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The complete set of hallmarks of the three-dimensional antiferromagnet near the quantum critical point has
been recently observed in the spin dimer compound TlCuCl3. Nonetheless, the mechanism, responsible for
several distinct features of the experimental data, has remained a puzzle, namely: (i) the paramagnons exhibit
remarkable robustness to thermal damping and are stable up to high temperatures, where kBT is comparable
with the excitation energy; and (ii) the width to mass ratios of the high-temperature paramagnons are, within
the error bars, equal to that of the low-temperature amplitude (or Higgs) mode. We propose such a mechanism
and identify two principal factors contributing to the scaling between width to mass ratios of the paramagnon
and the amplitude mode: (i) the emergence of the thermal mass scale reorganizing the paramagnon decay
processes, and (ii) substantial renormalization of the multimagnon interactions by thermal fluctuations. The
study is carried out for the general case of a D = 3 + 1 quantum antiferromagnet within the framework of the
ϕ4 model using the hybrid Callan-Symanzik + Wilson thermal renormalization group method. Our approach is
tested by demonstrating a good quantitative agreement with available experimental data across the phase diagram
of TlCuCl3.
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I. INTRODUCTION

The phase diagram of a quantum antiferromagnet in three
spatial dimensions involves a quantum critical point (QCP)
which separates the Néel phase from the quantum disordered
state (QD) at zero temperature [cf. Fig. 1(a)]. Its central part
is occupied by the quantum critical (QC) regime, indicating
nontrivial interplay between quantum and thermal fluctuations
[1]. The transitions between these phases are governed by
temperature, as well as by nonthermal parameters that couple
to zero-point fluctuations. As one moves along the zero-
temperature line, the quasiparticles evolve from the massive
excitations in the QD phase to massless spin-wave modes
in the Néel state. Additionally, the amplitude (or Higgs)
mode, associated with spin fluctuations directed along the
ordered moments, is expected on the ordered side of the
phase diagram [2]. The recently achieved control of dimerized
antiferromagnets TlCuCl3 and KCuCl3 near the pressure-
induced quantum phase transition allows for probing all phases
depicted in Fig. 1(a) [3–5].

Close to the critical pressure pc ≈ 1.07 kbar, stable am-
plitude modes, characterized by full width at half maximum
(FWHM) to mass ratios as low as αH ≡ FWHMH/mH ≈ 0.2,
have been observed in TlCuCl3 [3,5]. The width to mass
ratio of the paramagnons αp ≡ FWHMp/mp above the Néel
temperature TN turns out to be small in this compound as well.
Namely, within the error bars, the equality αp(T � TN ) ≈
αH (T � TN ) holds for various values of pressure. In Fig. 1(b)
this scaling for TlCuCl3 is depicted along with the straight line
αp = αH as a guide to the eye. Since the paramagnons have
been probed at high temperatures (i.e., for kBT comparable
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with the excitation energies), the latter relation implies a
remarkably small influence of thermal disorder on broadening
of magnetic excitations [6]. In this paper we propose a
mechanism protecting the paramagnons from thermal damping
and identify two principal factors responsible for the behavior
depicted in Fig. 1(b): (i) The emergence of the thermal mass
scale mT ∝ √

λ · T , where λ denotes the properly normalized
coupling constant (see the discussion below). This particular λ

dependence reorganizes perturbation theory in such a way that
αp(T � TN ) becomes formally of the same order as αH (T �
TN ) and thus allows for the linear scaling between these
quantities. (ii) A substantial downward renormalization of λ

by thermal fluctuations, which, in turn, leads to reduction of
αp(T � TN ). We demonstrate that the latter effect needs to be
included to obtain the scaling with the correct proportionality
factor.

The study is performed for the general case of a three-
dimensional (D = 3 + 1) antiferromagnet near the quantum
critical point within the framework of the effective ϕ4 theory.
We employ the hybrid zero-temperature and Wilson thermal
renormalization group method that allows us to interpolate
between the quantum- and classical-critical behaviors. It is
thus suitable for a detailed comparison with experiments on
TlCuCl3.

