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Orbital selective pairing and gap structures of iron-based superconductors
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We discuss the influence on spin-fluctuation pairing theory of orbital selective strong correlation effects
in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an
improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles
occupying specific orbital states. This modifies the usual spin-fluctuation theory via suppression of pair scattering
processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the
remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed
anisotropic gap structures in both bulk and monolayer FeSe, as well as LiFeAs, indicating that orbital selective
Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.
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I. INTRODUCTION

In both copper-based and iron-based high-temperature
superconductors, fundamental issues include the degree of
electron correlation and its consequences for enhancing super-
conductivity. In both archetypes, there are multiple active or-
bitals (two O p orbitals and one Cu d orbital in the former, and
five Fe d orbitals in the latter). This implies the possibility of
orbital selective physics, where states dominated by electrons
of one orbital type may be weakly correlated and others much
more strongly correlated, leading to substantial differences
in quasiparticle spectral weights, interactions, magnetism, and
orbital ordering [ 1-7]. Cooper pairing itself could then become
orbital selective [8,9], with the electrons of a specific orbital
character binding to form the Cooper pairs of the supercon-
ductor. The superconducting energy gaps of such a material
would therefore generically be highly anisotropic [8,9], i.e.,
large only for those Fermi surface regions where a specific
orbital character dominates. Such phenomena, although long
the focus of theoretical research on higher-temperature super-
conductivity in correlated multiorbital superconductors, have
remained largely unexplored because orbital selective Cooper
pairing has not been experimentally accessible.

Spin fluctuations are proposed as the dominant mecha-
nism driving Cooper pairing in a wide variety of uncon-
ventional superconductors: heavy-fermion systems, cuprates,
two-dimensional (2D) organic charge transfer salts, and iron-
based superconductors (FeSC) [13-16]. There is currently
no version of spin-fluctuation-based pairing theory that en-
joys either the well-controlled derivation from fundamental
interactions or the consensual success explaining observed
properties of the BCS-Migdal-Eliashberg theory of conven-
tional superconductivity. On the other hand, the calculational
scheme referred to as random phase approximation (RPA)
in the case of one-band systems [17,18], or matrix RPA in
the case of multiband systems [19,20], has achieved consider-
able qualitative progress for unconventional systems.

While material-specific calculations of the critical temper-
ature 7, within spin-fluctuation theory appear distant, consid-
erable success has been achieved understanding qualitative as-
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pects of pairing, particularly in Fe-pnictide systems [15,21,22].
In the 122 materials, which were the subject of the most
intensive early study, itinerant spin-fluctuation theory provided
convincing, material-specific understanding of the variation of
gap anisotropy with doping within the dominant sign-changing
s-wave channel, particularly the existence or nonexistence of
nodes; the interplay with d-wave pairing; the rough size of T;
and the origin of particle-hole asymmetry in the phase diagram.
In retrospect, such agreement was somewhat fortuitous, possi-
bly because the 122 systems have large Fermi surface pockets
of both hole and electron type, and are relatively weakly
correlated. In other pnictides like 111 [4,23,24], and in 11 Fe-
chalcogenide systems [3,25], correlation effects are consider-
ably more significant. In LiFeAs, for example, angle-resolved
photoemission spectroscopy (ARPES) measurements [26,27]
show that the I'-centered d . /d,; hole pockets are considerably
smaller than predicted by density functional theory (DFT),
while the d,, pocket is larger. Taking these effects into account
via a set of renormalized energy bands is insufficient, however,
to account for the accurate gap structure of LiFe As within spin-
fluctuation theory [12] (see Ref. [15] and references therein).

The consequences of correlations for the band structure of
FeSC are more profound than simple Fermi surface shifts,
however. If one examines compounds where the d bands are
closer to half-filling (5 electrons/Fe), the effect of electron-
electron interactions are enhanced in a way distinctly different
from one-band systems: different d-orbital effective masses
are enhanced by different factors. This “orbital selectivity”
predicted by theory [1-3,28-30] has been confirmed by
ARPES experiments. While most Fe-based systems have more
electrons/Fe, closer to 6, the effects are still nontrivial in the
Fe-chalcogenides. For example, the electrons in bands with
dyy-orbital character have been claimed to exhibit single-
particle masses up to 10-20 times the band mass, while in
dy./d., states the renormalization is closer to 3—4 [31,32].

In Fermi-liquid theory, excitations in a system of interacting
fermions are described by quasiparticles that have the same
quantum numbers but deviate from the free particles in prop-
erties such as the quasiparticle mass, which renormalizes the
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FIG. 1. Fermi surfaces together with orbital character of the models considered in this work obtained from tight-binding models fit to
ARPES and quantum oscillation experiments. The individual sheets are labeled as indicated: (a) model for FeSe (bulk) [10] including orbital
order, (b) 2D model for FeSe monolayer derived from the previous one where maps of ARPES intensities obtained from measurements with
horizontally polarized (LH) and circular polarized (CR) initial photons have been overlayed to show agreement to experimental results [11]
and (c) model for LiFeAs [12]. Plots as a function of the angle ¢ around the Fermi surface sheets are done with the angle measured from the

k, axis as indicated in (b).

