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We investigate the onset of superconductivity in a magnetic field for a clean two-dimensional multiple-band
superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to the small
number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau
quantization has to be taken into account. We found that the transition temperature TC2(H ) has giant oscillations
and is resonantly enhanced at the magnetic fields corresponding to the matching of the chemical potential with
the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level.
As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low
temperatures near the magnetic fields at which the shallow-band Landau levels cross the chemical potential. The
specific behavior depends on the relative strength of the intraband and interband pairing interactions and the
reentrance is most pronounced in the purely interband coupling scenario. The reentrant behavior is suppressed by
the Zeeman spin splitting in the shallow band; the separated regions disappear already for very small spin-splitting
factors. On the other hand, the reentrance is restored in the resonance cases when the spin-splitting energy exactly
matches the separation between the Landau levels. The predicted behavior may be realized in the gate-tuned
FeSe monolayer.
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I. INTRODUCTION

The rich field of multiple-band superconductors has been
reincarnated by the unexpected discovery of superconductivity
in the magnesium diboride at 40 K [1] and received a further
powerful boost from the discovery of several families of
iron-based superconductors (FeSCs); see, e.g., reviews [2].
The Fermi surfaces of these materials are composed of several
disconnected nonequivalents parts. These parts not only have
different electronic properties but, also, in the superconducting
state they may have different gaps causing many peculiar
properties of these materials.

In contrast to the magnesium diboride, FeSCs are semimet-
als: their band sizes are rather small with the typical Fermi
energies εF � 50 meV and Fermi velocities vF � 107 cm/s.
In addition, the band Fermi energies can be shifted by doping
or pressure. As a result, several FeSC compounds can be
driven through Lifshitz transitions in which the top or bottom
of one band crosses the Fermi level and the corresponding
Fermi pocket vanishes. Examples include Ba1-xKxFe2As2 near
x ≈ 0.8 [3] and LiFe1-xCoxAs for x � 0.1 [4]. In the first case
the electron band at the M point is shifted above the Fermi
level and in the second case one of three hole bands at the �

point sinks below the Fermi level.
A special case is realized in the simplest compound FeSe.

Discovery of superconductivity in the FeSe single layer grown
on SrTiO3 substrate with a record high transition temperature
for FeSCs, TC � 55 K, has been a major breakthrough in
the field [5–7]. The bulk material has the tetragonal-to-
orthorhombic transition at 87 K which is followed by the
superconducting transition at 9 K. Its Fermi surface is com-
posed of one hole pocket and two electron pockets which have
very small sizes with εF ∼ 10–20 meV [8]. The electronic and
superconducting properties of the tetragonal FeSe monolayer
on SrTiO3 are very different from those of the bulk material.

The optimally doped state has only electron bands and the hole
band is sunk ∼80 meV below the Fermi level [6] meaning
that the single layer is strongly electron-doped with respect to
the bulk crystal. This doping is probably caused by oxygen-
vacancy diffusion in SrTiO3 during annealing. Such difference
implies that at the intermediate electron doping level FeSe goes
through the Lifshitz transition at which the hole band at the
� point is depleted. This transition has been indeed observed
in K-dosed FeSe thin films [9]. Such electronic structure is
also realized in the intercalated compound (LiFe)OHFeSe with
TC = 40 K [10]. Transport measurements have been done on
the monolayer protected by the FeTe capping layers [11–13],
which reduces the transition temperature down to ∼ 23–25 K.
The upper critical field of such a system has been found to be
around 50 T. In a controlled way, the FeSe monolayer can be
doped using K coating [14]. It was shown that such coating
causes the second Lifshitz transition at which the electron band
emerges at the � point which promotes strong enhancement
of TC . Also, it was found that the gating of small-size FeSe
crystals induces the surface superconductivity with TC = 48 K
[15]. It is likely that in this case the surface region acquires a
band structure similar to that of the FeSe monolayer.

The ubiquity of shallow bands and Lifshitz transitions in
FeSCs motivated several recent theoretical studies devoted
to the influence of such bands on superconducting pairing
[16–18]; see also the related general considerations [19,20].
One can distinguish two basic scenarios [17]: (i) The shallow
band is essential for superconductivity. In this case the
superconducting state vanishes when this band is depleted.
(ii) The Cooper pairing is dominated by deep bands and a
superconducting gap is induced into the shallow band via
pair-hopping interactions. In this case the superconducting
temperature changes only weakly at the Lifshitz transition. It
was also demonstrated in Ref. [21] that in the case of the second
scenario the superconductivity actually smears the Lifshitz
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transition in the thermodynamics sense but, nevertheless, the
density of states changes qualitatively when the shallow band
is depleted.

In this paper we investigate the influence of shallow bands
on the onset of superconductivity in the magnetic field. The
upper critical field, HC2, is one of the key characteristics of
type-II superconductors. In most materials superconductivity
is destroyed by the orbital effect of the magnetic field.
In the case of weak impurity scattering the orbital upper
critical field, HC2 ≡ H O

C2, scales inversely proportional to
Fermi velocity squared, H O

C2 ∝ v−2
F [22,23], meaning that

the orbital effect diminishes with decreasing band size. The
temperature dependences of HC2 and its anisotropy may be
strongly influenced by multiple-band structure [23,24].

The superconductivity is also destroyed by the Zeeman spin
splitting induced by the magnetic field. Without the orbital
effect in a single-band material the superconducting state is
destroyed when the spin-split energy μzH exceeds �/

√
2,

where μz is the magnetic moment and � is the energy gap.
This gives the paramagnetic limit, HP = �/

√
2μz. In most

materials the spin-splitting effects are weak in comparison
with the orbital ones, H O

C2 � HP . In the case when both orbital
and spin effects are present, the relative contribution of the
spin splitting is usually characterized by the Maki parameter
αM = √

2H O
C2/HP , which in clean single-band materials can

be evaluated as αM = π2�/4εF , where εF is the Fermi
energy. This means that the role of spin effects is enhanced
in small Fermi surfaces. The spin splitting also dominates
in two-dimensional and layered materials when the magnetic
field is applied along conducting planes.

The standard theory of HC2 is based on the quasiclassi-
cal approximation which neglects the Landau quantization
[22,23]. This theory works with very high accuracy for
the overwhelming majority of superconductors because at
H ∼ HC2 the cyclotron frequency ωc is typically much smaller
than εF . Nevertheless, the effects of Landau quantization on
the behavior of HC2 and related superconducting properties
in single-band materials were first studied in the seminal
papers [25,26] and later were worked out in great detail
[27–34]; see also reviews [35,36]. It was predicted that in
clean materials the quantization may dramatically influence
the low-temperature behavior of the upper critical field. The
density of states is sharply enhanced when the chemical
potential crosses the Landau levels, μ = ωc(� + 1/2), at the
magnetic fields H = H�. This enhancement is beneficial for
superconductivity. It was actually demonstrated that in an
ideally clean single-band superconductor without Zeeman spin
splitting the transition temperature is always finite at H = H�

[26]. Such resonant enhancements of the transition temper-
ature are especially pronounced in the two-dimensional case
[29–31]. This would mean that in conventional clean materials
superconductivity should persist up to fields much higher then
the quasiclassical orbital upper critical field. Moreover, in
the extreme quantum limit the local maximums of transition
temperature were predicted to increase with the magnetic field
[26–28]. In most superconducting materials, however, this
limit requires magnetic fields above 100 T, which is beyond
practical accessibility. In addition, this ultrahigh-field reentrant
superconductivity is easily destroyed by impurity scattering

and Zeeman spin splitting [26,28], unless the spin-splitting
energy exactly matches the Landau-level spacing [29,31,36].
On the other hand, near the accessible quasiclassical HC2 the
Landau-level indices are large and quantization effects are
weak. As a consequence, in superconductors with large Fermi
surfaces one can expect only very weak quantum oscillations
of the temperature or angle dependence of HC2 noticeable in
extremely clean materials at very low temperatures.

A direct consequence of small electronic bands in FeSCs
is very high upper critical fields in these materials, ranging
from 15 to 100 T for different compounds and dopings [37].
For compounds near the Lifshitz transition, the orbital effect
is the weakest for the shallow band. Therefore one can expect
that this band strongly influences the upper critical field. In
contrast to single-band materials, the cyclotron frequency
may be comparable with the Fermi energy of a shallow
band at the upper critical field meaning that only a few
Landau levels may be occupied. In this case the quasiclassical
approximation breaks down and the Landau quantization is
essential. Furthermore, the spin-splitting effects are more
pronounced in the shallow band and typically cannot be
neglected. The role of spin-splitting effects in multiple-band
superconductors within the quasiclassical approximation has
been recently investigated in Ref. [38].

In this paper we investigate the upper critical field in
a clean two-dimensional two-band superconductor in the
vicinity of the Lifshitz transition when one of the bands is very
shallow [39]. For this band we take into account the Landau
quantization precisely, while for the deep band we use the
standard quasiclassical approximation. We will demonstrate
that in such system the transition temperature TC2(H ) has
giant oscillations and is resonantly enhanced at the magnetic
fields H� corresponding to the crossing of the �’s shallow-band
Landau level and the chemical potential. This enhancement
is most pronounced for the lowest Landau level, � = 0, and
rapidly decreases with the increasing Landau-level index. We
mostly focus on the case when the highest field H0 is close to
the quasiclassical upper critical filed H

qc
C2. In the case H0 >

H
qc
C2, the temperature-field phase diagram may acquire the

reentrant superconducting region located at low temperatures
around H ∼ H0, which is disconnected from the main low-
field superconducting region. This reentrant piece merges with
the main part when the pocket size diminishes. The specific
behavior depends on the relative strength of the intraband
and interband coupling constants and it is most pronounced
when the interband coupling dominates. The Zeeman spin
splitting strongly suppresses the reentrant regions. However,
the reentrant superconductivity reappears in resonance condi-
tions, when the spin splitting energy 2μzH exactly matches
the separation between the Landau levels [29,31].

The paper is organized as follows. In Secs. II and III,
we describe the model two-band Hamiltonian and the cor-
responding Gor’kov equations. In Sec. IV, we discuss the
transition temperature in zero magnetic field in the presence
of a shallow band. In Sec. V we derive equations which
determine the superconducting instability in the magnetic
field. This instability is mostly determined by the field and
temperature dependences of the pairing kernels. The behavior
of the shallow-band kernel, strongly influenced by the Landau
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FIG. 1. The schematic electron structure of the two-band model
used in the paper. The system behavior depends on the location of
the chemical potential μ. If the chemical potential is located far
away from the band edges, the superconducting properties of the
system can be described within the quasiclassical approximation.
Near the Lifshitz transition point, when the chemical potential μ

approaches the band edge, the band curvature effects can no longer
be ignored, the quasiclassical approximation breaks down, and the
Landau-quantization effects become important.

quantization, is discussed in Sec. V C. In Sec. V D, we
investigate the influence of the Zeeman spin splitting on this
kernel. The numerically computed temperature–magnetic field
phase diagrams are presented in Sec. VI. We also discuss
in this section the dependence of the high-field transition
temperatures on the strength of interband coupling. We
conclude the paper in Sec. VII.

II. TWO-BAND MODEL

To investigate the shallow-band effects in superconductors,
we consider the simplest two-band model

H =
∑
α,s

∫
d2r

⎡
⎣c†α,s(r)εα

k cα,s(r) − μzHσz
ss ′c

†
α,s(r)cα,s ′ (r)

−
∑
αβ

Uαβ

2
c
†
α,↓(r)c†α,↑(r)cβ,↑(r)cβ,↓(r)

⎤
⎦, (1)

where s = ↑,↓ = +,− is the spin index and α = e (h)
represents the e band (h band) with the energy dispersion
εe

k+ Q = k2

2me
(εh

k = − k2

2mh
+ ε0) with me and mh being the

band masses. In the e-band dispersion the momentum is
measured from the nesting wave vector Q. In the real-space
operator εα

k the wave vector k has to be replaced by the
gauge-invariant gradient operator k → −i∇r − e

c
A [40]. The

second term in the first line describes the Zeeman spin splitting,
σ z = diag[1,−1] in the spin space, and, for simplicity, we have
set the magnetic moments for both e- and h-band electrons to
be μz.