The paper is organized as follows. In Sec. II we derive
the widths of magnetic excitations below and above the Néel
temperature. In Sec. III we describe the renormalization group
procedure. In Sec. IV we propose the mechanism responsible
for the scaling between αp and αH . Finally, in Sec. V we
perform a comparison with the neutron-scattering data on
TlCuCl3 across the quantum critical phase diagram. The
study is summarized and related to other recent approaches in
Sec. VI. The Appendices A–D provide methodological details
of the analysis.
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FIG. 1. (a) A schematic phase diagram of a three-dimensional
antiferromagnet near the quantum critical point: Néel – antiferro-
magnetic phase, QD – quantum disordered, QC – quantum critical,
CC – classical critical. The dotted lines mark crossovers. As one
moves along the vertical arrow, the magnetic excitations evolve
from spin waves and the amplitude mode at low-temperature to the
high-temperature paramagnons. (b) The scaling between the width
to mass ratio for the high-temperature paramagnons and that for the
low-temperature amplitude mode. Squares are experimental data of
Ref. [5] and the dashed straight line αp = αH is a guide to the eye.
The high-temperature data have been collected at ∼11.5 and 13 K for
p = 1.75 and 3.6 kbar, respectively. The low-temperature amplitude
mode width to mass ratio has been measured at ∼1.8 K in both cases.

II. ϕ4 MODEL AND WIDTH OF THE MAGNETIC
EXCITATIONS

We are concerned with the long-wavelength characteristics
of magnetic excitations close to the magnetic quantum critical
point. In this regime the low-energy physics is expected to
be insensitive to the microscopic details of the compound
under consideration and can be reliably studied within an
effective model approach. Here we employ the ϕ4 theory rather
than a microscopic spin dimer model, previously applied to
TlCuCl3 and KCuCl3 [7]. The magnetic excitations reflect,
then, different fluctuation modes of the three-component
(N = 3) local Néel order parameter ϕ whose dynamics is
governed by the Lagrangian

L = 1
2 (∇ϕ)2 + 1

2m2ϕ2 + 1
4λ(ϕ2)2

+ 1
2δm2ϕ2 + 1

4δλ(ϕ2)2. (1)

FIG. 2. Leading-order processes yielding broadening of (a) para-
magnons above the Néel temperature and (b) amplitude mode below
the Néel temperature. Labeling of the lines: P – paramagnon, AM –
amplitude mode, TM – transverse mode.

Here m and λ denote the mass parameter and the coupling
constant, respectively, whereas δm and δλ are the counterterms
introduced to cancel off the short-wavelength divergences. We
work in the natural units by setting to unity the spin-wave
velocity (c = 1), as well as the Planck’s (h̄ = 1) and the
Boltzmann (kB = 1) constants. Both imaginary time τ and
spatial coordinates x,y,z have then the dimension energy−1,
mass m, field ϕ, and temperature are measured in the units
of energy, while λ is dimensionless. The four-gradient symbol
then takes the form ∇ = (∂τ ,∂x,∂y,∂z).

In the disordered phase, where the physical (“dressed” with
quantum and thermal corrections) mass parameter squared
m2

phys is positive, all three fluctuation modes of the local order
parameter ϕ are equivalent paramagnons of mass mp = mphys.
In this case, the leading-order contribution to broadening of the
magnetic excitations (in the sense of perturbative expansion
in the effective coupling constant λphys) comes out directly
from the quartic term 1

4λphys · (ϕ2)2 and is given by the sunset
diagram, shown in Fig. 2(a). To derive the explicit form of
m2

phys and λphys one needs to specify the computational scheme,
which is detailed below.

In the Néel phase (m2
phys < 0), the order parameter acquires

a nonzero expectation value, breaking the spin-rotational
symmetry of the system. Without loss of generality one
can take 〈ϕ〉 = (0, . . . ,0,F ), where F 2 ≈ −m2

phys/λphys. As
a consequence of symmetry breaking, the longitudinal and
transverse fluctuations (defined, respectively, as σ ≡ ϕN − F

and πi ≡ ϕi for i = 1, . . . ,N − 1, with N = 3) are no longer
equivalent. Also, qualitatively new interactions between σ and
π emerge, including the three-point vertex Vσππ = λphysF ·
σπ2. The leading-order process contributing to the amplitude
mode damping is now generated by Vσππ and is represented
by the one-loop diagram shown in Fig. 2(b).

