, we find that the tunneling conductance of
the MZM probed using a superconducting lead without a BCS
singularity (where

∑
σ=↑,↓ |uσ |2 �= ∑

σ=↑,↓ |vσ |2 at the gap
edge with u and v being the electron and hole component of the
BdG superconducting wavefunction) assumes a nonuniversal
value, which decreases with decreasing junction transparency.
We explicitly show this nonquantized conductance value for
the case where the superconducting probe lead is either
a topological or nontopological p-wave superconductor or
SOCSW with finite magnetic field. Second, we also show
that for the case where the superconducting probe lead is a
p-wave superconductor with no topological channel, MAR are
strongly suppressed due to fact that a nontopological p-wave
superconductors is essentially an insulator with small Andreev
reflection amplitudes. Third, we show that for the case where
the superconducting probe lead is an s-wave superconductor
and there is a Majorana Kramers pair in the topological
superconductor, in the high transparency regime, the current
and conductance near zero-voltage is not zero because there
are two MZMs, which facilitate equal-spin Andreev reflections
in two different spin channels. This is in contrast to the SNS
junction between an s-wave superconductor and a topological
superconductor with one MZM at the end where in this
junction MAR are strongly suppressed near zero voltage
because the s-wave superconductor allows opposite-spin An-
dreev reflections while the MZM allows equal-spin Andreev
reflections in only one spin channel.

Our theoretical results should serve as a definitive guide
to future experiments on MZM using tunneling spectroscopy
of topological SNS junctions. We believe that such SNS
experiments are now necessary since tunneling spectroscopy
of NS junctions in nanowires has failed so far (in spite
of >5 years of intense experimental activity) to manifest
the predicted MZM quantization of zero-bias conductance
although the zero-bias conductance peak itself seems to be
observed generically.
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APPENDIX: REMARKS ON NUMERICAL SIMULATION

The scattering matrices at the left (SL) and right NS
interfaces (SR) [Eq. (1)] can be calculated numerically from
Kwant [52] by constructing the tight-binding models for the
corresponding NS junctions. Since the scattering matrices
given by Kwant are calculated using the current amplitudes
with arbitrary phases at each energy, one can fix the phases by
setting the largest element of the current amplitudes for every
energy to be real.

We note that Eqs. (1a) and (1c) are invariant under the
transformation:

t in
L,R(E) → t in

L,R(E)U †
L,R(E),

J in
L,R(E) → UL,R(E)J in

L,R(E), (A1)

where t in
L,R(E) are the transmission matrices at the left and

right NS interfaces, UL,R(E) are unitary matrices, andJ in
L,R(E)

are the input current amplitudes from the left and right NS
interfaces. By polar decomposition, there exists a unitary
matrix UL,R(E) such that t in

L,R(E) = t̃ in
L,R(E)U †

L,R(E), where

t̃ in
L,R(E) =

√
t in
L,R(E)

[
t in
L,R(E)

]† =
√
1 − rL,R(E)r†L,R(E),

(A2)
with rL,R being the reflection matrices at the left and right
NS interfaces. For computational efficiency, we obtained only
the reflection matrices rL,R from Kwant and used Eq. (A2) to
calculate the transmission matrix.

For the numerical evaluation of Eq. (4), we used an energy
cutoff Ec in the summation over energy where Ec is chosen
such that the calculation converges for each voltage V . The
introduction of the energy cutoff sets the following constraint
on the scattering matrix:

Se
N (E,E + eV ) = Sh

N (−E,−(E + eV )) = −1, (A3)

for all E > Ec. The above constraint is required for the
unitarity of the scattering matrices to hold.

[1] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[2] M. Leijnse and K. Flensberg, Semicond. Sci. Technol. 27,

124003 (2012).
[3] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113

(2013).
[4] T. D. Stanescu and S. Tewari, J. Phys.: Condens. Matter 25,

233201 (2013).
[5] S. R. Elliott and M. Franz, Rev. Mod. Phys. 87, 137

(2015).
[6] S. Das Sarma, M. Freedman and C. Nayak, NPJ Quant. Info. 1,

15001 (2015).
[7] C. W. J. Beenakker and L. P. Kouwenhoven, Nat. Phys. 12, 618

(2016).
[8] A. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
[9] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das

Sarma, Rev. Mod. Phys. 80, 1083 (2008).
[10] A. Kitaev, Phys. Usp. 44, 131 (2001).
[11] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett.

105, 077001 (2010).
[12] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[13] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das

Sarma, Phys. Rev. B 82, 214509 (2010).
[14] J. Alicea, Phys. Rev. B 81, 125318 (2010).
[15] J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma,

Phys. Rev. Lett. 104, 040502 (2010).
[16] L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
[17] L. Fu and C. L. Kane, Phys. Rev. B 79, 161408(R) (2009).
[18] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. Beenakker,

Phys. Rev. B 84, 195442 (2011).
[19] S. Mi, D. I. Pikulin, M. Wimmer, and C. W. J. Beenakker,

Phys. Rev. B 87, 241405(R) (2013).
[20] M. Duckheim and P. W. Brouwer, Phys. Rev. B 83, 054513

(2011).

[21] S. B. Chung, H.-J. Zhang, X.-L. Qi, and S.-C. Zhang, Phys. Rev.
B 84, 060510(R) (2011).

[22] L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C. Zhang,
Phys. Rev. Lett. 108, 177001 (2012).

[23] J. D. Sau and S. Das Sarma, Nat. Commun. 3, 964 (2012).
[24] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,

Phys. Rev. B 88, 020407(R) (2013).
[25] Y. Kim, M. Cheng, B. Bauer, R. M. Lutchyn, and S. Das Sarma,

Phys. Rev. B 90, 060401(R) (2014).
[26] P. M. R. Brydon, S. Das Sarma, H.-Y. Hui, and J. D. Sau,

Phys. Rev. B 91, 064505 (2015).
[27] H.-Y. Hui, P. M. R. Brydon, J. D. Sau and S. Das Sarma,

Sci. Rep. 5, 8880 (2015).
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