In the normal state this model has two Lifshitz transition
points at the chemical potential μ = 0 and μ = ε0 (see Fig. 1).
For definiteness, we consider the system in the vicinity of the
μ = ε0 transition; i.e., we assume that the hole band is shallow
and the electron band is deep. An equivalent model can also be

used for description of the system with several identical deep
bands.

III. THE GOR’KOV EQUATIONS

To tackle the many-body Hamiltonian in Eq. (1), we use the
mean-field method to approximate the many-body quantum
states as the Hartree-Fock states. In this approximation, the
Hamiltonian becomes a one-body operator

H ≈ HHF =
∫

d2r

⎧⎨
⎩
∑

α

ψ†
α(r)

[
ε̂α

k τ̂ z−μzH −�̂α(r)
]
ψα(r)

−
∑
αβ

�̄α(r)U−1
αβ �β(r)

⎫⎬
⎭, (2)

where we introduced the Nambu vector ψT
α (r) =

[cα,↓(r),c†α,↑(r)], τ̂ z = diag[1,−1], k → −i∇r − e
c
τ̂ z A in the

operator ε̂α
k ,

�̂α(r) =
[

0 �α(r)

�̄α(r) 0

]
(3)

with the gap parameters �α(r) = ∑
β Uαβ〈cβ,↓(r)cβ,↑(r)〉,

and �̄α(r) is its complex conjugate. The 2 × 2 imaginary-time
(τ ) Green’s function is defined as

Gα(r,r ′; τ ) = −〈Tτ [ψα(r,τ )ψ†
α,(r,0)]〉, (4)

where ψα(r,τ ) = e−τ (HHF−μN )ψα(r)eτ (HHF−μN ) with the
chemical potential μ and the total-number operator N =∑

α,σ

∫
d2rc†α,σ (r)cα,σ (r). The Green’s function satisfies the

matrix Gor’kov equation in the frequency representation,[
iωn + ξ̂ α

k τ̂ z − μzH − �̂α(r)
]
Gα

ωn
(r,r ′) = τ̂ 0δ(r − r ′), (5)

where ωn = (2n + 1)πT is the Matsubara frequency, τ̂ 0 is the
2 × 2 identity matrix, and ξ̂ α

k = ε̂α
k − μ. The gap parameter

is expressed in terms of the anomalous Green’s function
Fα

ωn
(r,r ′) ≡ [Gα

ωn
(r,r ′)]12 as

�α(r) = −T

∞∑
ωn=−∞

∑
β

UαβF β
ωn

(r), (6)

where Fβ
ωn

(r) ≡ Fβ
ωn

(r,r). To analyze the behavior of the
superconducting gap, one has to solve Eqs. (5) and (6)
self-consistently.

In this paper, we are only interested in the region near the
upper critical field (HC2), where �α(r) → 0 and it is sufficient
to keep only the anomalous Green’s function Fα

ωn
(r,r ′) linear

in �α(r). Iteration of Eq. (5) gives

Fα
ωn

(r) ≈
∫

d r ′Kα(r,r ′; ωn)�α(r ′) (7)

with the kernel

Kα(r,r ′; ωn) = −Gα
0,ωn,+(r,r ′)Gα

0,−ωn,−(r,r ′), (8)

where the normal-state Green’s function Gα
0,ωn,±(r,r ′) satisfies

(iωn ∓ μzH + ξ̂ α
k )Gα

0,ωn,±(r,r ′) = δ(r − r ′).
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In the following sections, we will utilize Eqs. (6)–(8) to
derive the conditions for superconducting instabilities in zero
and finite magnetic fields.

IV. TRANSITION TEMPERATURE AT ZERO
MAGNETIC FIELD

The influence of shallow bands on the transition tempera-
ture TC has been discussed in several recent papers [16–20].
In this section, for completeness, we present the derivation of
the transition temperature for our model. In the absence of
the magnetic field, the band gap functions are homogeneous,
�α(r) = �α

0 . Substitution of these constant gaps into Eq. (7)
gives the equation which determines the transition temperature
of the system with

∫
d r ′Kα(r,r ′; ωn) = ∑

k [ω2
n + (ξα

k )2]
−1

.

The integration over the momentums in the e (h) band can
be performed using the standard relations

∑
k ≈ Ne

∫ �

−�
dξe

(≈Nh

∫ μh

−�
dξh) where � � TC is the high-energy cutoff and

Nα = mα/(2π ) is the 2D density of states. The only difference
from the standard BCS scheme is that for the shallow band the
energy integration is limited by the band edge rather than by
�. The resulting gap equation can be presented as [41]

�̂−1

[
�h

0

�e
0

]
≈

�∑
ωn>0

2πT

ωn

[[
1
2 + ηh(ωn)

]
�h

0

�e
0

]
, (9)

with the dimensionless coupling matrix �̂αβ = UαβNβ , and
ηh(ωn) = 1

π
tan−1 μh

ωn
. The sign of the off-diagonal coupling

constants �eh and �he determines relative sign of the order
parameters in two bands. The case �eh,�he < 0 corresponds
to the s± superconducting state. In absence of interband
scattering, this sign has no influence on the behavior of the
upper critical field.

Introducing the notations

�−1
0,e =

�∑
ωn>0

2πTC

ωn

= ln
2eγE �

πTC

, (10a)

�−1
0,h = 1

2
ln

2eγE �

πTC

+ ϒC, (10b)

where

ϒC ≡
∑
ωn>0

2πTC

ωn

ηh(ωn) = 2

π

∞∑
n=0

tan−1
(

μh/TC

π(2n+1)

)
2n + 1

,

and γE ≈ 0.5772 is the Euler-Mascheroni constant, we can
write the gap equation in a compact form as

[
�̂−1 − �̂−1

0

][�h
0

�e
0

]
= 0, (11)

with �̂0 = diag[�0,h, �0,e]. In the limit μh � TC the function
ϒC has the asymptotics ϒC ≈ 1

2 ln[2eγE μh/(πTC)]. In this
limit both �−1

0,h and �−1
0,e have the same form ln(T0/TC) but with

different cutoff energies T0. Defining the matrix Ŵ ≡ �̂−1 −
�̂−1

0 , we can present the equation for TC as the condition of
degeneracy of this matrix,

det(Ŵ ) = W11W22 − W12W21 = 0. (12)

This is the instability condition for superconducting ground
state. It leads to the explicit result for the effective coupling
constant �0,e, which directly determines TC by Eq. (10a), see
Appendix A,

�−1
0,e = �ee + �hh

2

D�

− ϒC

+ δ�

√(
�ee − �hh

2

D�

− ϒC

)2

+ 2
�eh�he

D2
�

(13)

with δ� = −sgn[(1 − ϒC�hh)D�] and D� = �ee�hh −
�eh�he. The detailed investigation of the dependences of TC

on μh for different pairing models has been performed in
Ref. [17]. As our main goal is the investigation of the upper
critical field, we only need Eqs. (11) and (13) as the zero-field
references.

V. SUPERCONDUCTING TRANSITIONS IN FINITE
MAGNETIC FIELD

In the presence of the magnetic field the problem becomes
nontrivial, since the superconducting states are not uniform.
The upper critical field is mostly determined by the eigenvalues
of the pairing kernels Kα(r,r ′; ωn), (15). In this section, we
describe evaluation of these kernels in a magnetic field for the
deep and shallow bands.

In the uniform magnetic field the Green’s function can be
written as

Gα
0,ωn,±(r,r ′) = e2iφA(r,r ′)gα

0,±(|r − r ′|,ωn) (14)

with φA(r,r ′) = e
c

A( r+r ′
2 ) · (r − r ′). In the symmetric gauge

A(r) = 1
2 H × r = H

2 (−y,x,0), the phase factor in the ex-
ponent becomes φA(r,r ′) = −[r × r ′]z/(2l2), where l =√

c/eH is the magnetic length. This allows us to present the
kernel in Eq. (8) as

Kα(r,r ′; ωn)

= −exp

(
− i

[r × r ′]z
l2

)
gα

0,+(ρ,ωn)gα
0,−(ρ, − ωn) (15)

with ρ = r ′ − r .
In the isotropic case and for not too strong Zeeman spin

splitting [42], the shape of the gap function at the upper critical
field is given by the ground-state eigenfunction of the particle
with the charge 2e in the uniform magnetic field [22,23,25,26];
i.e., �α(r) satisfies the equation − 1

2 l2(∇r − i 2e
c

A)
2
�α(r) =

�α(r). In the symmetric gauge, the shape of �α(r) is [43]

�α(r) = �α
0 exp

(
− r2

2l2

)
. (16)

For isotropic bands this �α(r) is an eigenfunction of the kernel
Kα(r,r ′; ωn), Eq. (15), for arbitrary function gα

0 (ρ,ωn) [26].
Indeed, substituting this ansatz into Eq. (7), we obtain

Fα
ωn

(r) = −�α(r)
∫

�r (ρ)ρdρgα
0,+(ρ,ωn)gα

0,−(ρ,−ωn)e− ρ2

2l2

with �r (ρ) = ∫ 2π

0 dθ exp{− 1
l2 (i[r × ρ]z + r · ρ)}, where θ

is the angle between the vectors ρ and r . Noting that
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i[r × ρ]z + r · ρ = irρsinθ + rρcosθ , we calculate the θ

integral as

�r (ρ) =
∫ 2π

0
dθ exp

[
− rρ

l2
eiθ

]
= 2π.

This result can be easily obtained by expanding the exponential
into the power series and noting that only the zeroth-order
term survives after the θ integration. Therefore, presenting the
anomalous Green’s function as

Fα
ωn

(r) = −πNαλα
ωn

�α(r), (17)

where Nα = mα/2π is the density of states for the α band,
we obtain the following general result for the dimensionless
kernel eigenvalue:

λα
ωn

=
∫ ∞

0

2ρdρ

Nα

gα
0,+(ρ,ωn)gα

0,−(ρ,−ωn)e− ρ2

2l2 . (18)

Therefore, the problem of the upper critical field is mostly
reduced to evaluation of these eigenvalues which in turn
depend on approximations made for the normal-state Green’s
functions gα

0,±(ρ).
In general, depending on external conditions, the chemical

potential may vary with the magnetic field; see, e.g., discussion
in Refs. [29,44]. In the situation we consider here this variation
can be neglected, because the deep band acts as a charge
reservoir and fixes the chemical potential.

For the deep e pocket the quasiclassical approximation
can be employed on the Green’s function. In contrast, for
the small-size h pocket the effects of Landau-level (LL)
quantizations have to taken into account precisely. We will
consider first the case of negligible spin splitting (μz → 0)
when the quantization effects are most pronounced. After that,
we will investigate in detail the role of spin-splitting effects.

A. Kernel eigenvalues without spin splitting

1. The deep e band: Quasiclassical approximation

The equation for the upper critical field in the quasiclassical
approximation was derived a long time ago [22]; see also recent
review [23]. Nevertheless, we include a minimum discussion
of this well-known result in order to make a direct comparison
with the latter calculation for the shallow h band.

The essence of the quasiclassical approximation is to
exploit the fact that the relevant length scale in the kernel
ρ is of the order of the coherence length ξ , which is much
larger that the inverse Fermi wave vector k−1

F . Also, typically
the cyclotron frequency ωc is much smaller than the Fermi
energy. This allows us to neglect the Landau quantization and
use the zero-field Green’s function ge

0(ρ,ωn),

ge
0(ρ,ωn) =

∫
dk

(2π )2

exp(ikρ)

iωn + ξ e
k

.

As we neglect spin-splitting effects, we dropped the spin index
in this function.

For the product of Green’s functions in Eq. (18), we obtain

ge
0(ρ,ωn)ge

0(ρ,−ωn)

= −
∫

dk
(2π )2

dk′

(2π )2

exp[i(k − k′)ρ](
iωn − ξ e

k

)(
iωn + ξ e

k′
) .

We introduce the variables k = k̄ + q/2,k′ = k̄ − q/2 and
expand ξe

k ≈ ξ e

k̄
+ veq/2,ξ e

k′ ≈ ξ e

k̄
− veq/2. In the quasiclas-

sical regime k̄ ∼ kF � q ∼ 1/ξ . This allows us to approxi-
mately perform the integration over k̄ by using the standard
transformation

∫
d k̄

(2π)2 ≈ ∫ dke
F

4π2ve

∫∞
−∞ dξe and neglecting k̄

dependence of ve, which leads to the result

ge
0(ρ,ωn)ge

0(ρ,−ωn) = πNe

∫
dq

(2π )2

〈
exp(iqρ)

|ωn| + iveq/2

〉
e

,

where Ne = me/2π is the e-band density of states and 〈. . . 〉e
means averaging over the electron Fermi surface, 〈. . . 〉e =∫

. . .
dke

F

4π2veNe
.