By evaluating the diagrams of Fig. 2 (cf. Appendix A and
Ref. [8]), we find the full width to mass ratio of the paramagnon
above TN ,

αp ≡FWHMp

mp

= 3λ2
phys(N + 2)

32π3
· T 2

m2
p

· Li2(e−mp/T ), (2)

and that of the amplitude mode below TN ,

αH ≡FWHMH

mH

= λphys(N − 1)

16π
· [1 + 2 · n(mH/2)], (3)

respectively. Here Li2(x) = ∫ x

1 dt ln(t)
1−t

denotes the dilogarithm.
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III. DETERMINATION OF THE EFFECTIVE
PARAMETERS

The stability parameters of the paramagnon and the am-
plitude mode, αp and αH [Eqs. (2) and (3)], are formally
of different order in the effective coupling constant λphys,
i.e., αp = O(λ2

phys) and αH = O(λphys). The proportionality
between αp and αH , established experimentally, is hence
inconsistent with the casual perturbation theory. Here we
perform a nonperturbative resummation of both quantum
and thermal fluctuations by the hybrid renormalization group
(RG) method, which allows us to track down higher-order
effects contributing to the ratio αp/αH . Additionally, the
latter approach is applicable close both to the quantum and
classical transitions and hence provides a unified picture of
the quantum critical phase diagram. This property makes
it suitable for a global comparison with experiments on
dimerized antiferromagnets, where the magnetic excitations
have probed in all phases depicted in Fig. 1(a). Here we
sketch the derivation of the renormalization group equations
and provide the technical details in Appendix B.

The hybrid RG relies on the two scales: (i) renormalization
scale μ, introduced by the procedure of subtracting the short-
range divergences, and (ii) infrared momentum cutoff to the
thermal fluctuations 
, implemented by redefining the Bose
occupation factors n(Ek) ≡ (exp(Ek/T ) − 1)−1 as n(Ek) ↔
n
(Ek) ≡ n(Ek) · θ (|k| − 
), where θ is the Heaviside step
function and Ek is the energy of the excitation of wave vector
k. In the 
 → 0 limit the full factor n(E) is recovered, whereas
for 
 → ∞ all thermally excited modes are suppressed
(n
→∞ = 0).

The limit 
 → ∞ corresponds hence to T → 0, where the
scale dependence of the running mass mμ and the coupling
constant λμ can be found by solving the T = 0 Callan-
Symanzik equations:

μ
∂λμ

∂μ
= 2(N + 8)

(4π )2
λ2

μ, (4)

μ

m2

∂m2
μ

∂μ
= 2(N + 2)

(4π )2
λμ. (5)

The physically relevant scale is provided by the param-
agnon mass in the disordered phase mp = mphys and by the
amplitude mode mass in the Néel state mH = (2 · |m2

phys|)1/2.
Since Eqs. (4) and (5) describe essentially mean-field behavior
with weakly scale-dependent logarithmic corrections, we are
allowed to take μ = |m2

phys|1/2 in both phases without imposing
significant error so that m2

phys(T = 0) = m2
μ |

μ=
√

|m2
phys| and

λphys(T = 0) = λμ |
μ=

√
|m2

phys|.
Once the zero-temperature parameters are known, the

finite-temperature effects can be incorporated by progressively
integrating out thermal fluctuations and moving from 
 → ∞
to 
 = 0. The initial conditions at 
 = ∞ are now given by the
physical zero-temperature quantities. This step is equivalent to
the Wilson thermal renormalization group method, previously
discussed within the real-time [9] and imaginary-time [10]
formulation of thermal theory, and leads to the following set

of differential equations equations with respect to 
:



dλ


d

= (N − 1)λ2


I
′′

(m2

⊥,
) + 9λ2

I

′′

(m2

||,
), (6)



dm2




d

= (N − 1)λ
I

′

(m2

⊥,
) + 3λ
I
′

(m2

||)