Fermi velocity. Generally, interactions in electronic systems
also lead to reduced quasiparticle weights, corresponding to
reduced values of the residue at the pole of the Green’s
function describing those dressed electrons. Even in one-band
systems where orbital selectivity does not play arole, pairing in
superfluid systems with reduced Landau quasiparticle weight
is an important unsolved theoretical problem. While one
generally expects pairing interactions to be reduced as the
quasiparticle weight is suppressed as other aspects of pairing
are held fixed, pairing in completely incoherent non-Fermi
liquids is not impossible, as discussed recently in Ref. [33]. The
effect of orbital selective quasiparticle weights on pairing in
FeSC has been discussed elsewhere in various approximations
[8,9], with differing conclusions.

In this work, we implement a simple scheme to incorporate
aspects of renormalization of the electronic band structure,
including reduced quasiparticle coherence that is orbital
selective into spin-fluctuation pairing theory, and apply it
to several FeSC. This orbital selective approach to pairing
provides an excellent description for the superconducting gap
deduced from quasiparticle interference measurements on the
nematic Fermi surface pockets of bulk FeSe, as shown already
in Ref. [10]. Here, we discuss the generality of this approach,
and show how it explains the exotic gap structures of FeSe,
FeSe monolayers, and in the LiFeAs system as well. These
findings encourage us to believe that the proposed paradigm is
the correct way to understand the physics in these materials,
but we cannot rule out completely that other effects affecting
the gap such as spin-orbit coupling or orbital fluctuations
[34] may contribute. While the microscopic origin of the
phenomenology remains an open challenge, we believe that it
provides a major step towards a quantitative, material-specific
theory of superconductivity in strongly correlated FeSC.

II. MODEL

The starting point of any uncorrelated multiband system
is the electronic structure described by a tight-binding model
[12,34-36]

H=>Y"tcl,®cp ). 6))
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where CL (k) is the Fourier amplitude of an operator that
creates an electron in Wannier orbital £ with spin o and
tﬁ[ is the Fourier transform of the hoppings. By a unitary
transformation from orbital to band space, H becomes
diagonal H =), £,(K)cl,, (K)c,o (), with eigenenergies
&,(k) and cL” (k) creating an electron in Bloch state u,k.

There is no way to determine empirically the electronic
structure &,(k) of the uncorrelated reference system corre-
sponding to a given real material. However, experimental
probes like ARPES and quantum oscillations provide infor-
mation on the real single-particle spectrum, which we will
call Eu(k). Since we do not have access to &,(k), we will
henceforth use the term ‘“uncorrelated” to mean a model
for an electronic structure where the quasiparticles have unit
weight; in this work we only work with such models where the
eigenenergies E, (k) have been obtained by fit to experiment.
In Fig. 1, we show examples of Fermi surfaces derived from
the eigenenergies E (k). For three-dimensional (3D) models
considered in this work, the zero-energy surfaces, i.e., the set
of k vectors with E (k) = 0, are corrugated tubes identified
as «, §, and ¢ sheets in Fig. 1(a) (FeSe, bulk) or the § and y
sheets in Fig. 1(c) (LiFeAs), but can also be closed surfaces
as the o pocket in Fig. 1(c). For a two-dimensional model as
shown in Fig. 1(b), the Fermi surface is given by elliptical lines
such that it is convenient to plot quantities as a function of the
angle ¢.

In the orbital basis, the “uncorrelated” Green’s function is
given by

L (a’ (k)
G (K,wy) = Z %, 2
w n ®

where a/’i(k) are the matrix elements of the unitary transfor-
mation mentioned above. The orbital weight |a/, (k)|* becomes
important when discussing low-energy (Fermi-surface driven)
properties and is therefore visualized color coded for the
important Fe d orbitals £ = {d,,dx.,d,.} in Fig. 1 as well.

In order to include the full effects of correlations,
we further make the orbital selective ansatz that the
operators cZ(k) create quasiparticles with weight /Z, in
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orbital £, cZ(k) — «/chZ(k). Note that £ runs over the Fe
3d orbitals (dyy,dy2.y2,dy;,dyz,d32.2).
The associated Green s function becomes

al(K)a’*(k)

G ko) =+ ZeZy Z 3)

—E,(k)’

where E (k) are the renormalized band energies. A similar ap-
proach has been used recently when parametrizing the normal-
state Green’s functions in a Fermi-liquid picture [37], with the
formal difference that we explicitly employ the renormalized
quasiparticle energies E «(K), which include the static real
part of the self-energy, and retain the quasiparticle weights in
the numerator. Following state-of-the-art pairing calculations
from spin-fluctuation theory [12,38—40] (see Appendix C),
important effects of the /Z, factors enter in two places:
(1) the calculation of the susceptibility includes the renormal-
ized quasiparticle Green’s function, and (2) when projecting
the pairing interaction from orbital to band space, one needs

to account for the replacement of c} k) — \/Z_KCZ (k). In
cases where the Hamiltonian already correctly describes the
quasiparticle energies of a correlated system &, (k) — E u(K)
(as obtained, e.g., from fits to measured quasiparticle energies
from spectroscopic experiments), the bare susceptibility in
orbital space needs to be simply multiplied by the quasiparticle
weights

