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Metastability and bifurcation in superconducting nanorings
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We describe an approach, based on direct numerical solution of the Usadel equation, to finding stationary
points of the free energy of superconducting nanorings. We consider both uniform (equilibrium) solutions and
the critical droplets that mediate activated transitions between them. For the uniform solutions, we compute the
critical current as a function of the temperature, thus obtaining a correction factor to Bardeen’s 1962 interpolation
formula. For the droplets, we present a metastability chart that shows the activation energy as a function of the
temperature and current. A comparison of the activation energy for a ring to experimental results for a wire
connected to superconducting leads reveals a discrepancy at large currents. We discuss possible reasons for it.
We also discuss the nature of the bifurcation point at which the droplet merges with the uniform solution.
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I. INTRODUCTION AND SUMMARY

Destruction of superconductivity in thin wires at high cur-
rents is a classic topic. Bardeen’s 1962 review [1] summarizes
the state of the art at the time. In particular, it presents an
interpolation formula

Ic(T ) ≈ Ic(0)[1 − (T/Tc)2]3/2 (1)

for the critical (depairing) current as a function of the tem-
perature. An important development subsequent to Bardeen’s
article has been Little’s work [2], which emphasized the role of
large thermal fluctuations (phase slips) as a cause for transition
to the normal state at currents below Ic. Experimental studies
of this switching transition have developed fast in recent years
[3–5].

On the theoretical side, a study of thermal phase slips
begins with identifying the saddle point of the free energy
(the critical droplet) that determines the activation barrier. A
number of models have been used for this purpose. The original
computation [6] of Langer and Ambegaokar (LA) was in the
context of the Ginzburg-Landau (GL) theory. The GL theory
is well motivated microscopically but is limited to a vicinity
of the critical temperature. One alternative may be to use a
discrete model—essentially, a chain of Josephson junctions.
Relevance of such models to nanowires has been discussed in
Refs. [7–9].

Here, we proceed with a continuum description and present
results for activation energies obtained by a direct numerical
solution of the one-dimensional Usadel equation [10]. The
latter arises as the dirty-limit reduction of the Eilenberger-
Larkin-Ovchinnikov theory [11,12]. It is well motivated
microscopically, applies at any temperature, and contains
the GL theory as a limit. For an infinite (very long) wire,
the critical droplets have been considered on the basis of the
Usadel equation in Ref. [13]. Here, we will be interested in
solutions for a wire of a finite length.

Usadel’s equation is second order in spatial derivatives
and requires boundary conditions. Let us say a few words
about those. Bardeen’s formula (1) pertains to a uniform
superconducting state: The current density and the gap are
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the same everywhere along the wire (which is assumed here
to be in the x direction). If the wire is connected by leads
into an external circuit, such a uniform state can only be an
idealization, the more so the shorter the wire is. The true
equilibrium in this case is necessarily x dependent. Such
x-dependent solutions have been found for very short wires
(bridges of length L � ξ , where ξ is the coherence length),
both in the GL theory [14] and on the basis of the Usadel
equation [15]. In principle, the numerical approach we describe
here can be used to find such solutions also for longer wires,
provided one is willing to do some modeling of physics in the
leads.1

Another aspect of the boundary conditions, which is
particularly relevant to a study of phase slips, is whether the
leads prevent rapid changes in the boundary values of the phase
of the order parameter (as bulk superconductors do) or allow
such changes to occur easily (the case, for instance, for normal
contacts). In the first case, the critical droplet does not have to
have the same value of the current as the equilibrium state from
which it originates, while in the second case it typically does.2

For long wires, the two scenarios are not that different (as
shown by McCumber [17] in the case of the LA saddle point),
but for shorter wires there is a genuine difference, reflecting
the difference in the experimental setup. We refer to the first
scenario as nucleation at a fixed winding number and to the
second as nucleation at a fixed current.

The simplest system in which nucleation of the droplet
occurs at a fixed winding number, rather than a fixed current, is
a superconducting ring. One facet of that simplicity is that, for
a ring of a uniform cross section, there is a uniform equilibrium
state regardless of the length. This fortuitously circumvents the

1In the context of the GL theory, transition to longer wires has been
recently considered in Ref. [16].