Substituting this presentation into Eq. (18), we obtain

λe
ωn

= 4π

∫
dq

(2π )2

∫ ∞

0
ρdρ

〈
exp

(
iqρ − ρ2

2l2

)
2|ωn| + iveq

〉
e

. (19)

We can further transform this result using the transformation
A−1 = ∫∞

0 dse−sA, which leads to

λe
ωn

= 4π

∫ ∞

0
ds

∫ ∞

0
ρdρ

×
∫

dq
(2π )2

〈
exp

[
−s(2|ωn| + iveq) + iqρ− ρ2

2l2

]〉
e

= 4π

∫ ∞

0
ds

∫ ∞

0
ρdρ δ(ρ−sve)

〈
exp

[
−2s|ωn|− ρ2

2l2

]〉
e

.

This gives the well-known result

λe
ωn

= 2
∫ ∞

0
dse−2s|ωn|

〈
exp

(
−v2

e s
2

2l2

)〉
e

. (20)

We remark that, for the sake of simplicity, we consider here
the case of an isotropic band meaning that the averaging 〈. . .〉e
can be omitted. In the case of a single band, generalization
to elliptic anisotropy is straightforward. However, there is no
accurate analytical description of multiple bands with different
anisotropies. Without elaborated numerical calculations, this
case can only be treated approximately [23].

2. The shallow h band: Landau-level quantization

In the shallow hole band the typical length scale of the
kernel may be comparable with k−1

F and, in magnetic field,
the cyclotron frequency may be comparable with the Fermi
energy. This means that the quasiclassical approximation is
not applicable and we have to use the exact normal-state
Green’s functions gh

0 (|r − r ′|,ωn) in the kernel Kh(r,r ′; ωn),
Eq. (15). In this case the shape of the kernel is influenced by
the Landau quantization. For single-band materials, such exact
presentation of the kernel was derived in several theoretical
works [26,32–34,45,46]. The normal-state Green’s function
for the hole band is determined by the equation[

iωn − D2
r/(2mh) − μh

]
Gh

0,ωn
(r − r ′) = δ(r − r ′)

with Dr = ∇r − i e
c
A(r). The solution is given by Eq. (14)

with

gh
0 (ρ,ωn) = 1

2πl2

∞∑
�=0

L�

(
ρ2

2l2

)
exp

(− ρ2

4l2

)
iωn − ωc

(
� + 1

2

)+ μh

, (21)
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where ρ = |r − r ′|, ωc = eH/(cmh), and L�(x) are the La-
guerre polynomials.

There are several routes to transform and simplify the kernel
eigenvalue λh

ωn
in Eq. (18). Using the integral representa-

tion {ωn ± i[ωc(� + 1
2 ) − μh]}−1 = ζω

∫∞
0 dsexp(−ζωs{ωn ±

i[ωc(� + 1
2 ) − μh]}) with ζω ≡ sgn(ωn) and the generating

function of Laguerre polynomials
∞∑

�=0

L�(x)t� = exp[−xt/(1 − t)]

1 − t
, (22)

we can carry out the summation over the Landau levels [34].
After that, the integration over ρ can be done exactly (see
Appendix C) leading to

λh
ωn

=
∫ ∞

0

∫ ∞

0

ds̄1ds̄2

2πωc

e−(s̄1+s̄2)|ω̄n|eiζω(s̄1−s̄2)μ̄h

e
i
2 ζω(s̄1−s̄2) − cos s̄1+s̄2

2

, (23)

where we introduced the dimensionless variables ω̄n = ωn/ωc

and μ̄h = μh/ωc. We can see that the replacement ζω → −ζω

is equivalent to the interchange s1 ↔ s2 and, therefore, the
factor ζω can be dropped meaning that λh

ωn
is an even function

of ωn.
The above presentation of λh

ωn
can be further transformed by

breaking the s̄1 and s̄2 integrations into infinite sums,
∫∞

0 ds̄i =∑∞
n=0

∫ 2(n+1)π
2nπ

ds̄i , and changing of variables s̄ = 1
2 (s̄1 + s̄2)

and ū = 1
2 (s̄1 − s̄2). This gives us the result (see Appendix C

for details)

λh
ωn

= 1

ωc

∫ π

0
ds̄

cosh[2ω̄n(π − s̄)]

cosh(2πω̄n) + cos(2πμ̄h)
I(s̄), (24)

where

I(s̄) = 1

π

∫ s̄

−s̄

dū
e2iūμ̄h

eiū − coss̄
. (25)

We can observe that the denominator in Eq. (24) oscillates
with ωc and has minimums at μ̄h = integer + 1

2 corresponding
to matching of the chemical potential with the Landau
levels. In the high-field and low-temperature regime, since
cosh(2πω̄n) ∼ 1, the denominator produces strong peaks in
λh

ωn
at μ̄h = � + 1

2 , which diverge at zero temperature. The
identical oscillating factor also appears in the quasiclassical
result for the kernel eigenvalue [29].

B. Equation for the upper critical field

To study the superconducting state near HC2, we can just
substitute the result for Fα

ωn
(r) in Eq. (17) into the gap equation

(6) which leads to

�̂−1

[
�h

0

�e
0

]
= 2πT

∑
0<ωn<�

[
λh

ωn
�h

0

λe
ωn

�e
0

]
. (26)

However, similarly to the zero-field case, this gap equation
contains logarithmic divergences as � → ∞ (UV diver-
gences) which has to be cut at ωn ∼ �. These logarithmic
UV divergences in

∑
ωn

λα
ωn

can be compensated by explicitly
subtracting

∑
0<ωn<�

2πT

ωn

[(
1

2
+ 1

π
tan−1 μh

ωn

)
�h

0, �e
0

]T

from both side of the gap equation. Using definitions in
Eqs. (10a) and (10b), this leads to the following regularized
gap equation (see Appendix B):

Ŵ

[
�h

0

�e
0

]
+
[
A1(T )�h

0

A2(T )�e
0

]
=
[
J1(H,T )�h

0

J2(H,T )�e
0

]
, (27)

where A1 = 1
2 ln t − ϒT + ϒC , A2 = ln t , t = T/TC ,

ϒT =
∑
ωn>0

2πT

ωn

ηh(ωn) = 2

π

∞∑
n=0

tan−1
(

μh/T

π(2n+1)

)
2n + 1

,

ϒC ≡ ϒTC
, and

J1 = 2πT

∞∑
ωn>0

{
λh

ωn
− 1

ωn

[
1

2
+ ηh(ωn)

]}
, (28a)

J2 = 2πT

∞∑
ωn>0

(
λe

ωn
− 1

ωn

)
. (28b)

Now the right-hand sides of the above equations remain finite
with � → ∞, since the logarithmic divergences are canceled
by the 1/ωn terms. Assuming TC,ωc � �, we took the limit
� → ∞ in the frequency sums. All the information about
the UV cutoff is absorbed by the parameter TC . The functions
Aα(T ) andJα(H,T ) are defined in such a way thatAα(T ) → 0
for T → TC and Jα(H,T ) → 0 for H → 0. In Eq. (28b) the
summation over the Matsubara frequencies can be carried out
leading to the well-known presentation [23]

J2 =
∫ ∞

0
dss ln tanh(πT s)

〈
v2

e

l2
e− 1

2 (sve/ l)2

〉
e

. (29)

The upper critical field is the magnetic field at which a
nontrivial solution of the linear gap equation, Eq. (27), appears.
This corresponds to the condition

det

[
W11 + A1 − J1 W12

W21 W22 + A2 − J2

]
= 0.

As the matrix Ŵ is degenerate, this leads to the concise
equation(

1 + A1(T ) − J1(H,T )

W11

)(
1 + A2(T ) − J2(H,T )

W22

)
= 1,

(30)

which determines superconducting instability in the magnetic
field. The constants Wαα can be directly connected with the
coupling constants as

W11 = �ee − �hh

2

2D�

− ϒC

2
+ δW

R

2
, (31a)

W22 = −�ee − �hh

2

D�

+ ϒC + δWR (31b)

with D� = �ee�hh − �eh�he, δW = sgn[D�(1 − ϒC�hh)],
and

R =
√(

�ee − �hh

2

D�

− ϒC

)2

+ 2
�eh�he

D2
�

.
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All information about the coupling matrix is contained in
these two constants, W11 and W22, which also weakly depend
on the ratio μh/TC . These parameters are typically large
in absolute values because they scale as �−1

αβ , but they can
be either positive or negative depending on the sign of the
determinant D�. The relative contribution of the band α to the
superconducting instability is inversely proportional to |Wαα|.

The behavior of the upper critical field mostly depends
on the field and temperature dependences of the functions
Jα which determine the field-induced contributions to the
pairing kernels. The quasiclassical kernel J2 has monotonic
field and temperature dependences. If only the deep band
is present, the conventional monotonic upper critical field is
determined by the equation J2(H,T ) = ln t . In contrast, due
to the Landau-level quantization, J1(H,T ) is an oscillating
function of the magnetic field at low temperatures and this
leads to the anomalous behavior of the upper critical field.
In the next section we discuss in detail the behavior of the
kernel J1.

C. Shape of the quantum field-dependent pairing kernel
J1(H,T,μh) without spin splitting

In this section, we examine in detail behavior of the function
J1 in Eq. (28a). This function can be evaluated numerically
for any temperature except T = 0. We only present the results
that are relevant to the discussions, and leave the mathematical
details to Appendix D.

The direct numerical evaluation of J1 from λh
ωn

in Eq. (24)
is doable but not very efficient. To derive presentation better

suited for numerical evaluation, one can trade the slowly
converging frequency sum to another rapidly convergent series
sum, see Appendix D,

J1 = −ϒT −
∞∑

j=1

(−1)j
{

cos(2πjμ̄h) ln tanh(τ̄ j )

+
∫ π

0

ds̄

2
I ′(s̄)

sin(2πjμ̄h)

sin(2πμ̄h)
ln

tanh(τ̄ z+
j )

tanh(τ̄ z−
j )

}
, (32)

where τ̄ = π2T/ωc, z±
j = j ± (1 − s̄

π
), and the derivative of

the function I(s̄), Eq. (25), can be transformed to the form

I ′(s̄) = 2sin(2μ̄h − 1)s̄

π tan s̄
− (2μ̄h − 1)

×
∫ s̄

−s̄

dū

π

ei(2μ̄h−1)ūsins̄

eiū − coss̄
. (33)

In Fig. 2(a), we present the numerically calculated J1 within
the range ωc/μh ∈ [0.05,3.5] for three temperatures, T/μh =
0.02, 0.1, and 0.5. We can see that at low temperatures J1

is a strongly oscillating function with the peaks at ωc/μh =
1/(� + 1/2). The strongest peak is realized at the lowest
Landau level, � = 0. The peak amplitudes rapidly decrease
with increasing temperature so that at T = 0.5 the function J1

is already monotonic.
At low temperatures and μ̄h not close to half integers, the

J1 can be approximated as (see Appendix D 1)

J1 ≈ 1

2
ln t − ϒT + 1

2
ln

2π2TC

ωc

+
∫ π

0

ds̄

2
I ′ ln

z+
1

z−
1

+
∞∑

j=2

(−1)j sin(2jπμ̄h)

sin(2πμ̄h)

[
ln

j − 1

j + 1
− 2

∫ π

0
ds̄ I ′ ln

z+
j

z−
j

]
(34)

with ϒT ≈ 1
2 ln[2eγE μh/(πT )]. Note that the first two terms

are logarithmically divergent as T → 0. They exactly cancel
with corresponding divergent terms on the left-hand side of the
gap equation (27) so that A1 − J1 approaches a finite value at
T → 0. This expansion breaks down for the values of μh close
to the Landau levels, μh = ωc(� + 1/2). In the vicinity of the
Landau levels the applicability condition of this asymptotics
becomes T � |μh − ωc(� + 1/2)|. In particular, near the
lowest Landau level μh ∼ ωc/2, we derive in Appendix D 1
the presentation

J1 ≈ −ϒT + 1

2
ln

(
πT

2ωc

)
+ ωc/2

2μh − ωc

tanh

(
2μh − ωc

4T

)
.