%0 000, =V Z0,Z0,Z0, Zey X3, 0,000, () )

in order to obtain the corresponding quantity (with tilde) in
the correlated system. Our models as shown in Fig. 1 already
match the true quasiparticle energies E,(Kk), such that we
can use Eq. (4) to examine the effect of the quasiparticle
weights on the susceptibility. In Fig. 2(a), the diagonal
components of the orbitally resolved susceptibilities where
£y = £, = €3 = {4 are plotted as obtained from our model
of FeSe (bulk). For all orbitals, the overall magnitude is
similar (except for £ = d,» that does not play any role for
the subsequent discussion), but the momentum structure is
distinct: the d,, component has a maximum at q = (77,7),
whereas the components for d,; (d.;) have maxima at
q = (7,0) [q = (0,7)]. Introducing quasiparticle weights as
indicated in Fig. 2(b), it is obvious that some components are
suppressed more than others such that for the present choice
of {/Z;} =[0.2715,0.9717,0.4048,0.9236,0.5916], the d,,
contribution dominates.! In a similar way, the pairing inter-
action gets modified by prefactors from quasiparticle weights
(see Appendix C). Physically, this means that orbital selective
pairing occurs because pairing from certain quasiparticle states
is suppressed more than others because the states themselves
are less coherent.

To visualize this effect, we have plotted the spectral function
AKk,w) = —1/7 ImTr G(k,w) for k, = 0 at zero energy in

'Note that the d,2.,2» component is still large because of the choice
of a quasiparticle weight close to 1. It therefore contributes to the
physical susceptibility, but has little influence on the superconducting
order parameter since the orbital weight for states at low energies is
small (see Fig. 1).
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FIG. 2. Comparison of the orbitally diagonal components of the
susceptibility of the uncorrelated model for bulk FeSe (a) and the
same quantities including the quasiparticle weights that suppress
contributions from orbitals with small weight factors according to
Eq. (4) (b).

Fig. 3(a) for the uncorrelated system and in Fig. 3(b) with
the same choice of quasiparticle weights as discussed above.
We use the bulk FeSe Fermi surface discussed below as
an illustration of the idea, but details of the bands are
not important for this purpose. The superconducting order
parameter is now determined by the strength of the pair

correlated:
orbitally selective

min ‘

FIG. 3. Plot of the spectral function at zero energy in the first
Brillouin zone. (a) Spectral function A(k,0) = —1/7 Im Tr G(k,0)
of the uncorrelated model for FeSe (bulk) at £, = 0 with the Green’s
function as in Eq. (2). (b) Spectral function A(k,0) of the model
including quasiparticle weights inducing orbital selective reduced
coherence. For the pair scattering of Cooper pairs at momenta k to k’
on the Fermi surface (arrows) two quantities determine the scattering
strength: (i) the susceptibility ¥ (q) to which the pairing vertex Iy
is proportional and (ii) the quasiparticle weight at initial and final
momentum. In summary, some processes get largely suppressed (thin
red and blue arrows) such that other processes (thick green arrow)
dominate the Cooper pairing.
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FIG. 4. Results for FeSe (bulk): (a) calculated susceptibility with quasiparticle weights (¥, thick lines) compared to the susceptibility
without quasiparticle weights (x, thin dashed lines), (b) gap symmetry function as obtained from conventional spin-fluctuation pairing, and
(c) the same quantity when taking into account orbital-dependent quasiparticle weights. For both calculations, the dominant pair scattering
processes leading to a large order parameter are symbolized with a double arrow. The calculations are done for a fixed ratio J = U /6, but with

an overall scale U as indicated.

scattering ' i of a Cooper pair at k to K" which is proportional
to the susceptibility within the spin-fluctuation approach. In the
uncorrelated case, scattering processes involving three pairs of
k vectors as depicted by the arrows in Fig. 3 are comparable in
magnitude (with the process in blue involving d,, states being
slightly larger). Taking into account the quasiparticle weights,
the spectral function and thus the pair scattering is suppressed
on parts of the Fermi surface. Consequently, the processes
involving d,. states (green, thick arrow) dominate over those
involving dy, states (blue) and d, states (red), making the
pairing orbital selective.

III. BULK FeSe

Early thermodynamic and transport studies of bulk FeSe
as well as STM supported a state with gap nodes [41,42].
However, more recent measurements of low-temperature
specific heat [43,44], STM [44], thermal conductivity [45,46],
and penetration depth [47,48] have found a tiny spectral gap,
indicating that the gap function is highly anisotropic but may
not change sign on any given sheet. The only experiments that
provide information on the location of these deep minima are
an ARPES measurement on the related Fe(Se,S) material [49]
and a recent quasiparticle interference (QPI) experiment [10],
both of which find deep minima on the tips of the hole ellipse
at the center of the Brillouin zone. The latter also distinguishes
deep minima on the tips of the ¢ electron pocket “ellipse”.

To test the mechanism of orbital selective pairing deter-
mined by reduced coherence of some quasiparticles, we show
first how this mechanism modifies results for the susceptibility
and the superconducting gap for bulk FeSe. Our starting
point is a tight-binding model with hoppings adapted such
that the spectral positions of the quasiparticle energies fit
recent findings using ARPES, quantum oscillations, and STM
experiments [10,50-53]. As the band energies are “measured”
in this case, these can be identified with the renormalized band
energies £,(K) in the presence of correlations, yielding the
Fermi surface in Fig. 1(a).