2An intuitive picture of how bulk superconducting leads allow for
fluctuations of the current in the wire can be obtained by viewing
the leads as small impedances connecting the ends of the wire to the
ground. An impedance will be of order Z = (L/C)1/2, where L is the
kinetic inductance (which is small for a large superconductor), and
C is the capacitance of (a portion of) the lead relative to the ground.
The two impedances shunt the ends of the wire, allowing the current
in it to fluctuate.
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FIG. 1. Metastability chart, showing level contours of the ac-
tivation free energy �F for a critical droplet nucleating from a
uniform equilibrium, as a function of the equilibrium current I and
the temperature. �F is in units of F0, Eq. (29). The thick uppermost
curve is the critical current, defined as the maximum current possible
for a uniform solution at a given temperature. The levels of �F

increase down and correspond to even (solid lines) or odd (dashed
lines) multiples of 0.02 (the innermost curve being for �F = 0.44).
The thick dashed line corresponds to the ring biased by half the
flux quantum. Below that line, the uniform state is absolutely stable,
and the droplet represents a fluctuation towards a uniform state
with a higher free energy. The results are for a ring of half-length
L/2 = 41 in units of the diffusion length (28). The effective coupling
is λN (0) = 0.234.

problem of finding the x-dependent equilibrium characteristic
of short wires in the presence of leads. In particular, results
for a ring of a finite length can be directly compared to the
predictions of Bardeen’s formula (1), and a correction factor
to (1) can be obtained. With this in mind, we have chosen
the ring geometry for the present study. To treat the winding
number as a continuous variable, we consider twisted boundary
conditions, such as would arise in the presence of a fractional
magnetic flux through the ring.

After some preliminaries in Sec. II, we discuss details of the
boundary conditions in Sec. III and then describe the numerical
results in Sec. IV. Here, we present in advance the main result:
the metastability chart (Fig. 1), which shows level contours of
the activation free energy

�F = F (droplet) − F (uniform) (2)

for the critical droplet mediating transition from the uniform
equilibrium with given values of the temperature and current
to the state with one fewer unit of winding. When �F is
expressed as a multiple of the free energy unit (29), the
metastability chart depends on only two parameters: the length
L of the ring and the effective electron-electron coupling
λN(0). For the typical weak-coupling case λN(0) < 0.3, the
dependence of �F on the coupling is rather weak.

For a uniform ring, the properties of the equilibrium state do
not depend on L, but those of the critical droplet do. One might
expect that, as L becomes large compared to a suitably defined
coherence length ξ (T ), �F approaches the constant value
corresponding to an infinite wire, with finite-size corrections

of order ξ (T )/L. That is true over most of the chart but not in a
narrow band of currents near the critical. The reason is that the
size of the droplet grows for currents near Ic(T ), so even for a
small ξ (T )/L there is a range of currents for which finite-size
effects are important.3 In what follows, we will often quote the
length in units of the diffusion length ξ̄ , defined by Eq. (28)
below. To estimate the significance of finite-size effects on
�F , we can compare the results for L = 82, which is the value
used for the chart of Fig. 1, to those for about twice the length,
L = 162. We concentrate on temperatures 0.25 < T/Tc < 0.5
and currents I/Ic(T ) ∼ 0.9, where thermal switching transi-
tions are typically observed. More specifically, we consider
the “observability line” �F = 0.03 (which lies in the middle
of the second metastability band in Fig. 1). We have found
that, for these ranges of the parameters, increasing the length
to L = 162 leads to a decrease in �F by about 20%.

We should remark that, at a finite L, the critical (maximum)
current Ic(T ), represented by the thick upper curve in Fig. 1,
does not coincide with the bifurcation current Ibif(T ), at which
the droplet merges with the uniform solution and the activation
barrier disappears. The two would be strictly the same only in
the L → ∞ limit. The separation between Ibif(T ) and Ic(T )
is possible because the value of the current does not define the
uniform solution uniquely: the winding number does. As we
increase the winding from zero, the current first increases until
it reaches the maximum, Ic(T ), where �F is still nonzero, and
then decreases down to Ibif(T ), where �F finally vanishes.4

The value of L chosen for Fig. 1, however, is already large
enough for the difference between Ic and Ibif to be unnoticeable
on the scale of the plot. We return to discussion of this point
in Sec. IV, where results for a smaller length are presented.

In Sec. IV D, we carry out a comparison of results for
�F obtained on the basis of our numerical solutions to the
experimental results for one of the samples of Ref. [5]. The
comparison uses only experimentally measured quantities and
has no free parameters. We find a very good agreement at
low currents, but a significant discrepancy at large ones,
where switching transitions are observed. The experimentally
determined �F scales as (1 − I/Ic)3/2 near the critical current,
while the one obtained numerically is almost linear. As a
consequence, the numerical result there is significantly larger
than �F deduced from experiment. We mention a couple of
possible reasons for this discrepancy in Sec. IV D. Here, we
remark only that the resolution of the problem would be much
aided by experiments on rings thin enough for the “premature”
switching (I < Ic, �F �= 0) to have a chance to be observed.
The experiments [18] on thicker rings have already accessed
the “deterministic” switching regime �F = 0.