(35)

We can see indeed that the low-temperature asymptotic is
realized for T � |2μh − ωc|. At μh = ωc/2 the function J1

diverges as ωc/(8T ) for T → 0. Similar behavior is realized at
higher Landau levels. For μh = ωc(� + 1/2) the function J1

diverges as [(2�)!/(2��!)2]ωc/(8T ); see Appendix D 4. These
divergencies were pointed out, e.g., in Ref. [26]. They reflect

enhanced Cooper pairing due to δ-function singularities of the
density of states at the Landau levels.

For better exposition of the LL-quantization effects, we
derive in Appendix D 2 an approximate result for J1 in which
these effects are completely neglected,

J1 �J qc
1 = − ωc

4μh

tanh

(
μh

2T

)
+ωcμh

π

∫ ∞

0
ds ln tanh(πT s)s

×
∫ s

−s

du
exp(2iμhu)

iu + ωcs2/2
. (36)

This result describes behavior of J1 in the limit ωc � πT,μh

and is similar to quasiclassical approximation except that it is
valid for arbitrary relations between μh and T . It corresponds
to the form of the Green’s function given by Eq. (14) in which
the magnetic field is only taken into account in the phase
factor φA(r,r ′) and for gh

0 (|r − r ′|,ωn) the exact zero-field
Green’s function is substituted. The function J qc

1 reduces to
the standard quasiclassical result similar to Eq. (29) in the
limit μh � T . In Fig. 2(a) we plot the function J qc

1 together
with exact results and we see that this monotonic function
well reproduces the exact shape of J1 whenever the quantum
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FIG. 2. (a) The dependencesJ1 vs ωc/μh without spin splitting for temperatures T/μh = 0.02 (blue), T/μh = 0.1 (yellow), and T/μh = 0.5
(green). The vertical dotted lines mark the values ωc/μh at which the Landau levels cross the Fermi level. In the plot, the solid lines correspond to
the calculation based on Eq. (32) taking the LL quantization effects into account, and the dashed lines correspond to the modified quasiclassical
approximation in Eq. (36) which has taken the band curvature effects into account. The oscillating peaks are broadened by the thermal
fluctuations and eventually disappear at high T . The quasiclassical approximation is good for small ωc. (b) The dependence J1 vs ωc/μh for
T/μh = 0.02 and different spin-splitting parameters γz. The peaks in J1 are suppressed by the spin-splitting effects, except for 2γz equal to
integers. (c) The contour plot of the function J1 − A1 in the plane ωc/μh-γz at low temperatures. The dashed lines mark the magnetic fields at
which the Zeeman-shifted Landau levels coincide with the chemical potential. One can see that the function has steps at these lines and sharp
peaks at their crossings. Between the lines the dependence on γz is very weak. The inset illustrates the spin-splitting of LLs. For finite γz, the
lifting of spin degeneracy leads to pair breaking in all LLs. But, if 2γz equals integers, due to a large number of levels matching, pair breaking
only takes place in a few LLs.

oscillations become small due to temperature smearing. It is
important to note that the condition ωc � πT,μh does not yet
imply thatJ1 ∝ ωc. This linear low-field asymptotics formally
requires the condition ωc � T 2/μh and in the case T � μh

the parameter T 2/μh is much smaller than both T and μh. We
can indeed see in Fig. 2(a) that the approximation in Eq. (36)
well reproduces the exact result at small ωc even in the region
where J1(ωc) is strongly nonlinear.

D. The kernel eigenvalue and the functions Jα

with finite spin splitting

As discussed in the introduction, the relative role of spin-
splitting effects on suppression of superconductivity is char-
acterized by the Maki parameter αM which in the clean case
scales inversely proportional to the Fermi energy. Therefore,
one can expect that these effects may be essential for shallow
bands. The kernel eigenvalues λα

ωn
can be straightforwardly

generalized to the case with finite Zeeman effects by replacing
|ωn| → ζω(ωn + iμzH ) in Eqs. (20) and (24). Therefore,

we have

λe
ωn

= 2
∫ ∞

0
ds
〈
e−2sζω(ωn+iμzH )e− 1

2 (sve/ l)2 〉
, (37a)

λh
ωn

=
∫ π

0

ds̄

ωc

cosh[2ζω(ω̄n + iγz)(π − s̄)]I(s̄)

cosh[2πζω(ω̄n + iγz)] + cos(2πμ̄h)
. (37b)

Here we introduced the parameter γz = μzH/ωc =
μzmhc/e = gmh/4m0 characterizing the relation between the
spin-splitting energy and Landau-level separation. Here m0

is the free-electron mass and g is the spin g factor. For free
electrons γz ≈ 0.5. As the cyclotron frequency is determined
by the z-axis component of the magnetic field and the spin-
splitting energy is determined by the total field, the effective
spin-splitting factor can be enlarged by tilting the magnetic
field away from the z axis [47]; for field tilted at the angle θ

with respect to the z axis, γz(θ ) = γz(0)/cosθ .
With finite Zeeman splitting, the eigenvalues λα

ωn
become

complex and one has to take the real part of the right-hand sides
in the definitions of the functionsJi , Eqs. (28). Similarly to the
zero-spin-splitting case, we can trade the Matsubara-frequency
sum to the fast convergent series. Derivations presented in
Appendix D 3 give the following presentations:

J1 = −ϒT −
∞∑

j=1

(−1)j

⎧⎨
⎩cos(2πjμ̄h)cos(2πjγz) ln tanh(τ̄ j )

− sin(2πjμ̄h)

sin(2πμ̄h)

∑
ς=±1

∫ π

0
ds̄ ln tanh

(
τ̄ z

ς

j

)[ς

2
cos

(
2πγzz

ς

j

)
I ′(s̄) − γzsin

(
2πγzz

ς

j

)
I(s̄)

]⎫⎬
⎭, (38a)

J2 =
∫ ∞

0
ds̄ ln tanh(τ̄ s̄/π )

〈(
s̄v2

e

l2ω2
c

cos2γzs̄ + 2γzsin2γzs̄

)
exp

[
−1

2

(
s̄ve

lωc

)2]〉
e

, (38b)
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where the functions I(s̄), I ′(s̄) are given by Eqs. (25) and (33) and z
ς

j = j + ς (1 − s̄/π ). Alternatively, one can derive a
presentation for J1 in which the summations over the Landau levels are preserved, see Appendix D 4,

J1 = 1

4

∞∑
m=0

m∑
�=0

m!

2m(m − �)!�!

tanh
ωc(�+γz+ 1

2 )−μh

2T
+ tanh

ωc(m−�−γz+ 1
2 )−μh

2T
− 2 tanh ωc(m+1)−2μh

4T

m + 1 − 2μh/ωc

− 1

2

∫ 1
2

0
dz

tanh ωcz−2μh

4T

z − 2μh/ωc

+ 1

2

∞∑
m=0

∫ 1
2

− 1
2

dz

[
tanh ωc(m+1)−2μh

4T

m + 1 − 2μh/ωc

− tanh ωc(m+1+z)−2μh

4T

m + 1 + z − 2μh/ωc

]
. (39)

This presentation is similar to one derived and used in
Refs. [25,26,29]. Even though the presentations in Eqs. (38a)
and (39) look very different, they do describe the same function
and can be used for studying different properties of this
function.

The derivations of the low-temperature asymptotics of
J1 for different cases are presented in Appendix D 4. For
noninteger 2γz, the function J1 − A1 approaches finite limits
at T → 0 for any value of μh. For small γz these limiting
values are large at the shifted LLs, J1 − A1 ≈ (2�0)!

22�0 (�0!)2
1

4γz
for

μh = ωc(�0 + 1
2 ± γz ± 0). When 2γz equals integer jz the

spin-splitting energy 2γzωc exactly matches the LL spacing;
see the example in the inset of Fig. 2(c) for the free-electron
spin splitting, jz = 1. In these resonance cases, the function
J1 − A1 again becomes divergent at low temperatures for
μh = ωc(�0 + jz/2 + 1/2),

J1 − A1 � (2�0 + jz)!

22�0+jz�0!(�0 + jz)!

ωc

8T
, for T → 0.

However, the numerical coefficient in this asymptotics rapidly
decreases with jz. In particular, for the lowest Landau level,
�0 = 0, J1 − A1 � 2−jzωc/(8T ).

We plot the functions J1(ωc) at T = 0.02μh for different
γz in Fig. 2(b). The spin-splitting effects effectively suppress
the spin-singlet pairing in each LL already at small values
of γz leading to rapid suppression of the J1 peaks. The
peaks are replaced by the downward and upward steps
at ωc/μh = (� + γz + 1

2 )−1 and ωc/μh = (� − γz + 1
2 )−1, re-

spectively. However, the pair-breaking effect of spin splitting
is somewhat reduced for integer values of 2γz = jz; see inset
in Fig. 2(c). For these special values, the peaks in J1(ωc)
reappear at μh = ωc(�0 + jz/2 + 1/2). The upper critical field
is directly determined by the difference J1 − A1, which has
finite limit at T → 0 for all parameters except the resonance
values of γz and ωc/μh. The contour plot of this function in the
plane ωc/μh-γz is shown in Fig. 2(c) and provides somewhat
clearer illustration of the general behavior with increasing
γz. One can again see that this function has steps when the
chemical potential crosses the Zeeman-shifted Landau levels
and very sharp peaks at the resonance parameters γz = 2jz

and μh/ωc = �0 + jz/2 + 1/2 reflecting enhancement of the
pairing strength. We can also see that away from these steps
and peaks the dependence on γz is very weak. In the next
section we will use the derived formulas for the kernels Jα to
compute the upper critical fields for different coupling matrices
and spin-splitting parameters.

VI. TEMPERATURE-FIELD PHASE DIAGRAMS:
REENTRANT LANDAU-LEVEL REGIONS

In previous sections we derived general relations which
determine the superconducting instabilities in the magnetic
field for clean two-dimensional superconductors with two
bands, deep and shallow. At this stage we have all the in-
gredients to determine the upper critical field in such a system.
In this section, we discuss the shapes of the magnetic field-
temperature phase diagrams for several representative cases.
First, we present simple analytical results for different limits.

For T → TC and ωc → 0, we can keep only linear terms in
Jα with respect to H (see Appendix D 2), Jα ≈ −HYα with

Y1 = eμh

cmhT 2

[
7ζ (3)

8π2
+ 1

4

∫ ∞

μh/T

du

u3
tanh

(
u

2

)]
, (40a)

Y2 = 7ζ (3)

8π2

eμ

cmeT 2
, (40b)

where ζ (x) is the Riemann zeta function, ζ (3) ≈ 1.202, and
expand Aα with respect to 1 − t ,

A1 ≈ −A′
1(1 − t) with A′

1 = 1 + tanh
μh

2TC

, (41a)

A2 ≈ −(1 − t). (41b)

We remark that the shallow-band results in Eqs. (40a) and
(41a) are somewhat different from the conventional quasi-
classical approach. As near the transition temperature |(Aα −
Jα)/Wαα| � 1, the equation for HC2, Eq. (30), becomes

A1 − J1

W11
+ A2 − J2

W22
= 0. (42)

Substituting the linear expansions for Aα and Jα , we obtain

HC2(t) ≈ (1 − t)

A′
1

W11
+ 1

W22

Y1
W11

+ Y2
W22

. (43)

Furthermore, for the shallow band, μh � μ, and this implies
Y1 � Y2. This allows us to simplify HC2 near TC as

HC2(t) ≈ 1 − t

Y2

(
1 + A′

1
W22

W11

)
. (44)

Near TC , the quantum and spin-splitting effects are negligible
and the shallow band gives a relatively small correction to HC2.