To construct a proper approximation of the quasipar-
ticle Green’s function [Eq. (3)], we need to additionally
include quasiparticle weights. Next, we fix the ratio J =
U/6 as found in cRPA calculations [54,55] and optimize

the weights in the orbital basis. The result is {/Z;} =
[0.2715,0.9717,0.4048,0.9236,0.5916] such that the gap
function yields a nodeless order parameter with a large
anisotropic gap on the o pocket, as seen from Fig. 4(c). These
values for Z; are in reasonable agreement with general trends in
FeSC: the d,, orbital exhibits strongest correlations (smallest
weight) [31], while the d,>.,» orbital is the most weakly
correlated [1-3]. We note that the resulting gap structure
is very different from the one obtained from conventional
spin-fluctuation calculations (which also show a distortion
from tetragonal symmetry as expected) [56], a result of the
very different momentum structure of the pairing interaction
[compare Figs. 4(b) and 4(c)]: The largest gap magnitude
is on the tip electron pocket (¢) centered at the X point
for the conventional calculation because the largest pair
scattering 'y connects this area of the Fermi surface with
the corresponding one on the Y -centered pocket [blue arrow in
Figs. 3(a) and 4(b)]. It appears on the o pocket when using the
orbital selective pairing ansatz because the dressed electrons
mediate the strongest Cooper pair scattering from the flat area
of the o pocket to the flat area of the ¢ pocket, where also
the gap is maximal [green arrow in Figs. 3(b) and 4(c)]. The
physical origin of this can be attributed to the strong splitting
of weights of the d,, and d, orbitals where states of the d,
orbital are very incoherent.

We observe that the susceptibility j, originally strongly
dominated by (7,7), now shows dominant stripe fluctuations
with q = (77,0) [see Fig. 4(a)]. This result is in agreement with
findings from neutron scattering experiments [57,58] which
find strong stripe fluctuations at low energies. Taking into
account the results of a recent ARPES experiment [59] with the
conclusion that the electronic structure of FeSe evolves in such
a way that it becomes less correlated as temperature increases,
we can conclude that weight of the spin fluctuations should
shift from (sr,0) towards (;r,7) as temperature increases. This
can be understood directly from Eq. (4), where the different
orbital components of the susceptibility are weighted accord-
ing to the quasiparticle weights; the d,, components which are
peaked at (7,7) get suppressed. The d,, components, peaked
at (0,7), are suppressed as well (see Fig. 2). On individual
pockets, the gap function then follows the orbital content of
the orbital with strongest contribution (in this case, the d,,
orbital) [compare Fig. 1(a)].
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FIG. 5. Results for FeSe (bulk): plot of the gap function around
the Fermi surface pockets for (a) the conventional spin-fluctuation
calculation and (b) a calculation using the spin-fluctuation pairing
in presence of quasiparticle weights. For direct comparison, the
data from a Bogoliubov QPI analysis from Ref. [10] and a ARPES
investigation on a related compound FeSe(S) [49] are displayed as
well.

Consequently, the pairing is changed by two mechanisms:
First, it is modified directly by the quasiparticle weights as
discussed earlier and, second, the peak shifts in q in the (RPA)
susceptibility. Both of these effects make the pair scattering in
the d, orbital more important [green thick arrow in Fig. 3(b)]
yielding the gap structure as shown in Fig. 4(c). To make the
agreement to experiment evident, we plot in Fig. 5 the gap
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function at a cut of the Fermi surface at k, = m comparing
to results from two different spectroscopic methods. While
the conventional calculation [Fig. 5(a)] does not show any
similarities, the correspondence in Fig. 5(b) is evident. Finally,
we note that this picture is different than that ascribed to
orbital selective physics in the “strong-coupling” 7-J model
approach, where the d,, pairing channel is enhanced rather
than suppressed [9].

IV. MONOLAYER FeSe ON SrTiO3

Despite considerable excitement over the high critical
temperature in the FeSe/STO monolayer system, limited
information is available regarding the structure of the su-
perconducting gap. Early ARPES measurements suggested
an isotropic gap on electron pockets [60,61]. Theoretical
possibilities for pairing states in the presence of missing
I'-centered hole band were discussed in Ref. [15]. Quite
recently, anew ARPES study identified significant and unusual
anisotropy on a single unhybridized elliptical electron pocket
[11], whereby the gap acquired global maxima at the ellipse
tips and additional local maxima at the ellipse sides. These
authors showed that the structure cannot be explained using
any of the low-order Brillouin zone harmonics expected from
so-called “strong-coupling” electronic pairing theories.