For a uniform ring, the equilibrium solution continues to
exist even after the winding number W is increased beyond
the bifurcation point Wbif , although it becomes absolutely
unstable. One may ask if this property is generic and will hold
also for a wire connected to leads. In general, we consider
that unlikely: As we discuss in Sec. V, the persistence of the
equilibrium solution for a ring can be seen as a consequence

3For the LA droplet in the GL theory, this effect can be deduced
already from the expressions presented in Ref. [6].

4Very recently, this effect has been observed experimentally [18].
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of the translational invariance. (More generally, is can be seen
as a consequence of there being different “versions” of the
critical droplet that are degenerate in free energy.) It would
nevertheless be interesting to see if there are any distinct
physical consequences of such absolutely unstable solutions:
On one hand, fabricating a suitable ring sample may not be out
of question; on the other, for a wire connected to leads, there
is an approximate translation symmetry in the middle, so the
same consequences may show up in that case as well.

II. PRELIMINARIES

Usadel’s equation [10] can be obtained by variation of a
certain free energy functional, which is essentially that of an
O(3) nonlinear sigma model. The corresponding free energy
density is

F = |�|2
λ

+ 2πT N (0)
∑
ω>0

{
−�∗F − �F ∗

+ 1

2
D[∇F ∗∇F + (∇G)2] + 2ω(1 − G)

}
. (3)

The sigma-model variables are the complex F (x,ω) ≡ F and
the real G(x,ω) ≡ G, related by the nonlinear constraint
|F |2 + G2 = 1. Variation with respect to � produces the
self-consistency condition

�(x) = 2πT λN (0)
∑
ω>0

F (x,ω). (4)

In a thin superconductor of uniform cross section, F and G

depend on only one spatial coordinate, x (so in particular
∇ = ∂x). In addition, they depend on the Matsubara frequency
ω that runs over the values ωk = 2πT (k + 1

2 ), where k is an
integer. Note that the summations over ω in (3) and (4) are
restricted to k � 0. If one wishes to pursue the sigma-model
context, one can think of F and G as the in-plane and out-
of-plane components of a (fictitious) magnetization, and of
the superconducting gap � as the in-plane component of the
self-consistent fictitious magnetic field.

The parameters appearing in (3) are as follows: λ is the
electron-electron coupling, T is the temperature, N (0) is the
density of states at the Fermi level (for a single spin projection),
and D is the electron diffusion constant. Following [11], we
will use the substitution

1

λN(0)
= ln

T

Tc

+
K−1∑
k=0

1

k + 1
2

(5)

to relate λN (0) to the critical temperature. The sum in (5) is
cut off just below some integer K , which corresponds to the
maximum (Debye) frequency in units of 2πT .

Variation of the free energy with respect to F (with
G expressed as G = (1 − |F |2)1/2) reproduces the Usadel
equation

−� − D

2

(
∇2F − F

G
∇2G

)
+ ωF

G
= 0, (6)

which should be solved together with (4).

The current density, in units of twice the electron charge, is
[10]

J = −iπT N (0)D
∑
ω>0

(F ∗∇F − F∇F ∗). (7)

Although this nominally depends on x, for static solutions (the
only case considered here) in samples of uniform cross section,
charge conservation ensures that J is x independent.

It is convenient to define a new field, F̃ (x,ω), by removing
“most of the winding” from F (we will say precisely how
much below), as follows:

F (x,ω) = eiqxF̃ (x,ω) = eiqx[R(x,ω) + iI (x,ω)], (8)

where, for now, q remains unspecified. For future use, we have
separated the real and imaginary parts of F̃ . In terms of F̃ , the
gradient term in (3) becomes

∇F ∗∇F = (∇ − iq)F̃ ∗(∇ + iq)F̃ , (9)

and the nonlinear constraint becomes

|F̃ |2 + G2 = 1. (10)

In what follows, we consider F̃ , rather than F , as the main
dynamical variable and q as a parameter, on which the free
energy depends explicitly via (9).

III. BOUNDARY CONDITIONS

We begin by considering the theory on a ring of length L,
with periodic conditions on F (x,ω) for all ω. Later, we will
allow for twisted boundary conditions, such as those associated
with a magnetic flux through the ring.

For our purposes, it is not sufficient to simply state that
the solution is periodic. For one thing, because of the perfect
translational invariance, any x-dependent solution will have
a translational zero mode (a zero eigenvalue of the Hessian
matrix), which will render the numerical method we use
inapplicable. The same applies to the zero mode generated
by the symmetry with respect to global phase rotations. We
wish to eliminate these zero modes by placing the “core” of
the solution at a particular point (say, x = 0) and also fixing
its overall phase.