As demonstrated in Sec. V C, without the spin-splitting
effects the function J1(H,T ) diverges for T → 0 as 1/T

at ωc = μh/(� + 1/2). As a consequence, the transition
temperature is usually finite at these field values. For the
lowest LL (2μh = ωc), this transition temperature T

(0)
C2 can be
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calculated from Eq. (30) in the case T
(0)
C2 � TC,μh by using the

low-temperature asymptotics of J1, Eq. (35), and J2, Eq. (29),
see Appendix E 1, which yields

T
(0)
C2 ≈ μh

2

[
2W11 ln rC

2W22 + ln rC

+ 2ϒC + ln

(
4μh

πTC

)]−1

(45)

with

rC = H

He
c2

= eγE mhμωc

π2meT
2
C

, (46)

where He
c2 = (2π2/eγE )cT 2

C/ev2
e is the orbital upper critical

field of the deep band. We focus on the regime H > He
c2

meaning that rC > 1.
For special values of spin-splitting parameters 2γz = jz,

the transition temperature may be also finite at ωc = μh/(� +
jz/2 + 1/2). In particular, we derive in Appendix E 2 the
transition temperature T

(1)
C2 for the important particular case of

free-electron spin splitting, jz = 1, and the highest resonance
field, ωc = μh,

T
(1)
C2 ≈ μh

8

[
2W11 ln r̃C

2W22 + ln r̃C

+ 2ϒC + ln

(
2μh

πTC

)
− 1

4

]−1

,

(47)

where r̃C = rC[1 + 2meωcγ
2
z /(mhμ)] accounts for weak Zee-

man correction in the deep band. The result for T
(1)
C2 is similar

to T
(0)
C2 but contains a smaller numerical factor.

The transition temperatures T
(i)
C2 emerge as a result of the

interplay between the pairing strengths in two bands which
is accounted for by the first term within the square brackets
in Eqs. (45) and (47). These temperatures are finite if the
expressions inside the square brackets are positive which is true
for most parameter sets [48]. The values of T

(i)
C2 are determined

not only by overall strength of the Cooper pairing but also
by the relative weights with which two bands contribute to
superconducting instability. Therefore, they are very sensitive
to the coupling-matrix structure.

In particular, for the dominating deep-band coupling,
�ee > �hh,|�eh|,|�he|, a noticeable reentrant TC2 only
appears for sufficiently strong interband couplings. In-
deed, in this scenario, the constants Wαα can be esti-
mated as W11 ≈ �ee/D� and W22 ≈ �eh�he/(�eeD�) with
|W22| � |W11|. In the case ln rC � |W22| and W11/W22 ≈
�2

ee/�eh�he � ϒC, ln(μh/Tc), we obtain a simple estimate,
T

(0)
C2 ≈ μh�eh�he/(2 ln rC�2

ee) showing that T
(i)
C2 indeed van-

ish for �eh,�he → 0. We also see that in this case T
(i)
C2decrease

with the increasing deep-band coupling constant �ee. Such
counterintuitive behavior is caused by the reduction of the
shallow-band weight at the superconducting instability.

In the opposite limit of the dominating interband coupling
|�he|,|�eh| � �ee,�hh, assuming that ϒC � 1/

√
�eh�he,

we obtain W11 ≈ W22/2 ≈ −1/
√

2�eh�he. In the limit
ln rC � 1/

√
�eh�he we obtain a simple estimate for the

transition temperature

T
(0)
C2 ≈ μh

2

[
1

2
ln rC + 2ϒC + ln

(
4μh

πTC

)]−1

,

which does not depend on coupling constants at all.

FIG. 3. The representative dependences of the high-field tran-
sition temperatures T

(i)
C2 on the off-diagonal coupling constant �he

for fixed effective coupling constant �0,e = 0.2 and three values of
μh/TC . Other parameters are shown in the left plot. The upper limit on
the horizontal axis roughly corresponds to purely interband coupling,
�ee = 0. The curves show both analytical results given by Eq. (45)
for T

(0)
C2 and Eq. (47) for T

(1)
C2 and the precise numerical calculation

based on Eq. (30) with the exact J1, Eq. (38a), and J2, Eq. (38b). The
analytical and numerical results are practically indistinguishable.

For further understanding the relative role of the deep-band
and intraband coupling strengths, we analyze in more detail
the case of vanishing pairing in the shallow band �hh =
0. We consider the evolution of T

(0)
C2 with the increasing

interband coupling, assuming that TC is fixed, meaning that the
effective coupling �0,e in Eq. (13) remains unchanged. In this
case �ee = �0,e for �eh�he = 0 and �eh�he = �2

0,e/( 1
2 +

�0,eϒC) for �ee = 0. In the case �hh = 0, we can strongly
simplify presentations for the parameters Wαα in Eqs. (31) by
relating them with �0,e,

W11 = − �0,e

�eh�he

, W22 = − 1

�0,e

. (48)

This allows us to rewrite the result for T
(0)
C2 , Eq. (45), more

transparently as

T
(0)
C2 ≈ μh

2

[
�2

0,e

�eh�he

ln rC

1 − �0,e

2 ln rC

+ 2ϒC + ln

(
4μh

πTC

)]−1

.

(49)

Similar presentation can be obtained for T
(1)
C2 . We can see that

at fixed TC the temperatures T
(i)
C2 monotonically increase with

the interband couplings and have some tendency to saturation
when these couplings become large.

The dependence of T
(i)
C2 on μh and, correspondingly,

on ωc ∝ H is characterized by the three typical scales:
the transition temperature TC , the value at which the
Landau-level magnetic field matches the deep-band upper
critical field μ

(i)
C2 = cimeT

2
C/mhμ with c0 ≈ c1/2 ≈ 2.77,

and the large scale μ
(i)
� = μ

(i)
C2 exp(2/�0,e). In the range

TC,μ
(i)
C2 � μh � μ

(i)
� the temperatures T

(i)
C2 increase with μh,

similar to the prediction for the single-band case [26,27,36].
For �eh�he � �2

0,e, the function T
(i)
C2(μh) has minimum at

μh = eμ
(i)
C2. At larger interband couplings the minimum is

displaced to larger values which are determined by interplay
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FIG. 4. The typical phase diagram for a two-band superconductor
with the shallow band for μh = 3TC , �hh = �ee = 0, �he = 0.3,
ε0/TC = 10, and me/mh = 1. The shaded regions are the supercon-
ducting states and the HC2(T ) (blue) curves are calculated by using
Eqs. (32) and (29). The dots on the vertical axis are the HC2 values at
T = 0, which are calculated by using Eqs. (34) and (29) in the T → 0
limit. The quasiclassical result obtained from Eqs. (36) and (29) is
shown by the dashed line. The gray dotted lines mark magnetic fields
H�, at which the chemical potential exactly matches Landau levels
for the hole electrons, μh = ωc(� + 1

2 ).

between TC and μ
(i)
C2. In the case μ

(i)
� � ε0, which may realize

only for very deep band, T
(i)
C2(μh) reaches maximum for

μh = μ
(i)
� /e and vanishes at μh = μ

(i)
� . The latter behavior,

however, corresponds to very large magnetic fields and,
probably, it is of only academic interest.

Figure 3 shows the dependences of T
(i)
C2 on the interband

coupling �he for three values of μh/TC and the representative
parameters �0,e = 0.2, mh = me, and ε0 = 10TC . For this
choice of parameters eμ

(0)
C2 ≈ 0.75TC and eμ

(1)
C2 ≈ 1.5TC .

Consistent with above estimates, T
(0)
C2 increases with μh for

all �he, while T
(1)
C2 weakly depends on μh at small �he and

decreases with μh at large �he. The maximum T
(1)
C2 ≈ 0.17TC

realized for purely interband coupling case is roughly two
times smaller than the maximum T

(0)
C2 ≈ 0.34TC . The values

of T
(0)
C2 and T

(1)
C2 provide natural measures for the strength of

the high-field reentrant behavior which we discuss below.
In the whole temperature–magnetic field region, we com-

puted the superconducting instability boundaries from Eq. (30)
for several parameter sets. We consider first the case of zero
spin splitting. Figure 4 shows the typical phase diagram in
this case for representative parameters. The field scale in this
and other plots cmhTC/e is around 37 T for TC = 50 K and
mh = free-electron mass. The most remarkable feature is the
existence of the reentrant superconducting regions at high
magnetic fields whenever the highest occupied LL crosses μh.
These regions appear due to sharp enhancement of the density
of states at these magnetic fields. At higher temperatures the
thermal smearing of the Landau levels erases the quantization
effects. As a result, the reentrant states disappear and the
HC2 curve approaches the quasiclassical result. The reentrance
effect is most pronounced for the lowest Landau level and in the
following consideration we mostly concentrate on this case.

The specific behavior is sensitive to the structure of the
coupling matrix. In particular, it is quantitatively different for
two cases discussed in the introduction, the interband-coupling
scenario and induced superconductivity in the shallow band.
Figure 5 shows evolution of the temperature-field diagram
with μh/TC without spin splitting for these two cases. The
qualitative behavior is similar in both cases; with increasing
chemical potential the strong bump appears at low tempera-
tures and then it separates from the main domain and becomes
a separate high-field superconducting region. The size of this
reentrance region is much larger for the interband-coupling
case, in which maximum TC2 almost reaches TC/3. These
numerically computed TC2 are in perfect agreement with the
analytical result, Eq. (45).

The spin-splitting effects rapidly suppress the high-field
reentrant regions. This can be seen in Fig. 6, in which
we plot the dependence of superconducting boundaries at
low temperatures on the spin-splitting factor γz for the
case of induced superconductivity in the shallow band (the

FIG. 5. Evolution of the temperature-field diagram with μh/TC without spin splitting for the two different coupling matrices specified
in the plots. The left plot is for a purely interband coupling model and the right plot is for dominating coupling in the deep band when
superconductivity is induced in the shallow band by the interband pairing interactions. Other parameters are ε0/TC = 10 and me/mh = 1. The
dashed lines correspond to the quasiclassical results obtained from Eqs. (36) and (29), which is only distinguishable from LL quantization
result in the regime of T < TC/2.
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FIG. 6. The dependence of superconducting boundaries on the
spin-splitting parameter γz at low temperature T = 0.02TC and
μh = 1.2TC for the case of the shallow band with induced super-
conductivity. We used the same parameters as in the right plot of
Fig. 5. The dashed lines mark the magnetic fields at which the
Zeeman-shifted Landau levels match the chemical potential.

same parameters as in the right plot of Fig. 5). A very
small value γz ≈ 0.05 is already sufficient to eliminate the
separated region. In the interband-coupling scenario this value
is somewhat larger, γz ≈ 0.1. Another noticeable feature in
Fig. 6 is a significant suppression of TC2 at the magnetic fields
for which the chemical potential falls in between the spin-up
and spin-down Landau levels. This leads to stepwise behavior
of the main boundary with steps corresponding to crossing
the spin-down Landau levels and may cause the appearance of
normal regions inside the superconducting domain. We also
see in Fig. 6 that the reentrant regions reappear near the integer
values of 2γz, 1 and 2, corresponding to crossing of Landau
levels with different spin orientations shown by the dashed
lines. The reentrance is well developed for γz ≈ 0.5 when
the chemical potential matches coinciding the spin-up 0th and
spin-down 1st Landau levels. Figure 7 (left) illustrates the

FIG. 7. The low-temperature part of the phase diagrams for the
resonance values of the spin splitting factor (left) and for two values
close to resonances (right). Other parameters are the same as in Fig. 6.

FIG. 8. The evolution of the temperature-field diagram with
μh/TC for the same parameters as in Fig. 5 (left) and for free-electron
spin splitting, γz = 0.5.

low-temperature part of phase diagrams for resonant values of
spin splitting, γz = 0, 0.5, and 1, for the same parameters
as in Fig. 6. We can see that the size of reentrant region
decreases with increasing γz. When γz deviates from the
resonance values, the reentrance rapidly disappears. Before
disappearance, two small reentrant domains typically exist at
fields corresponding to matching of the chemical potential with
LL for two spin orientations, as illustrated in Fig. 7 (right).

Figure 8 illustrates evolution of the temperature-magnetic
field phase diagrams with decreasing chemical potential for
γz = 0.5 in the interband-coupling case. We use the same
parameters as in the left plot of Fig. 5. We can see that the
behavior is similar to the case γz = 0 except that the reentrant
regions are smaller and their location is shifted to different
values of μh/TC . In the case of induced superconductivity into
the shallow band corresponding to the right plot of Fig. 5 the
behavior is similar but the reentrant regions are even smaller.

VII. SUMMARY AND DISCUSSION

In multiple-band superconductors, the shallow band can
play an important role in spite of its low carrier concentration.
In the presence of high magnetic field, the highest occupied LL
has a very low quantum number. As a consequence, the Landau
quantization may cause the reentrant high-field superconduct-
ing regions at the low temperatures. The quantitative behavior
depends on the relative strength of intra- and interpocket
pairing interactions. The reentrance is most pronounced when
the interpocket coupling dominates.