Within the model for the electronic structure of bulk FeSe,
we perform a calculation with a few modifications to account
for differences in the monolayer from the bulk: (1) We ignore
all hoppings out of the plane, yielding a strictly 2D system.
(2) We neglect orbital order, which has never been observed
in the monolayer. (3) Experimentally, only electronlike Fermi
pockets have been detected, suggesting that the monolayer
is actually electron doped. Possible reasons for this doping
are charge transfers from the substrate or surface defects.
We therefore apply a rigid band shift by §u = 60 meV,
which removes the I"-centered hole pocket and leaves electron
pockets that have the size and shape of measured spectral
functions in ARPES [11], with n = 6.12 electrons/Fe [see
Figs. 1(b) and 6(a) for a plot of the orbital character]. The
quasiparticle weights in the monolayer may be different from
the bulk for two reasons: (1) The absence of the orbital order,
i.e., the tetragonal crystal structure dictates that the weights
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FIG. 6. Results for monolayer FeSe: (a) orbital weight at the Fermi surface, (b) superconducting gap obtained from conventional spin-
fluctuation theory, and (c) the same quantity including orbital-dependent quasiparticle weights compared to measured gap functions in
ARPES [11]. Symmetry operations of the tetragonal system have been applied to the measured data. All calculations were done for a fixed

ratio J = U/10, with overall scale U as indicated.
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FIG. 7. Results for LiFeAs: (a) 3D plot of the gap function as obtained from spin-fluctuation calculation including quasiparticle weights.
(b) Cut at k, = 7 of the result of the s-wave gap function from conventional spin-fluctuation theory (solid lines) plotted as a function of angle
¢ (as defined in Fig. 1) around the pockets [I"-centered hole pocket (o, magenta), M-centered hole pocket (y, cyan), and X-centered electron
pocket (B, black)] together with experimental results. The measured magnitudes of the gap from an ARPES experiment [27] are symmetrized
and displayed as crosses, and those from a Bogoliubov QPI experiment [62] as filled dots. (c) The same quantity for the gap function as shown
in (a) also compared to experimental data. All calculations are done for a fixed ratio J = 0.37U [12], but with overall scale U as indicated.

for dy; and d,. orbitals are degenerate (unlike bulk FeSe).
(2) Correlations may be different in the monolayer where a
tendency towards weaker correlations was found recently [6],
such that we fix the ratio J = U/10 in this case.

At this point, we note that the states on the Fermi surface
have only tiny orbital weight of d> and d,».,» character,
and additionally there are no pair scattering processes from
k to kK with q = (,0) [or q =(0,7)] such that a fit
procedure with all quasiparticle weights will be underdeter-
mined. In the optimization procedure, we therefore fix the
weights to \/Z,2 2 = 0.8 > \/Z> = 0.7 and obtain {\/Z]} =
[0.4273,0.8000,0.9826,0.9826,0.700] for the best agreement
to the gap measured in ARPES [11]. This result does change
the susceptibility slightly, but keeps the (mw,7) fluctuations
dominant; for details we refer to Fig. 8 in the Appendix. These
fluctuations drive an overall (nodeless) d-symmetry ground
state as expected, but with an unusual structure modified
strongly by orbital correlations, with the result as shown
in Figs. 6(b) and 6(c). Evidently the gap function for the
standard spin-fluctuation calculation [Fig. 6(b)] mostly follows
the orbital content of the d,, orbital [compare Fig. 6(a) for a
plot of the orbital weights as a function of angle ¢ around
the X-centered pocketz]. For the current Fermi surface, this
is expected because the pairing interaction is dominated by
intraorbital processes, and the d,, orbital has large weight at
positions k and k' on the Fermi surface which are separated
roughly by (7r,7) and can take advantage of the strong peak
in the susceptibility at that q vector. The other two orbitals
play a negligible role in the pairing process. This situation is
modified once the pairing interaction is renormalized by the
quasiparticle weights and therefore reduces the contribution
of the d,, orbital. The main effect is that a second maximum
in the gap function appears at a position in momentum space
where the d,; or d, orbital is dominant [see Fig. 6(c)].

In the pairing process, intraorbital, interpocket contribu-
tions dominate, whereby one pair on the X pocket of d,

>The Y-centered pocket is symmetry related and will not be
discussed further at this point.

character scatters into another pair on the Y pocket with the
same orbital character, meaning that the latter pair must be
located on the tip of the Y pocket where the gap has largest
magnitude. Because the total weight of this orbital is smaller
there, the order parameter for k states dominated by this orbital
is enhanced. In summary, one gets a gap structure with a large
maximum at the tip of the ellipse and a small maximum at the
flat part of the ellipse, remarkably similar to that detected by
experiment [11].

V. LiFeAs

LiFeAs is another Fe-based superconductor that is known
to have a Fermi surface quite different from that predicted from
DFT. Several theoretical attempts [12,34,36,63] to understand
the ARPES-determined gap structure [26,27,62,64] were
reviewed recently in Ref. [15]. All were based on an “engi-
neered” tight-binding band structure consistent with ARPES
data [12], i.e., containing the correct spectral positions of the
bands (including the orbital content). Despite some success in
explaining certain features of the gap structure, others were
not reproduced properly in all approaches, although Ref. [34]
claimed a good overall fit to experiment.