We first note that the free energy is invariant under the
discrete transformation

P : F (x,ω) → F ∗(−x,ω). (11)

To eliminate the zero modes, we concentrate on solutions that
have definite parity under P . It is then sufficient to consider
only P -odd solutions, namely those that satisfy

F (x,ω) = −F ∗(−x,ω), (12)

because any P -even solution can be turned into a P -odd one by
multiplication by i. The condition (12) breaks the translational
symmetry to translation by L/2 and the symmetry with respect
to global phase rotations to multiplication by −1. These are
discrete symmetries, which do not produce zero modes.

As an example of how (12) fixes the overall phase, consider
one of the uniform solutions, which are of the form

F (x,ω) = f (ω)eiQx, (13)

174507-3



SERGEI KHLEBNIKOV PHYSICAL REVIEW B 95, 174507 (2017)

where Q is a parameter. For this to satisfy (12), f (ω) must be
purely imaginary.

In Sec. II, we have defined a new field F̃ , obtained from
F by taking out some of the winding, cf. Eq. (8). The amount
of winding taken out is represented by eiqx , where q has so
far been left undetermined. Regardless of the value of q, the
condition (12) translates into the identical condition for F̃ or,
in terms of the real and imaginary parts of F̃ , into the condition
that R is odd, and I is even about x = 0. In other words,

R(0,ω) = I ′(0,ω) = 0, (14)

where the prime denotes derivative with respect to x.
As long as F (x,ω) is periodic, the condition (12) implies

that it is odd also under P combined with a translation by the
total length L, that is

F (x,ω) = −F ∗(L − x,ω). (15)

We now choose q so that F̃ , on the contrary, is even under this
combination:

F̃ (x,ω) = F̃ ∗(L − x,ω). (16)

In terms of the real and imaginary parts of F̃ , this becomes

R′(L/2,ω) = I (L/2,ω) = 0. (17)

For a periodic F , the restriction this imposes on q is eiqL = −1.
We observe, however, that we now have enough boundary
conditions to formulate a boundary problem on [0,L/2]
directly for F̃ (or, equivalently, for its real and imaginary
parts), so we can switch to more general twisted F simply
by abandoning the restriction, i.e., by allowing for arbitrary
values of q. In this way, q becomes a continuous parameter,
which enters the calculation only through the expression (9)
for the gradient term.

Next, we note that, for a given q, the boundary conditions
(14) and (17) still do not determine the solution uniquely. The
reason is that the configuration space is comprised of sectors
corresponding to different winding numbers, and one can in
principle look for a solution to the boundary problem in each
of these sectors individually. For example, for the uniform
solutions (13),

F̃ (ω,x) = f (ω)ei(Q−q)x, (18)

and the boundary conditions require only that Q belongs to
the discrete set

Q = Qm = q + π (2m + 1)

L
, (19)

where m is any integer. The uniform states corresponding
to different Qm in general have different energies, and their
activated decays are described by different critical droplets.
We want to make sure that we are solving for the right droplet,
the one that describes the decay of a particular uniform state.
In other words, we want to be able to restrict to one particular
sector out of many.

Loosely speaking, the different sectors can be viewed
as neighborhoods of different uniform solutions, those with
different Q from the sequence (19). More precisely, separation
into sectors can be done with the help of the winding number

W (ω) = 1

2π

∫ L/2

−L/2
∂x arg F (x,ω)dx, (20)

which is well defined for any configuration for which the ab-
solute value |F (x,ω)| does not vanish anywhere. As indicated
in (20), a priori one can imagine the winding number to be
a function of ω, but here we restrict attention to solutions for
which it is the same for all ω, W (ω) = W .

For a uniform solution, W = QL/2π . We can scan over all
uniform solutions by fixing m in (19) and varying q, and we
now wish to concentrate on the sector with m = 0, for which

Q = q + π

L
. (21)

Recalling that by virtue of (14) f is purely imaginary, we find
the real and imaginary parts of (18) to be

R(x,ω) = −(Imf ) sin
πx

L
, (22)

I (x,ω) = (Imf ) cos
πx

L
. (23)

These expressions reflect the characteristic property of the
m = 0 sector: The real part of F̃ has no zeros except the
one at the origin, prescribed by (14), and in addition, at x

just above zero, the signs of the real and imaginary parts
are opposite. Indeed, for a given q, any field that has these
properties and satisfies the boundary conditions (14) and (17)
will have the same winding number as the uniform solution
(22)–(23). This can be seen from the following relation, which
applies whenever R has no zeros at x > 0:

2πW = qL + 2
∫ L/2

0
∂x arctan

I (x,ω)

R(x,ω)
dx

= qL − πsgn
I (0,ω)

R(0+,ω)
. (24)

Unlike the relative sign of R and I , their overall sign is
unimportant: There is a companion set of solutions, with
the same energy and current, that differs from the ones we
find by an overall sign. As already noted after (12), this is a
remnant of the original invariance with respect to global phase
rotations. So, in what follows we identify the m = 0 sector by
the condition

R(x,ω) > 0, x > 0. (25)

Equation (24) then shows that a solution (uniform or not) will
be in the m = 0 sector if I (0,ω) < 0 and in the m = −1 sector
if I (0,ω) < 0.