The Zeeman spin splitting rapidly suppresses the high-field
reentrant regions. However, such regions reappear in the
special cases when spin-splitting energy exactly matches the
LL spacing. The magnitude of the Zeeman term is determined
by two factors, the g factor and the band effective mass.
In real materials both these factors may significantly differ
from the free-electron values. In particular, the relative role of
spin splitting is reduced for light quasiparticles due to higher
Landau-level energies; see, e.g., Ref. [49].

In this paper we limit ourselves to the case when at the
superconducting instability the lowest-Landau-level gap solu-
tion, Eq. (16), is realized. It was demonstrated in Refs. [42] that
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in the case of a small-size single 2D Fermi surface and large
spin splitting, the gap shape at the superconducting instability
may be given by the higher-Landau-level wave functions. We
verified that this does not happen for the parameter range we
considered. Such scenario typically requires smaller Fermi
energy for the deep band, ε0 � 5TC .

We only considered a clean superconductor with a very
small scattering rate. In general, impurities are expected to
have the same effect as the temperature which broadens the
LLs leading to diminishing of the reentrant behavior. Similarly
to other quantum oscillations, we expect that this behavior
persists until τωc � 1, where τ is the scattering time.

We mention that a different orbital mechanism for the
reappearance of superconductivity at high magnetic fields was
predicted for quasi-one- and quasi-two-dimensional metals
when the field is applied along the high-conductivity directions
[50]. In this case the restoration of superconductivity is caused
by the interplay between the quantum orbital motion of
quasiparticles in the direction perpendicular to the conducting
chains or planes and interchain/interplane periodicity.

The reentrant superconductivity in a high magnetic field
similar to the one predicted here has been observed in
Eu-doped Chevrel phases, EuxSn1-xMo6S8, with TC ≈ 4 K
[51]. This material has a wide isolated semielliptical su-
perconducting region for T < 1 K and 4 T < H < 22.5 T.
The quasiclassical model used for the interpretation of this
behavior assumed very weak orbital effect of magnetic field
with Maki parameter αM ≈ 4.8 and the compensation of the
Zeeman-splitting effects due to interaction of quasiparticles
with local magnetic moments, the Jaccarino-Peter effect [52].
While the second assumption looks very reasonable due to the
presence of the magnetic Eu ions, the reason for the extreme
weakness of the orbital effects in this material is not very clear.
We cannot exclude that quantization effects play a role in the
formation of the reentrant region in this material.

The presence of tunable shallow bands, as well as high
values of the transition temperatures and upper critical fields,
make FeSCs natural candidates for the reentrant behavior. An
essential requirement is a sufficiently strong pairing interaction
in between deep and shallow bands. Observation of the very
large superconducting gap in the shallow hole band of LiAsFe
[4] suggests that such strong interband coupling is indeed
present at least in some FeSC compounds. In this paper
we limited ourselves to the two-dimensional case for which
the quantization effects are the strongest. At the qualitative
level, we expect that our results are applicable to the FeSe
monolayer on SrTiO3 for which the Lifshitz transition has been
reported recently [14] or for intercalated FeSe compounds. The
reentrant behavior is expected when the chemical potential of
the shallow band is tuned to the transition temperature. For
TC ∼ 50 K this corresponds to μh ∼ 4.3 meV, which is about
10 times smaller than the Fermi energy of the deep electron
band at the M point. Experimental probes of the electronic
spectrum in the bulk FeSe by quantum oscillations [53–55]
and ARPES [54,56,57] show that the quasiparticles in this
material have heavy effective masses exceeding 3 ∼ 4 times
the free-electron mass, probably due to correlation effects.
The FeSe monolayer has similarly large effective masses
[6,14]. This factor should enhance Zeeman effects in the
shallow bands. On the other hand, we are not aware of direct

measurements of g factors in iron-based superconductors. In
addition, quantitative consideration requires knowledge of the
coupling matrix. A challenging practical requirement is the
fabrication of a clean monolayer with very small scattering
rate.

In the bulk FeSC materials one has to consider a three-
dimensional electronic spectrum. We expect that the main
qualitative features are preserved even though the quantum
effects are weaker in the 3D case. An additional complication
is the possibility of the Fulde-Ferrell-Larkin-Ovchinnikov
modulation of the order parameter along the direction of
magnetic field for strong spin splitting which has been
considered recently in Refs. [38,58] within the quasiclassical
approximation.

Even though our consideration has been motivated by
physics of FeSCs, it may be applicable to other multicom-
ponent superconducting systems. Recently, another promising
possibility to realize similar LL quantization effects has been
discussed for an ultracold system of two different fermionic
atoms with the artificial magnetic field [59]. The mathematical
description of superconducting instability for this system is
very close to multiple-band metals. The reentrant behavior is
always expected in this case, since, in contrast to multiple-
band superconductors, the Zeeman spin-splitting and disorder
effects are absent.
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APPENDIX A: FORMULA FOR THE EFFECTIVE
COUPLING CONSTANT �0,e

According to Eq. (10a), TC is directly determined by the
effective coupling constants �0,e,

TC = C� exp
(
�−1

0,e

)
(A1)

with C = 2eγE /π ≈ 1.134. The constants �0,e and �0,h obey
the instability condition det(�̂−1 − �̂−1

0 ) = 0, which gives

�−1
0,e�

−1
0,h det �̂ − �−1

0,e�ee − �−1
0,h�hh + 1 = 0. (A2)

Using Eq. (10b) we can exclude �0,h, �−1
0,h = �−1

0,e/2 + ϒC .
This gives the quadratic equation for �−1

0,e, which we can solve
as

�−1
0,e = b + δ�

√
b2 − 2(1 − ϒC�hh)/D�, (A3)

where, δ� = ±1, b = (�ee + 1
2�hh)/D� − ϒC , and D� =

det �̂. The sign δ� giving the largest TC (i.e., the largest
positive �0,e) has to be selected. Analyzing different cases, we
derive δ� = −sgn[(1 − ϒC�hh)/D�]. Note that ϒC depends
on the ratio μh/TC and therefore, formally, Eq. (A3) is an
implicit equation for TC . It is convenient however to treat
the ratio μh/TC as an independent parameter. In this case
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Eqs. (A1) and (A3) determine TC as a function of this
parameter, the pairing energy scale �, and the coupling matrix.

APPENDIX B: THE REGULARIZATION OF THE GAP
EQUATION AT FINITE MAGNETIC FIELD

In this Appendix, we describe regularization of logarithmic
(UV) divergence in the gap equation for a finite magnetic field,
Eq. (26), which allows us to absorb all the information about
the energy cutoff into TC . In the above equation the sums
2πT

∑
ωn>0 λα

ωn
(H,T ) are logarithmically diverging and have

to be cut at the high-energy scale �, similarly to the zero-field
case, Eq. (9). To regularize Eq. (26), we make the standard
decomposition

T λα
ωn

(H,T ) = T
[
λα

ωn
(H,T ) − λα

ωn
(0,T )

]
− [

TCλα
ωn

(0,TC)−T λα
ωn

(0,T )
]+TCλα

ωn
(0,TC),

where, according to Eq. (9), λe
ωn

(0,T ) = 1/ωn and λh
ωn

(0,T ) =
[ 1

2 + ηh(ωn)]/ωn. As follows from the definitions (10),
2πTC

∑
ωn>0 λα

ωn
(0,TC) = �−1

0,α , and this is the only sum
containing logarithmic divergence. In the other two terms the
summation over ωn can be extended to infinity. In particular,
we have

A1 ≡ 2π
∑
ωn>0

[
TCλh

ωn
(0,TC) − T λh

ωn
(0,T )

]

= 1

2
ln(T/TC) − ϒT + ϒC,

A2 ≡ 2π
∑
ωn>0

[
TCλe

ωn
(0,TC) − T λe

ωn
(0,T )

] = ln (T/TC).

Using also the definitions of Jα(H,T ) in Eq. (28), we
obtain the relation 2πT

∑
ωn>0 λα

ωn
(H,T ) = �−1

0,α − Aα(T ) +
Jα(H,T ) which leads to the regularized gap equation, Eq. (27).

APPENDIX C: DERIVATION OF THE KERNEL
EIGENVALUE λh

ωn

In this Appendix we present derivation of Eqs. (23) and
(24) for the shallow-band eigenvalue λh

ωn
. Using definition in

Eq. (18) with the Green’s functions in Eq. (21) we present λh
ωn

as

λh
ωn

=
∫ ∞

0

dx

2π2l2Nh

∑
��′

L�(x)L�′(x)e−2x

×
∫ ∞

0
ds1e

−ζωs1(ωn+iE�′ )
∫ ∞

0
ds2e

−ζωs2(ωn−iE�),

where E� = ωc(� + 1/2), ζω = sgn(ωn), x = ρ2/(2l2),
and we used the integral representation (ωn ± iE�) =
ζω

∫∞
0 ds exp[−ζωs(ωn ± iE�)] [34]. The summation of

Laguerre polynomials can now be done by using the
generating function in Eq. (22) which gives

λh
ωn

=
∫ ∞

0
ds1

∫ ∞

0
ds2e

−(s1+s2)|ωn|eiζω(s1−s2)(μh− 1
2 ωc)

×
∫ ∞

0

ωcdx

π

exp
[− x

1−ϑ1

]
exp

[− x
1−ϑ2

]
(1 − ϑ1)(1 − ϑ2)

,

FIG. 9. The change of variables for the s̄1-s̄2 integral, Eq. (C2),
into the s̄-ū integral, Eqs. (C4) and (C5). The gray regions R1 and R2

are the integration regions in Eq. (C4) for the first and second terms
correspondingly.

where ϑ1 = exp(−iζωωcs1) and ϑ2 = exp(iζωωcs2). We can
now integrate out the variable x, and this leads to

λh
ωn

=
∫ ∞

0
ds̄1

∫ ∞

0
ds̄2

e−(s̄1+s̄2)|ω̄n|eiζω(s̄1−s̄2)(μ̄− 1
2 )

πωc(2 − ϑ1 − ϑ2)
. (C1)

We have introduced the dimensionless quantities s̄1,2 = s1,2ωc,
ω̄n = ωn/ωc, and μ̄h = μh/ωc. This result is equivalent to
Eq. (23).

To derive presentation better suited for numerical evalua-
tion, we eliminate the infinite integral using splitting

∫∞
0 ds̄1 =∑∞

m=0

∫ 2(m+1)π
2mπ

ds̄1 and
∫∞

0 ds̄2 = ∑∞
n=0

∫ 2(n+1)π
2nπ

ds̄2, and
translating the s̄1 → s̄1 + 2mπ and s̄2 → s̄2 + 2nπ in each
term of the sum. Noting that ϑ1,2 remain unchanged by shifting
s̄1,2 → s̄1,2 + 2nπ , this leads to

λh
ωn

=
∫ 2π

0

∫ 2π

0

ds̄1ds̄2

2πωcQ(|ω̄n|)
e−(s̄1+s̄2)|ω̄n|ei(s̄1−s̄2)μ̄h

e
i
2 (s̄1−s̄2) − cos s̄1+s̄2

2

(C2)

in which Q(ω̄n) is determined by the double sum

1

Q(ω̄n)
=

∞∑
m=0

∞∑
n=0

e−2π(m+n)ω̄ne2πi(m−n)(μ̄h− 1
2 ).

Evaluation of this sum gives the quantum oscillating factor

Q(ω̄n) = 1 + 2e−2πω̄ncos(2πμ̄h) + e−4πω̄n . (C3)

Next, we change the integration variables in Eq. (C2), s̄ =
1
2 (s̄1 + s̄2) and ū = 1

2 (s̄1 − s̄2), as illustrated in Fig. 9. This
gives us the following presentation:

λh
ωn

= 1

ωcQ(|ω̄n|)
[∫ π

0
ds̄e−2|ω̄n|s̄I(s̄)

+
∫ 2π

π

ds̄e−2|ω̄n|s̄I(2π − s̄)

]
, (C4)

where

I(s̄) = 1

π

∫ s̄

−s̄

dū
e2iūμ̄h

eiū − coss̄
(C5)

with lims̄→+0 I(s̄) = 1. The first and second terms in Eq. (C4)
correspond to the integration over the domains R1 and R2

in Fig. 9. In the new coordinates, the integrand exponentially
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decays with s̄ and oscillates in the ū direction. Making the sub-
stitution s̄ → 2π − s̄ in the second term and using the relation

2e−2πω̄n

Q(ω̄n)
= 1

cosh(2πω̄n) + cos2πμ̄h

,

we obtain Eq. (24) of the main text.