To reveal how and whether the standard spin-fluctuation
theory result changes upon inclusion of quasiparticle weights,
we use the same method as described above for a band
structure relevant to LiFeAs [12]. The corresponding Fermi
surface is shown in Fig. 1(c). First, we note that moderate
changes in the quasiparticle weights which we set to {+/Z;} =
[0.5493,0.969,0.5952,0.5952,0.9267] do change the gap
structure, but largely preserve the structure of the susceptibility
(see Appendix D). The gap functions, however, undergo a
remarkable change relative to unrenormalized spin-fluctuation
theory. These include first a stronger tendency towards s sym-
metry, even with small values of J. Note that the conventional
spin-fluctuation scenario, d and s wave solutions are nearly
degenerate, a consequence of the poor (7r,0) nesting properties
of LiFeAs [24,26]. Second, orbital selectivity enhances the
gap on the small I'-centered hole pocket (o pocket) [see
Fig. 7(a)]. This appears to correct the crucial discrepancy in
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the calculation of Wang et al. [12] relative to experiment [see
Figs. 7(b) and 7(c)]. Finally, the procedure leads to weaker
anisotropy of the gap on the large d,, dominated pocket, also
in better agreement with experiment, whereas small deviations
between the ARPES data [26] and our calculation on the
electron pockets persist which could be due to hybridization of
the corresponding bands. We did not investigate effects of spin-
orbit coupling in this case since these are supposed to be small
[12]. Note further that the (angular) position of the maximum
gap on the electron pockets changes from 0° to slightly
off 90°, opening the possibility of two maxima (and two
minima). Unlike the models for FeSe (bulk) and monolayer
FeSe, all three orbitals (dxy, d,;, dy;) play an important role
in determining the gap anisotropy on the 8 pockets, making it
more sensitive to changes in the electronic structure.

VI. DISCUSSION

The above results are extremely encouraging, suggest-
ing that the orbital selective correlation effects are indeed
required when applying spin-fluctuation pairing theory to
Fe-chalcogenide and more strongly correlated Fe-based su-
perconductors. We caution, however, that we have not derived
the renormalizations entering the pair vertex self-consistently
from a microscopic theory. Efforts along these lines are in
progress. Second, by construction the quasiparticle renormal-
izations describe only the states near the Fermi level. Compari-
son with ARPES measurements should be performed carefully,
as these analyses tend to emphasize renormalizations on much
larger energy scales, which may be quite different. Possible im-
prints of the orbital selectivity could be visible in the penetra-
tion depth [47] if calculated within the same theoretical frame-
work, or Friedel oscillations close to impurities in the case
of bulk FeSe which are rotating in direction as a function of
energy [42]. Calculations along these lines are also in progress.

VII. CONCLUSIONS

In the absence of a fully controlled many-body treatment
of electronically paired superconductivity, it may be very
valuable to have a simple phenomenological yet microscopic
approach that includes aspects of the low-energy quasiparticle
renormalizations that affect pairing most strongly. We have
presented a paradigm that allows for suppressed quasiparticle
weight within the framework of conventional spin-fluctuation
pairing theory, and argued that it provides accurate descriptions
for the previously inexplicable superconducting energy gap
structures of the most strongly correlated FeSC. We have
given results of explicit calculations in three cases where
correlations are known to play an important role: bulk FeSe,
monolayer FeSe on STO, and LiFeAs. These results reveal
an immediate challenge to determine if our approach can
be combined with microscopic calculations of quasiparticle
weights to yield a material-specific theory with predictive
power for strongly correlated FeSC.
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APPENDIX A: HAMILTONIAN AND CONSTRUCTION
OF GREEN’S FUNCTION

Considering the tight-binding Hamiltonian (1) together
with its diagonalization to band basis, one can construct
the Green’s function in the band basis G, (k,w,) = [iw, —
Eu(k)]". The unitary transformation that takes one from
the band basis (Greek indices) to the orbital basis (Roman
indices) is

o) =Y al(k)eys (k). (A1)

Unitarity implies

> al®al (k)" = 5, (A2)
£

so we can invert (A1) to find the orbital basis Green’s function
as stated in the main text:

Vi %
e ALY
G (k,w,) = Xﬂzau(k)au ()G (ko) = XM: iw, — Eu(K)
(A3)

APPENDIX B: QUASIPARTICLE DESCRIPTION
IN BAND SPACE

At this point, we make a short remark about the implications
of quasiparticles in band representation. Starting from Eq. (3),
we can transform back to the band basis and obtain the
quasiparticle Green’s function

Guk,w) =Y as* (k)al (k)G p(k,0,)

s,p
= (Z yag(k)lz}ag’(k)\z/Z\/Tp) G,(K,w,)
s, p

= Zv(k)Gv(kaa)n) = Gv(kawn)’ BD

where Z,(k) = [Y_, |a%(k)|>v/Z;]? are the quasiparticle band
weights near the Fermi surface. If the point k on the Fermi
surface sheet v is dominated by a particular orbital weight
las(k)|?, the quasiparticle weight for that band will be given
predominantly by Z;. Calculating the spectral function from
such a Green’s function and plotting versus k at w =0,
one directly sees that part of the Fermi surface is strongly
suppressed in intensity whenever an orbital dominates that has
small quasiparticle weight, i.e., is strongly correlated. In Fig. 3,
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we show this effect of the spectral function on the example of
our model for FeSe (bulk).