Let us note that the critical droplet responsible for fluctu-
ations out of the m = 0 sector can itself be in either m = 0
or m = −1 sector, depending on the sign of q. To see that,
let us first consider the special case q = 0. For the uniform
solution, Eq. (21) now gives Q = π/L, so the winding number
is W = 1/2. The uniform solution with one fewer unit of
winding (corresponding to m = −1) has Q = −π/L and
W = −1/2. These solutions have exactly opposite currents
and equal energies. If we think of the twisted boundary
conditions as being a result of a magnetic flux through the
ring, this special situation corresponds to the ring biased by
half the flux quantum. The critical droplet in this case has
I (x,ω) = 0 identically, and the current on it is zero; because
of the zero of F at x = 0, the winding number is not well
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defined. One can say that for q = 0 the droplet lies at the
boundary between the m = 0 and m = −1 sectors.

Recall that, in our computation, q is a parameter that can be
chosen arbitrarily. As we change it from positive to negative,
I (0,ω) changes from negative to positive, and the droplet
moves from the m = 0 sector to m = −1. The underlying
physics is that, at q > 0, the m = 0 uniform solution is
metastable, and the droplet describes its activated decay to the
m = −1 solution, which has a lower free energy. At q = 0, the
m = 0 and m = −1 uniform solutions become degenerate in
energy, and at q < 0 the situation is reversed: For sufficiently
small |q|, the m = 0 solution is absolutely stable, and the
droplet describes the decay of the m = −1 solution to it.
Alternatively, even for q < 0, the droplet can be interpreted
as a fluctuation out of the m = 0 sector. In that interpretation,
its activation energy �F will always be counted from the free
energy of the m = 0 uniform solution. This is how it has been
presented on the chart of Fig. 1, where the states corresponding
to q = 0 are shown by the thick dashed line.

The sign condition (25), together with the boundary
conditions (14) and (17), completes our formulation of the
boundary problem for F̃ . Note that this boundary problem
produces only half of the configuration, namely, the part
corresponding to 0 � x � L/2. The other half can be obtained
by reflecting R(x,ω) as odd and I (x,ω) as even about x = 0.

IV. NUMERICAL RESULTS

Before we proceed to the results, let us discuss some aspects
of the substitution formula (5) that are important for numerical
work. Because λN (0) is constant, the cutoff integer K in (5)
must increase with decreasing temperature. On can express
this by saying that, as T is lowered, the system builds up
a “synthetic” frequency dimension, represented by a chain
of values of k. Physically, this dimension is associated with
motion of electrons within a pair.

Suppose we take the smallest value of K , which we will
call KD , to correspond to T = Tc. Then, from (5),

1

λN(0)
=

KD−1∑
k=0

1

k + 1
2

. (26)

Thus, we can use KD instead of λN(0) as a parameter
determining the strength of the interaction. A typical value
is KD = 10, which corresponds to λN(0) = 0.234. As long
as KD is not much smaller than this, the results depend
comparatively weakly on it. As a consequence of (5), once
KD is specified, the size K of the frequency dimension is
related to T/Tc as follows:

ln
T

Tc

= −
K−1∑
k=KD

1

k + 1
2

. (27)

One limitation of this procedure is that, since K can only
increase in discrete (integer) steps, T/Tc is likewise limited
to a discrete set of values. The effect is significant mostly for
T near Tc. Indeed, the smallest K > KD one can possibly
choose is K = KD + 1. Then, from (27), the largest T/Tc not
equal to unity is T/Tc = exp[−1/(KD + 1

2 )]. For KD = 10,

this translates into the cutoff at T/Tc = 0.91, seen in the chart
of Fig. 1.

Of course, one can choose K = KD to correspond not to
T = Tc but to a slightly lower temperature. Since (26) will no
longer apply, this will result in a slightly different coupling,
but will allow us to obtain a data point in the missing range of
temperatures near Tc. Given that the region near Tc is not our
main interest here, we will not pursue that.

A. Units of length, energy, and current

A natural unit of length in the present problem is the
characteristic diffusion length ξ̄ defined by

ξ̄ 2 = h̄D

4πTc

. (28)

In this subsection only, we have restored h̄. For orientation,
for Tc = kB × (5 K) and D = 1.2 × 10−4 m2/s (values appro-
priate for amorphous MoGe wires [19]), ξ̄ = 3.8 nm. In what
follows, we will often quote the length L in units of ξ̄ and the
winding number parameter q in units of ξ̄−1.