APPENDIX D: REPRESENTATIONS AND ASYMPTOTICS
OF THE FUNCTION J1(H,T )

In this Appendix we derive the presentation for the function
J1, Eq. (32), used for numerical calculations. The starting point
is the presentation (28a) in which λh

ωn
is defined by Eq. (24).

Integrating this presentation by parts we obtain

λh
ωn

= 1

ωn

{
sinh[2π |ω̄n|]

2[cosh(2πω̄n) + cos(2πμ̄h)]

+
∫ π

0
ds̄

2 sinh[2ω̄n(π − s̄)]

cosh(2πω̄n) + cos(2πμ̄h)
I ′(s̄)

}
, (D1)

where the derivative I ′(s̄) ≡ dI(s̄)/ds̄ is explicitly given by
Eq. (33). Substituting this result into Eq. (28a), we represent
J1 as

J1 = −ϒT + 2πT

∞∑
ωn>0

1

ωn

(
−1

2

exp(−2πω̄n) + cos(2πμ̄h)

cosh(2πω̄n) + cos(2πμ̄h)

+
∫ π

0
ds̄

2 sinh[2ω̄n(π − s̄)]I ′(s̄)

cosh(2πω̄n) + cos(2πμ̄h)

)
. (D2)

To transform this equation further, we will expand the
expression under the sum with respect to exp(−2πω̄n), which
will allow us to carry out the ωn summation. Using the relation

1

cosh(2πω̄n) + cos(2πμ̄h)
= 2 exp(−2πω̄n)(

1 + ϕωn

)(
1 + ϕ∗

ωn

)
= 2

sin(2πμ̄h)
Im

1

1 + ϕωn

with ϕωn
= exp[−2π (ω̄n + iμ̄h)] and expanding it with re-

spect to ϕωn
gives

1

cosh(2πω̄n) + cos(2πμ̄h)

= 2

sin(2πμ̄h)

∞∑
j=1

(−1)j Im ϕj
ωn

= − 2

sin(2πμ̄h)

∞∑
j=1

(−1)j exp(−2πjω̄n)sin(2πjμ̄h).

Substituting this expansion in Eq. (D2) and using Matsubara-
frequency summation formula

2πT

∞∑
ωn>0

exp(−2ω̄nx)

ωn

= − ln tanh

[
πT

ωc

x

]
, (D3)

we derive

J1 = −ϒT −
∞∑

j=1

(−1)j
sin(2πjμ̄h)

sin(2πμ̄h)

{
ln tanh[τ̄ (j + 1)]

+ cos(2πμ̄h) ln tanh(τ̄ j ) +
∫ π

0

ds̄

2
I ′(s̄) ln

tanh(τ̄ z+
j )

tanh(τ̄ z−
j )

}

(D4)

with τ̄ = π2T/ωc and z±
j = j ± (1 − s̄

π
). Changing the sum-

mation variable, j → j − 1, we can transform the first term
in the sum as

∞∑
j=1

(−1)j
sin(2πjμ̄h)

sin(2πμ̄h)
ln tanh[τ̄ (j + 1)]

= −
∞∑

j=1

(−1)j ln tanh(τ̄ j )

[
sin(2πjμ̄h)

tan(2πμ̄h)
+ cos(2πjμ̄h)

]
,

which allows us to further simplify J1,

J1 = −ϒT −
∞∑

j=1

(−1)j
{

cos(2πjμ̄h) ln tanh(τ̄ j )

+
∫ π

0

ds̄

2
I ′(s̄)

sin(2πjμ̄h)

sin(2πμ̄h

ln
tanh(τ̄ z+

j )

tanh(τ̄ z−
j )

}
. (D5)

This presentation is used in numerical calculations.

1. Low-temperature limit

To derive the low-temperature asymptotics of J1, we start
with the intermediate result (D4) which we rewrite as

J1 = −ϒT − PT +
∞∑

j=1

(−1)j sin(2πjμ̄h)

sin2πμ̄h

×
∫ π

0

ds̄

2
ln

tanh(τ̄ z−
j )

tanh(τ̄ z+
j )

I ′(s̄), (D6)

with

PT =
∞∑

j=1

(−1)j

sin2πμ̄h

{
ln tanh(τ̄ j )

1

2
[sin[2π (j + 1)μ̄h]

+ sin[2π (j−1)μ̄h]]+sin(2πjμ̄h) ln tanh[τ̄ (j + 1)]

}
.

We can extract the ln T divergent terms in PT by further
rearranging the j summation as follows:

PT = −1

2
ln tanh(2τ̄ )

+
∞∑

j=2

(−1)j sin(2πjμ̄h)

2sin(2πμ̄h)
ln

tanh[τ̄ (j + 1)]

tanh[τ̄ (j − 1)]
.

In the T → 0 limit for μ̄h not close to half integers, we may
expand tanh x ≈ x and this yields

PT ≈ −1

2
ln(2τ̄ ) +

∞∑
j=2

(−1)j sin(2πjμ̄h)

2sin(2πμ̄h)
ln

j + 1

j − 1
.

Substituting this result into Eq. (D6), we obtain Eq. (34).
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We note again that the above low-temperature approxi-
mation is valid for any μ̄h, except near the half integers,
where the j sum diverges. We can derive more accurate result
in the vicinity of μ̄h = 1/2 using the presentation given by
Eq. (D5) as a starting point. The last term in this presentation
containing the double integration vanishes at μ̄h = 1/2 and
can be neglected. Defining δμ = 2μ̄h − 1 with δμ � 1 we
represent J1 as J1 ≈ −ϒT + T :

T ≈ −
∞∑

j=1

cos(πδμj ) ln tanh(τ̄ j ).

For computation of the sum at low temperatures we introduce
the intermediate scale N, 1 � N � ωc/(π2T ) and approxi-
mate the sum for j > N by the integral

T ≈ −
N∑

j=1

cos(πδμj ) ln(τ̄ j )

−
∫ ∞

N+ 1
2

dxcos(πδμx) ln tanh(τ̄ x)

= −
N∑

j=1

cos(πδμj ) ln(τ̄ j ) +
∫ N+ 1

2

0
dxcos(πδμx) ln(τ̄ x)

+ 1

2δμ

tanh

(
π2δμ

4τ̄

)
,

where we have used − ∫∞
0 dxcos(πδμx) ln tanh(τ̄ x) =

1
2δμ

tanh(π2δμ

4τ̄
). As the sum of the first two terms is not singular

at δμ → 0, we can set δμ = 0 in them. Evaluating the sum and
integral, we obtain

T ≈ − ln[�(N + 1)] +
(

N + 1

2

)
ln

(
N + 1

2

)
−
(

N + 1

2

)

+ 1

2
ln(τ̄ ) + 1

2δμ

tanh

(
π2δμ

4τ̄

)
,

where �(z) is the Gamma function, �(N + 1) = N !. Using the
Stirling formula, �(z) ≈ e−zzz−1/2

√
2π for z � 1, we obtain

T ≈ 1

2
ln

(
τ̄

2π

)
+ 1

2δμ

tanh

(
π2δμ

4τ̄

)
.

As expected, the intermediate scale dropped out from the final
result. This corresponds to Eq. (35) for J1 in the real variables.

2. Modified quasiclassical approximation
for J1 in the limit ωc � πT,μh

In the limit ωc � πT,μh the Landau-quantization effects
are very weak allowing for significant simplification of J1. As
we consider the case when μh is small, we cannot simply use
the conventional quasiclassical approach but will derive the
approximation which also accounts for the case μh ∼ T . We
take the presentation for J1 in Eq. (D5) as a starting point.
In the limit τ̄ = π2T/ωc � 1 all terms in the sum over j

are exponentially small except the z−
j term for j = 1 in the s̄

integral, z−
1 = s̄/π . Also, the s̄ integration converges at s̄ �

1 and, therefore, it can be extended to infinity, giving the

following approximation:

J1 ≈ −ϒT −
∫ ∞

0

ds̄

2
I ′(s̄) ln tanh

(
τ̄

π
s̄

)
.

The function I ′(s̄), Eq. (33), for s̄ � 1 and ωc � μh can be
approximated as

I ′(s̄) ≈ 2sin(2μ̄hs̄)

πs̄
− 2cos(2μ̄hs̄)

π

− 2μ̄hs̄

π

∫ s̄

−s̄

dū
e2iμ̄hū

iū + s̄2/2
.

Using also the following presentation for the function ϒT ,

ϒT = −
∫ ∞

0

ds

π
ln tanh(πT s)

sin(2μhs)

s

= −
∫ ∞

0

ds̄

π
ln tanh

(
τ̄

π
s̄

)
sin(2μ̄hs̄)

s̄
,

we derive

J1 ≈ − 1

4μ̄h

tanh

(
π2μ̄h

2τ̄

)

+ μ̄h

∫ ∞

0

ds̄

π
ln tanh

(
τ̄

π
s̄

)
s̄

∫ s̄

−s̄

dū
e2iμ̄hū

iū + s̄2/2
. (D7)

Returning back to the real coordinates, we obtain Eq. (36)
of the main text. This result is valid for arbitrary re-
lation between μh and T provided ωc � πT,μh. In the
limit μh � T it reproduces the conventional quasiclassical
approximation.

In the limit ωc → 0 the function J1 vanishes linearly with
ωc. In general, the condition ωc � πT,μh does not yet imply
that we can use this linear asymptotics. It requires the condition
ωc � T 2/μh, which may be stronger because in the limit T �
μh the parameter T 2/μh is much smaller than both T and μh.

To compute the ratioJ1/ωc in the limit ωc → 0, we evaluate
the u integral as∫ s

−s

du
exp[2iμhu]

iu + ωcs2/2
≈ π + 2

∫ s

0
du

sin(2μhu)

u
.

Using the integrals
∫∞

0
sinu
u

du = π
2 and

∫∞
0 dss ln tanh s =

− 7ζ (3)
16 , we transform J1 to the form

J1 = −7ζ (3)

8

ωcμh

(πT )2
− ωc

4μh

tanh
μh

2T
− L,

L = 2

π
ωcμh

∫ ∞

0
ds s ln tanh(πT s)

∫ ∞

s

du
sin(2μhu)

u
.

(D8)

Here ζ (x) is the Riemann zeta function, ζ (3) ≈ 1.202. Using
substitutions u = svT /μh and s = s̃/πT , we transform the
double integral L into a single integral as

L = 2ωcμh

π (πT )2

∫ ∞

μh/T

dv

v

∫ ∞

0
ds̃ s̃ ln tanh s̃ sin

(
2v

π
s̃

)

= ωcμh

8T 2

∫ ∞

μh/T

dv

v3

v − sinh v

cosh2
(

v
2

) .
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The integral in this formula can be transformed as∫ ∞

x

dv

v3

v − sinh(v)

cosh2
(

v
2

) =
∫ ∞

x

dv

v2

1

cosh2
(

v
2

) − 2
∫ ∞

x

dv

v3
tanh

(
v

2

)
= − 2

x2
tanh

(
x

2

)
+ 2

∫ ∞

x

dv

v3
tanh

(
v

2

)
giving

L = − ωc

4μh

tanh

(
μh

2T

)
+ ωcμh

4T 2

∫ ∞

μh/T

dv

v3
tanh

(
v

2

)
.

Substituting this result into Eq. (D8), we finally obtain asymptotics of J1 for ωc → 0:

J1 = −7ζ (3)

8

ωcμh

(πT )2
− ωcμh

4T 2

∫ ∞

μh/T

dv

v3
tanh

(
v

2

)
. (D9)

This result will be used for evaluation of the HC2 slope for T → TC . In the limit μh � T the second term vanishes and we
reproduce the well-known classical result.