We stress that the approach applied in this paper is
phenomenological in the sense that the band renormalizations
and the quasiparticle weights are not obtained self-consistently
from the same bare interaction parameters. Thus, we do
not address the problem of how to quantitatively capture
nontrivial self-energy effects and the eventual transition to
non-Fermi-liquid behavior with increasing correlations or hole
doping [4], but simply rely on a wealth of previous theoretical
studies showing the existence of orbital selectivity, and study
their influence on the superconducting pairing structure.

APPENDIX C: SPIN-FLUCTUATION PAIRING:
UNCORRELATED MODEL

Here, we remind the reader of the approach to calculating
the gap function in the usual spin-fluctuation pairing model
[38,40]. First, local interactions are included via the five-orbital
Hubbard-Hund Hamiltionan

H=Hy+U anniu +U’ Z nielip

i<t
+J Z chw CipoCito' Cit'a
il'<t o,0’
+J Z cj“cjuciwcim, (C1)
i O£

where the interaction parameters U, U’, J, J’ are given in
the notation of Kuroki er al. [65] with the choice U’ =
U-—-2J,J =J', leaving only U and J/U to specify the
interactions. Here, ¢ is an orbital index with £ € (1,...,5)
corresponding to the Fe 3d orbitals (dyy,dy2.y2,d,;,dy;,d3,2.2).
The orbital susceptibility tensor in the normal state is now
given as

K@ == > MLt kG k + )G k), (C2)

k, v
where we have adopted the shorthand k = (k,w,), and defined
M}, k) = al (Ka* K)al (k + @as*(k +q). (C3)

The Matsubara sum in Eq (C2) is performed analytically,
and we then evaluate X@, 6,e,¢, DY integrating over the full
Brillouin zone. As noted earlier [56], the Fermi surface nesting
condition gives significant contributions to the susceptibility,
but finite-energy nesting also contributes. The spin- (), RPAY
and charge-fluctuation (x, RPA) parts of the RPA susceptibility
for ¢ = (q,w, = 0) are now defined within the random phase
approximation as

Xt e @ = X°@ = U x°%(D1 Ve esess

Xont,6@ = @I + T X @ Vet
The total spin susceptibility at @ = 0 is then given by the sum

(C4a)
(C4b)

1
x@ =3 xilie@- (C5)
o

The interaction matrices U* and U¢ in orbital space are
composed of linear combinations of U,U’, J,J’ and their forms
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are given, e.g., in Ref. [39]. We focus here on the spin-singlet
vertex for pair scattering between bands v and p,

Mk K)=Re Y  al*Kay*(—k)

1020304

x T t,00,(kK) a2 (K)a (—K),  (C6)

where k and k' are quasiparticle momenta restricted to the
pocketsk € C, and k' € C,, and is defined in terms of the the
orbital space vertex function

F[1525364(k7k/):[§ U’ RPA(k KYOs +1 UY

1 IV\ / c
10 k- KU +10°], et

€N

Using this approximation to the vertex, we now consider the
linearized gap equation

y . 8i(K)
‘i:; VL l( l( == ;ki i l{
Z/I.;su WK ey — i)

and solve for the leading eigenvalue A and corresponding
eigenfunction g(k). Here, vg, (k') is the Fermi velocity of
band p and the integration is over the Fermi surface FS,,. The
eigenfunction g; (k) for the leading eigenvalue then determines
the symmetry and structure of the leading pairing gap A(K) o
g(Kk) close to T.. Finally, the area of the Fermi surface sheets
is discretized using a Delaunay triangulation algorithm that
transforms the integral equation (C8) into an algebraic matrix
equation which is solved numerically. Typically, we use a k
mesh of 80x80x30 points for the k integration and totally
~1200 points on all Fermi sheets for a 3D calculation, while
for a 2D calculation the k mesh is on the order of 100x 100 and
~200 points on all Fermi sheets are required for reasonably
converged results.

(&)

APPENDIX D: SPIN-FLUCTUATION PAIRING
INCLUDING QUASIPARTICLE WEIGHTS

In this Appendix, we show the modified equations for
the pairing calculation as outlined above, but including
quasiparticle weights from dressed electrons. Taking the ansatz

20

15¢

Tl
=10

ES L

w0 ©0m 00

(.0)

8o

FIG. 8. Susceptibility ¥ for our model for the monolayer FeSe
as calculated from the orbital selective ansatz using the quasi-
particle Green’s functions with {/Z;} = [0.4273,0.8000,0.9826,
0.9826,0.700] compared to the conventional calculation (), where
the interactions have been scaled down.
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6

(n;0) (0;1t)

0
(0,0)

(m,m) (0,0)
FIG. 9. Total susceptibility x for LiFeAs as calculated from the
electronic structure using a 3D model and same quantity ¥, but
calculated using the quasiparticle Green’s functions with {/Z;} =
[0.5493,0.969,0.5952,0.5952,0.9267].

for the dressed Green’s function (3), it is obvious that from
Eq. (C2) immediately follows Eq. (4) which is then used in
Egs. (C4) instead of xg ts 24(q) for the dressed quantities. The
total susceptibility then reads as
1