A natural unit of the free energy is

F0 = (2πTc)2N (0)Aξ̄, (29)

where A is the cross-sectional area of the sample. This amount
represents a condensation energy of order 2πTc for each
electron in a length ξ̄ of the wire in an energy layer about
2πTc thick near the Fermi surface. Similarly, a natural unit of
the electric current is

I0 = 2e × 2πTcN (0)ADξ̄−1 = 4eF0

h̄
, (30)

where e is the electron charge. In what follows, we present
results for the free energy and the current in units of F0 and
I0, respectively.

B. Uniform solutions

Uniform solutions are those of the form (13). For these,
our main interest is in quantifying the accuracy of Bardeen’s
formula (1). When we do not wish to refer to a specific length
of the wire, L, we will use Q rather than q as a parameter. If
a value of L is available, the two can be related by (21). As
per discussion at the end of Sec. III, either is now considered
a continuous parameter.

For a uniform solution, we do not need to solve the full
boundary problem: Once Q is chosen, the x dependence of
the solution is known, and the Usadel equation becomes an
equation for the amplitude f (ω). It reads

1

2
DQ2f (ω) + ωf (ω)

[1 − |f (ω)|2]1/2
= 2πT λN (0)

∑
ω>0

f (ω),

(31)
where ω takes the values

ω = 2πT (k + 1/2), k = 0, . . . K − 1. (32)

Dividing (31) by 2πTc, we see that the full set of parameters
on which the solution depends can be chosen as follows: Qξ̄ ,
where ξ̄ is the diffusion length (28), KD , which determines
λN(0), and K , the upper cutoff in the sum. From the latter
two, the ratio T/Tc can be calculated via (27). In what follows,
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TABLE I. The coupling strengths and the numerically obtained
values of the critical current at T = 0 for several values of KD . The
current is in units of I0, Eq. (30).

KD 5 10 20 40

λN (0) 0.280 0.234 0.202 0.177
Ic(0)/I0 0.07752 0.07796 0.07819 0.07831

we present the results as functions of that ratio, rather than K

itself.
We solve (31) numerically by the multidimensional

Newton-Raphson method. For given KD and T/Tc, we com-
pute the current as a function of the one remaining parameter,
Qξ̄ . The current reaches a maximum at some (T -dependent)
critical value Qc(T ); the value at the maximum is designated
as the critical current, Ic(T ). The zero-temperature limit of
Ic(T ) may be of independent interest, and we present results
for it, for a few values of KD in Table I. The table also lists the
values of the coupling strength λN(0), computed from KD via
(26). One may note the weakness of the dependence of Ic on
the coupling, especially for smaller couplings.

The ratio of the numerically computed Ic(T )/Ic(0) to the
interpolating function [1 − (T/Tc)2]3/2 proposed by Bardeen
[1] is shown in Fig. 2. This ratio constitutes a correction factor
to Bardeen’s formula (1). The weak dependence of the result
on KD means that, for weak coupling, the correction factor is
essentially universal.

One may observe that the correction factor retains a
significant dependence on T even at the lowest temperatures:
It grows by almost 2% between T = 0 and T/Tc = 0.1.
This dependence, however, is almost entirely due to that
in Bardeen’s expression [1 − (T/Tc)2]3/2. The numerically
obtained Ic(T ) is essentially flat for T/Tc < 0.1 and can be
well approximated there by the corresponding value of Ic(0)
(as found in Table I). This saturation of Ic(T ) at T/Tc ≈ 0.1
is visible already on the chart of Fig. 1 and is probably the
main qualitative feature distinguishing the numerical result
from Bardeen’s formula.

Next, we consider what happens to the uniform solution
when q is increased past qc, i.e., past the value at which the
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FIG. 2. Correction factor to Bardeen’s formula (1) for various
coupling strengths. The values of KD can be translated into coupling
strengths by Eq. (26) or Table I.
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FIG. 3. The current (in units of I0) for the uniform solution
(solid line) and the critical droplet (dashed line), as a function of
the winding number parameter q, for L/2 = 20.5, KD = 10, and
T/Tc = 0.4. This plot illustrates the separation between the critical
value qc, where the current is maximal, and the bifurcation point qbif ,
where the solutions merge.

current reaches the maximum. As a point of comparison, we
recall results for the theory of a single degree of freedom
(DOF), that is, a “particle” with a potential in the form of a
cubic parabola, as used for instance in studies of Josephson
junctions. The minimum of the potential corresponds to the
ground state and the maximum to the critical droplet. In that
case, the maximum current is, at the same time, a bifurcation
point at which the droplet merges with the ground state.