3. Jα(H,T ) with finite Zeeman splitting

With finite Zeeman splitting Eq. (24) becomes

λh
ωn

= 1

ωc

∫ π

0
ds̄

cosh[2ζω(ω̄n + iγz)(π − s̄)]

cosh[2πζω(ω̄n + iγz)] + cos2πμ̄h

I(s̄). (D10)

Integrating by parts, we can transform it as

λh
ωn

= sinh[2π (ω̄n + iγz)]

2ωn{cosh[2π (ω̄n + iγz)] + cos2πμ̄h} +
∑
ς=±1

∫ π

0
ds̄

ς exp[2πς (ω̄n + iγz) − 2ςω̄ns̄]

4ωn{cosh[2π (ω̄n + iγz)] + cos2πμ̄h}
d[e−2iςγzs̄I(s̄)]

ds̄
, (D11)

where ωn > 0 and for ωn < 0, λh
ωn

is just the complex conjugate of the above equation. With such λh
ωn

the function

J1 = −ϒT + 2πT Re
∞∑

ωn>0

(
λh

ωn
− 1

2ωn

)

takes the form

J1 = −ϒT + 2πT Re
∞∑

ωn>0

⎧⎨
⎩− exp[−2π (ω̄n + iγz)] + cos2πμ̄h

2ωn{cosh[2π (ω̄n + iγz)] + cos2πμ̄h}

+
∑
ς=±1

∫ π

0
ds̄

ς exp[2πς (ω̄n + iγz) − 2ςω̄ns̄]

4ωn{cosh[2π (ω̄n + iγz)] + cos2πμ̄h}
d[e−2iςγzs̄I(s̄)]

ds̄

⎫⎬
⎭. (D12)

Using the expansion

1

cosh[2π (ω̄n + iγz)] + cos(2πμ̄h)
= −2

∞∑
j=1

(−1)j exp[−2πj (ω̄n + iγz)]
sin(2πjμ̄h)

sin(2πμ̄h)
,

and performing summation over the Matsubara frequencies, we obtain

J1 = −ϒT − Re
∞∑

j=1

(−1)j
sin(2πjμ̄h)

sin(2πμ̄h)

(
{exp[−2πi(j + 1)γz] ln tanh[τ̄ (j + 1)] + exp(−2πijγz)cos(2πμ̄h) ln tanh[τ̄ j ]}

−
∑
ς=±1

∫ π

0
ds̄

ς

2

d[exp(−2iςγzs̄)I(s̄)]

ds̄
exp[−2πi(j − ς )γz] ln tanh

(
τ̄ z

ς

j

))
, (D13)

with z
ς

j = j + ς (1 − s̄
π

). Using the relation

∞∑
j=1

(−1)j
sin(2πjμ̄h)

sin(2πμ̄h)
exp[−2πi(j + 1)γz] ln tanh[τ̄ (j + 1)]

= −
∞∑

j=1

(−1)j
[

sin(2πjμ̄h)

tan(2πμ̄h)
− cos(2πjμ̄h)

]
exp(−2πijγz) ln tanh(τ̄ j ),
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this result can be simplified as

J1 = −ϒT −
∞∑

j=1

(−1)j

⎧⎨
⎩cos(2πjμ̄h)cos(2πjγz) ln tanh(τ̄ j )

+
∑
ς=±1

∫ π

0
ds̄

ς

2

sin(2πjμ̄h)

sin(2πμ̄h)

d
[
cos

(
2πγzz

ς

j

)
I(s̄)

]
ds̄

ln tanh
(
τ̄ z

ς

j

)⎫⎬⎭. (D14)

Taking explicitly the s̄ derivative, we obtain Eq. (38a) of the main text.
For J2 with Zeeman effects, we substitute Eq. (37a) into Eq. (28b). To eliminate the 1/ωn in the latter equation, we integrate

it by parts which gives

J2 = Re
∫ ∞

0
ds

∞∑
ωn>0

2πT

ωn

e−2sωn
d

ds

[
e−2isμzH

〈
e− 1

2 (sve/ l)2 〉
e

]
. (D15)

Using the identity in Eq. (D3) and taking the derivative, this yields

J2 = Re
∫ ∞

0
ds ln tanh(πT s)

〈(
sv2

e

l2
+ 2iμzH

)
exp

[
−2isμzH − v2

e s
2

2l2

]〉
e

. (D16)

Making change of variable s̄ = ωcs, and taking the real part of the above equation, we obtain Eq. (38b) of the main text.

4. Presentation for J1 with Landau-level summation

In this section we derive an alternative presentation for the function J1 in which the summation over Landau levels is
preserved. This presentation is used, e.g., in Refs. [25,26,29]. As follows from Eqs. (21) and (18), with finite spin splitting the
kernel eigenvalue is

λh
ωn

= − ωc

πl2

∫ ∞

0
ρdρ

∑
�,�′

L�

(
ρ2

2l2

)
L�′

(
ρ2

2l2

)
e
− ρ2

l2{
iωn − [

ωc

(
� + γz + 1

2

)− μh

]}{
iωn + [

ωc

(
�′ − γz + 1

2

)− μh

]} .

Using the result ∫ ∞

0
dte−2tL�(t)L�′(t) = (� + �′)!

2�+�′+1�!�′!
,

we can perform integration over the coordinate which yields

λh
ωn

= −ωc

π

∑
�,�′

(� + �′)!/(2�+�′+1�!�′!){
iωn − [

ωc

(
� + γz + 1

2

)− μh

]}{
iωn + [

ωc

(
�′ − γz + 1

2

)− μh

]} . (D17)

The Matsubara-frequency sum of λh
ωn

can be computed using the relation T
∑

ωn

1
iωn−z

= − 1
2 tanh βz

2 and we obtain

πT
∑
ωn

λh
ωn

= ωc

∑
�,�′

(� + �′)!
2�+�′+2�!�′!

tanh
ωc(�+γz+ 1

2 )−μh

2T
+ tanh

ωc(�′−γz+ 1
2 )−μh

2T

ωc(� + �′ + 1) − 2μh

.

This sum diverges at large �,�′ and has to be cut at ωc(�′ + �) < 2�. To obtain the converging function J1, we have to subtract
the zero-field limit of this sum,

lim
ωc→0

(
πT

∑
ωn

λh
ωn

)
= 1

2

∫ �

0
dx

tanh x−μh

2T

x − μh

,

which yields

J1 = ωc

∑
�+�′<2�/ωc

(� + �′)!
2�+�′+2�!�′!

tanh
ωc(�+γz+ 1

2 )−μh

2T
+ tanh

ωc(�′−γz+ 1
2 )−μh

2T

ωc(� + �′ + 1) − 2μh

− 1

2

∫ �

0
dx

tanh x−μh

2T

x − μh

.

Introducing the new summation variable m = � + �′ and making the variable change x = ωcz/2 in the integral, we obtain

J1 = ωc

2�/ωc∑
m=0

m∑
�=0

m!

2m+2(m − �)!�!

tanh
ωc(�+γz+ 1

2 )−μh

2T
+ tanh

ωc(m−�−γz+ 1
2 )−μh

2T

ωc(m + 1) − 2μh

− 1

2

∫ 2�/ωc

0
ωcdz

tanh ωcz−2μh

4T

ωcz − 2μh

. (D18)

174503-18



STRONG LANDAU-QUANTIZATION EFFECTS IN HIGH- . . . PHYSICAL REVIEW B 95, 174503 (2017)

Note that there is no divergence when the denominator
ωc(m + 1) − 2μh approaches zero, because the nomina-

tor tanh
ωc(�+γz+ 1

2 )−μh

2T
+ tanh

ωc(m−�−γz+ 1
2 )−μh

2T
also vanishes.

Splitting the integral into the sum of integrals over the intervals
m + 1

2 < z < m + 3
2 , after some rearrangements we arrive at

the presentation given by Eq. (39) of the main text, in which
J1 is separated into the converging parts allowing us to take
the limit � → ∞.

The presentation (D18) can be used to derive the low-
temperature behavior of J1 for several interesting particular
cases. Without spin splitting and for μh matching the Landau
level with the index �0, μh = ωc(�0 + 1/2), the main diverging
term at T → 0 in the sum in Eq. (D18) comes from m = 2�0

and � = �0 giving J1 � (ωc/8T )(2�0)!/[22�0 (�0!)2].
At finite γz such that 2γz is not integer, J1 has only

logarithmic divergence for T → 0 identical to one in A1(T ).
In this case the function J1(ωc) at T → 0 has steps when the
Zeeman-shifted Landau levels cross the chemical potential at
ωc = ωc,�0,± ≡ μh/(�0 ± γz + 1

2 ),

�J1± = J1
(
ωc,�0,± + 0

)− J1
(
ωc,�0,± − 0

)
= 1

2

∞∑
m=�0

m!

2m�0!(m − �0)!

1

m − 2(�0 ± γz)
,

where + (−) corresponds to the spin up (spin down) state. For
γz < 0.5 the largest term in this sum is at m = 2�0,

�J1± ≈ ∓ 1

4γz

(2�0)!

22�0 (�0!)2
, (D19)

meaning that J1(ωc) steps down (up) when ωc crosses ωc,�0,+
(ωc,�0,−); see Figs. 2(b) and 2(c). At small γz the zero-
temperature value of J1 − A1 is small when μh is located be-
tween the Zeeman-shifted Landau levels with opposite spins,
|μh − ωc(�0 + 1

2 )| < γzωc, reflecting strong pair breaking. It
jumps to large values approximately given by |�J1±| when
μh crosses these levels.

For the case in which 2γz equals integer jz and μh =
ωc(�0 + jz

2 + 1
2 ), the function J1(H,T ) again diverges ∝ 1/T

at T → 0. The diverging term at m = 2�0 + jz and � =
�0 is J1 � (ωc/8T )(2�0 + jz)!/[22�0+jz�0!(�0 + jz)!]. In the
important particular case jz = 1 and �0 = 0, we derived more
accurate asymptotics from Eq. (39),

J1 � ωc

16T
− ln

2ωc

πT
− γE

2
+ 1

8
. (D20)

This result allows us to evaluate the transition temperature for
ωc = μh.

APPENDIX E: TC2 FOR PARTICULAR CASES

1. The lowest Landau level without spin splitting,
γz = 0 and μh = 2ωc

The TC2 for the lowest LL with zero spin splitting can
be derived analytically as follows. First, we calculate J1 at

ωc = 2μh. From Eq. (35), we have

J1 � ωc

8T
− ϒT + 1

2
ln

(
πT

2ωc

)
, (E1a)

A1 − J1 � − ωc

8T
− 1

2
ln

(
πTC

2ωc

)
+ ϒC. (E1b)

For J2 in the limit T � TC , we can expand ln tanh(πT s) �
ln t + ln(πTCs) in Eq. (29). This yields

J2 � ln t + 1

2
ln

(
π2T 2

C

eγE μωe
c

)
, (E2a)

A2 − J2 � 1

2
ln rC, (E2b)

where ωe
c = eH/mec = (mh/me)ωc and

rC = eγE mhμωc

π2meT
2
C

.

Therefore, Eq. (30) in the limit of small temperatures becomes

{
1 − 1

W11

[
ωc

8T
+ 1

2
ln

(
πTC

2ωc

)
− ϒC

]}(
1 + ln rC

2W22

)
= 1.

Solving this equation for T ≡ T
(0)
C2 , we obtain Eq. (45) in the

main text.

2. The case γz = 0.5 and μh = ωc

In this section we derive the value of the transition
temperature T

(1)
C2 for the free-electron spin splitting γz = 0.5

when the chemical potential is located at the coinciding spin-up
lowest LL and spin-down first LL, μh = ωc. Using the result
for J1 for these parameters in Eq. (D20), we obtain

A1 − J1 � − ωc

16T
− 1

2
ln

πTC

2ωc

+ ϒC − 1

8
. (E3)

For the quasiclassical function J2, Eq. (38b), the low-
temperature result in Eq. (E2b) has to be modified to account
for the finite spin splitting. In the typical case (ωe

c/μ)γ 2
z � 1

the paramagnetic effect influences weakly the quasiclassical
pairing kernel and can be taken into account perturbatively.
Expansion of Eq. (38b) with respect to γz gives J2(γz) ≈
J2(0) − (ωe

c/μ)γ 2
z meaning that we have to replace rC in

Eq. (E2b) with r̃C = rC[1 + 2(ωe
c/μ)γ 2

z ]. Combining the
above results, we transform Eq. (30) to the form

[
1 − 1

W11

(
ωc

16T
+ 1

2
ln

πTC

2ωc

− ϒC + 1

8

)](
1 + ln r̃C

2W22

)
= 1.

Solution of this equation for T = TC2 gives Eq. (47).
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