52

124

~RPA
X1 eeew

(Q). (D)

x(q) =

For the FeSe (bulk) model, the total susceptibility is displayed
and discussed in the main text because the quasiparticle
weights have a strong effect on the qualitative behavior. At
this point, it is worth mentioning that this is not the case
for the model of monolayer FeSe, where the quasiparticle
weights are chosen closer to unity (accounting for smaller
correlation effects in this material). In Fig. 8, it can be seen
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that the total susceptibility is practically unchanged. Similar
conclusions can also be drawn from the comparison of the total
susceptibilities for LiFeAs in the uncorrelated and correlated
model (see Fig. 9). Note that the quasiparticle weights Z; are
consistent with DMFT results where it is found that #,, orbitals
are strongly correlated with d,, strongest, and components of
the susceptibility get suppressed (d,, strongest) [66].
The equation

Foonak) = [30 ~RPA(k KT + 100

PV\(I( l(/)[]C + 1 l] ]

l
2 01820304

(D2)
for the orbital space vertex function is basically unchanged

except for the addition of the tilde. In the construction of the
pair scattering vertex, additional quasiparticle weights enter

from the replacement cZ(k) — J/Z ch(k) such that it reads as

FouK)=Re Y Z\/Zi,a)*Kay*(—k)

01020384

x Lor00, (K K) / Zg, Zaab (k/)azz( k')
(D3)

and enters Eq. (C8) instead of I, ,(k,K').

APPENDIX E: COMPARISON OF 2D CALCULATIONS
AND 3D CALCULATIONS

In this paper, we discuss three different physical systems,
two of them parametrized using a band structure including a k,
dispersion as well. As noted already earlier, the susceptibility
as calculated from a 3D model (with weak dispersion in

(d

3 e 2D °0 be 2D 908 20 3 @3D k. —0@0@ 3 @3D k. _0@09
ol O o o o o 9 ooo o 9 oQ ol O o o
~ 1 o o < 1 \ o , Yo
<
o] S— [ N 0 ,,,,Q\Soé)”” o ®____ .  gl—ee—o0@_ . __@0___ gk----O00O__________ @:‘i{””,
-180 -90 0 180 180 -180 -90 0 180 180 -180 -90 0 180 180 -180 -90 180 180

-180  -90 0 180 -180  -90 0 180 —_‘FSO -90 0 80 180 —_%30 -90 0 180
angle (degrees) angle (degrees) angle (degrees) angle (degrees)
—— electron pocket, theory —— hole pocket, theory o electron pocket, BQPI < hole pocket, BQPI o hole pocket, ARPES, Fe(Se,S)

FIG. 10. Comparison of the calculated gap function for FeSe (bulk) to experimental data from Refs. [10,49]. Calculated gap function
from the two-dimensional model at k, = O with conventional spin-fluctuation pairing and interaction parameters U = 0.33 eV, J =U/6
(a), a calculation with the orbitally selective pairing ansatz as described in the main text (b). Since the quasiparticle weights reduce the
susceptibility in general, a slightly larger interaction of U = 0.54 eV was chosen, while the ratio J = U/6 is kept constant. Cuts of the
results as shown in the main text for a 3D calculation: (c) k, = O cut from the conventional spin-fluctuation calculation, (d) the same cut
from the orbitally selective ansatz, cuts for k, = w are shown in Fig. 4. Variations of the fits for the 2D model, where the ratio of the
quasiparticle weights of the d,, and d, orbital is constrained to the value as indicated on the figure [(g) and (h)]. The resulting values are then

Wz} =

[0.2264,0.9717,0.4658,0.9317,0.6916] (g) and {~/Z;} = [0.2633,0.9000,0.5998,0.8997,0.3630] (h).
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k. direction) shows only very small dependence on k, [12].
Conclusions similar to the ones in the main text can also be
drawn in a two-dimensional calculation, where the initial band
structure is just the one at k, = 0. Taking the same interaction
parameters and quasiparticle weights, one obtains qualitatively
similar results as for the 3D calculation. This is expected since
the electronic structure is found to be quasi-two-dimensional,
and especially since the susceptibility and thus the pairing
interaction have little dependence on ¢g,. Differences in the
relative magnitudes of the gap functions on the individual
pockets can, however, arise due to the variation of the Fermi
velocities as a function of k,, e.g., the weight at k, =0 as
included in a 2D calculation is not just the average of the
partial contributions to the density of states from different &,
[12]. In the solution of the linearized gap equation, this can
increase the gap on individual pockets [12] or reduce the gap

PHYSICAL REVIEW B 95, 174504 (2017)

as seen on the « pocket for the 3D calculation in Fig. 10(d).
Overall, the variation of the results is small and mostly of
quantitative nature rather than qualitative. We note that the
Fermi surface properties can still strongly influence the actual
superconducting order parameter in such a calculation even if
the pairing interaction itself has negligible variation in g,. This
will occur in a 2D calculation for the LiFeAs model where the
Fermi surface is different at cuts in k, = 0 and 7 because of
the closed o pocket. Because of this, we have not considered
any results of a 2D calculation for this model further. Finally,
we present results for the gap structure obtained from a fit
where the relative magnitudes of the quasiparticle weights of
the d,; and d,; orbitals are kept fixed. Even when lowering the
ratio between those, the agreement is still good [see Figs. 10(g)
and 10(h)], but not allowing a larger quasiparticle weight in
the d, orbital does not yield an agreement (not shown).
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