Turning to the present case, note that, for a uniform solution,
the current is proportional to the derivative of free energy
density with respect to q, dF/dq. Thus, q = qc, at which
the current is maximal, is an inflection point of F . For an
infinite wire, the standard convexity argument then guarantees
that at q = qc the uniform solution becomes unstable to
spinodal decomposition. Finite-size effects can delay onset
of the instability, so for a wire of a finite length we expect that
it occurs, if at all, at some q = qbif > qc. (Very recently, this
effect has been observed experimentally [18].)

As for a single DOF, the change in the stability properties
(now at q = qbif) is accompanied by a bifurcation—a merging
or splitting up of two or more solutions. In our case, the
solution merging with the uniform state is the critical droplet;
the process is illustrated in Fig. 3. Note that, unlike for a
single DOF, the uniform solution continues to exist at q > qbif ,
even though it becomes absolutely unstable. As we discuss
in Sec. V, this can be attributed to the fact that there are
two “variants” of the critical droplet, both merging with the
uniform solution at q = qbif . They are related by a discrete
transformation which is a symmetry of the theory and so has
the same free energy and current.

C. Critical droplet

The critical droplet is the saddle point of the free energy
that sits at the top of the potential barrier separating the
uniform solution (13) with Q = q + π/L, as given by (21),
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from the uniform solution with one fewer unit of winding, i.e.,
Q = q − π/L.

The droplet is x dependent, so finding it requires solving
the full Eq. (6). Numerically, we proceed by discretizing
(6) on a one-dimensional spatial grid of N equally spaced
sites (typically, N = 41 or N = 81) and applying the multi-
dimensional Newton-Raphson (NR) method to the resulting
nonlinear equations for N × K complex unknowns F (xj ,ωk).
As usual, the success of the NR method depends on having a
good initial approximation. We adopt the following protocol.
We start at a value of K close to KD , which corresponds to T

close to Tc. There, we use the LA solution [6] of the GL theory
as the initial approximation for the gap �(x), from which we
reconstruct an approximation for F (x,ω) via

FGL(x,ωk) = �(x)

ωk

+ D∇2�(x)

2ω2
k

− |�|2�(x)

2ω3
k

(33)

(the usual approximation for transitioning from the Usadel
equation to the GL theory). After the NR method finds the
exact solution at this value of K , we compute the exact �(x)
and increase K to a larger value, using (33) to populate the
missing modes of F (those with k between the old value of
K and the new one). That forms the initial approximation at
the new K . In this way, increasing K in steps, we move to
progressively lower values of the temperature. Results of the
computations have already been presented in Figs. 1 and 3.

D. Comparison to experiment

Comparing our results to experiment requires, as the input
data, the T = 0 value of the critical current Ic(0), the critical
temperature Tc, and the length L of the sample. The weak
dependence of Ic(0) on the coupling strength (see Table I)
allows us to determine the unit I0 of current by using the
approximate relation Ic(0) = 0.078I0. The unit F0 of free
energy is then computed from (30). Note that this does not
require separate knowledge of the density of states and the
cross-sectional area. With the value of F0 in hand, we can
refer to a chart such as that of Fig. 1 to find the activation
barrier in physical units.

As an illustration, let us carry out this program for sample B
of Ref. [5] (the longest wire described there). The parameters
as determined in Ref. [5] are Ic(0) = 12.11 μA, Tc = 5.48 K,
and L = 221 nm (for Tc, we use the value referred to in
Ref. [5] as T ′

c ). Following the steps outlined above, we obtain
F0 = 159 meV. Next, we use numerical results for L = 62 (in
units of ξ̄ ), a somewhat smaller value than that used for Fig. 1
but matching more closely the physical length. For illustration,
we take T/Tc = 0.2. The resulting activation barrier is plotted
as a function of the equilibrium current in Fig. 4. The dashed
line is the activation barrier obtained in [5] by fitting the
experimental data. At small currents, the agreement is very
good. Of main interest, however, is the region of large currents
(say, those within 10% of the critical), where the barrier
becomes small enough for the switching transition to be
observable. There, the numerical result is almost a straight
line and significantly overestimates the observed value. In
fact, for �F = 6 meV (the value obtained numerically for
I/Ic = 0.9), the Boltzmann exponent at the temperature in
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FIG. 4. Solid line: the activation barrier �F for T/Tc = 0.2,
L = 62, λN (0) = 0.234, and F0 = 159 meV, computed numerically.
Dashed line: the function �F = Uc(1 − I/Ic)b with Uc = 70.3 meV
and b = 3/2, obtained in Ref. [5] by fitting the experimental data for
sample B.

question is over 60; in all likelihood, such an exponent would
render the transition unobservable.

We can offer two possible explanations for the discrepancy
at large currents. One is that, the reasoning given in the
Introduction notwithstanding, nucleation of a critical droplet
in a wire connected to superconducting leads does not occur,
even for large leads, exactly at fixed winding, so the results
obtained for a ring are not immediately applicable. The second
possibility is that, at large currents, in addition to the uniform
equilibrium states considered here, there are other, possibly
nonuniform, states available, activation from which proceeds
more easily. For instance, for a periodic structure equivalent
to a chain of Josephson junctions, the b = 3/2 scaling of �F

at I → Ic applies even for rings of relatively short lengths [9].
As the example of an array of phase-slip centers [20] indicates,
such a nonuniform state may exist even in a morphologically
uniform wire.

V. CONSEQUENCES OF THE
TRANSLATIONAL INVARIANCE

In addition to the symmetry under the discrete transforma-
tion (11), the free energy is invariant, at an arbitrary fixed q,
under the transformation

P ′ : F̃ (x,ω) → −iF̃ ∗(L/2 − x,ω). (34)

This can be seen as a composition of (11) with a translation
by L/2 and a global phase rotation. In terms of the real and
imaginary parts of F̃ , it corresponds to

R(x,ω) → −I (L/2 − x,ω), (35)

I (x,ω) → −R(L/2 − x,ω). (36)

The boundary conditions (14) and (17) are also invariant under
P ′. Indeed, this symmetry can be viewed as a discrete remnant
of the full transitional invariance that the theory had before
we imposed (14) and (17). As such, it is characteristic of the
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rather special situation presented by a uniform ring and is not
available generically.

The uniform solution (22)–(23) is invariant under P ′, but
the critical droplet is not. Thus, there must be a twin droplet,
with the exact same values of the free energy and current as
the original, obtainable from it by an application of P ′. The
only physical difference between the two is that the “core” of
the original droplet is at x = 0, while the core of the twin has
been shifted to x = L/2.

One consequence of the existence of the twin is that, at
the bifurcation point, there are in fact not two but three
solutions merging. Thus, for instance, in Fig. 3, the dashed
line should now be taken to mean two solutions: the original
droplet and the twin. An index theorem can then be used
to relate the properties of the solutions before and after the
bifurcation. The argument is parallel to that used in Ref. [21]
to study bifurcation of a different type of solution, the periodic
instanton [22].

The requisite index theorem is the Morse equality [23],
which states that, for a smooth function f with nondegenerate
critical points on a compact smooth manifold M ,

∑
s

Ns(−1)s = χ (M), (37)

where the sum is over all the values of the index (the number
of negative modes of f at a critical point), Ns is the number of
critical points of index s, and χ (M) is the Euler characteristic
of M . In our case, M is the product of N × K spheres of the
form (10), and f is the discretized version of the free energy
with the self-consistency condition (4) and the expression (9)
substituted in. As a result, f depends on q as a parameter.

The critical points are, in our case, the various static
solutions described earlier. Assuming that no bifurcations
except the one in question occur at q = qbif , we can compute
the change in the right-hand side of (37) between q < qbif and
q > qbif . That change must be zero, as χ (M) is a topological
invariant. At q < qbif , there are three solutions: the uniform
solution of index 0, and the droplet with its twin, each of
index 1. Their total contribution to (37) is −1. This is different

from the case of a single DOF (the cubic parabola), where only
two solutions are merging, and the total index is zero. In that
case, the two solutions can simply disappear at q = qbif . In our
case, the minimal structure needed at q > qbif to preserve the
total index is a single solution with one negative mode. That is
indeed what we have seen numerically: The uniform solution
remains but becomes absolutely unstable.

It is natural to ask where the instability that the uniform
solution acquires at q > qbif leads. Numerically, this can
be answered by displacing a little along the negative mode
and following a relaxation algorithm. To better describe
the results, let us first recall that, in addition to the now
unstable uniform solution, which we will call F0, there are, for
the same q, uniform solutions with other winding numbers.
For the solution with one unit of winding fewer than F0, the
real and imaginary parts of F̃ are

R(x,ω) = g(ω) sin
πx

L
, (38)

I (x,ω) = g(ω) cos
πx

L
. (39)

The difference with (22)–(23) is that R and I now have the
same sign for x > 0. There are in fact two solutions of this
form: one with g > 0, and the other with g < 0; let us call
them F+ and F−. The transformation (35)–(36) maps one into
the other. Numerically, we have found that the instability of F0

at q > qbif develops into F+ or F−, depending on the direction
of the initial displacement.5

Finally, we remark that, as q is increased further, beyond
qbif , the uniform solution acquires additional negative modes
and so is expected to go through additional bifurcation points.
We have not studied those in any detail.

5It makes sense to consider two fields that differ only by an overall
sign as physically equivalent. Then, we would be talking about a
loop, which starts at F+ ∼ F−, goes up to F0, and then down back to
F− ∼ F+.
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