− (N − 1)λ2

F 2


I
′′

(m2

⊥,
) − 9λ2

F 2


I
′′

(m2

||,
),

(7)

where F 2

 = max(0, − m2


/λ
) is the square of the antiferro-
magnetic order parameter, m2

⊥,
 ≡ m2

 + λ
F 2


, and m2
||,
 ≡

m2

 + 3λ
F 2


. The temperature enters through the expressions

I ′

(M2) = − 
3

2π2

n(
√

M2 + 
2)√
M2 + 
2

, (8)

I ′′

(M2) = − 
3

2π2

d

dM2

[
n(

√
M2 + 
2)√
M2 + 
2

]
. (9)

A supplementary discussion of other variants of the thermal
RG equations and the impact of the RG formalism choice
on the quantitative discussion of the following sections is
provided in Appendix C.

In the next section we analyze the solutions of the above
equations to determine the stability of the high-temperature
paramagnons.

IV. STABLE HIGH-TEMPERATURE PARAMAGNONS

We now turn to the main result of the paper and explain
the relation between αp(T � TN ) and αH (T � TN ). For that
purpose, we consider the coupling constant λphys(T = 0) as a
free variable and calculate both αH (T � TN ) and αp(T � TN )
as a function of λphys(T = 0).

The low-temperature amplitude mode stability parame-
ter αH (T � TN ) is uniquely determined by λphys(T = 0)
through Eq. (3). For T = 0 we obtain αH (T = 0) = (N −
1) · (16π )−1 · λphys(T = 0).

In order to find αp(T � TN ), we need to integrate the
thermal RG equations (6) and (7) with the initial conditions
λ
=∞ = λphys(T = 0) and m2


=∞ = m2
phys(T = 0). Note that

the value of m2
phys(T = 0) is irrelevant in the limit T → ∞,

where m2
phys(T = 0)/T 2 → 0. The high-temperature param-

eters are hence determined solely by λphys(T = 0) and T . In
Fig. 3(a) we plot the ratio of the high- to the low-temperature
coupling constant as a function of log10 λphys(T = 0). In
the weak-coupling regime the effects of the thermal flow
are negligible; thus λphys(T = 0) and λphys(T � TN ) can be
used interchangeably to formally control the perturbation
expansion (although, as we shall show, the flow needs to
be included to match the experimental data quantitatively).
In Fig. 3(b) the calculated square of the normalized para-
magnon mass m2

p(T � TN )/T 2 is shown as a function of
the high-temperature coupling constant λphys(T � TN ) (black
solid line). We observe that mp ∝ √

λphys(T � TN ) · T for
λphys(T � TN ) � 1. In the weak-coupling limit one obtains
analytically m2

p = (N + 2)/12 · λphys · T 2 if the thermal flow
of the coupling constant is neglected (red dashed line in
Fig. 3). The same analytic expression can be derived by the
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FIG. 3. (a) Ratio of the high- to the low-temperature coupling
constants as a function of the low-temperature coupling λphys(T = 0).
(b) Normalized square of the high-temperature paramagnon mass as
a function of the high-temperature coupling constant. TRG – thermal
renormalization group. HTL – result of the resummation of the hard
thermal loops (see the text).

leading-order diagrammatic resummation of the infinite class
of the “hard thermal loops” (HTLs) [8,11], which indicates
the nonperturbative origin of the thermal mass. The precise
relation of the HTL formalism to the present approach is
discussed in Appendix D.

Since the masses appear in the denominators of the magnon
propagators, the order of some seemingly subleading diagrams
is reduced due to the relation mp ∝ √

λphys(T � TN ). The
latter leads to reorganization of the perturbation expansion
so that the width to mass ratio of the paramagnon at high
temperatures, given by Eq. (2), now takes the form

αp = λ2
phys(N + 2)

64π

T 2

m2
p

+ O
(
λ

3/2
phys ln λphys

)
, (10)

where we have made use of the formula Li2( exp(−x)) =
π2/6 + O(x ln x) for x → 0. The first term on the right-hand
side of Eq. (10) is O(λphys). Since the remainder is of the
subleading order O(λ3/2

phys ln λphys), it should be discarded (oth-
erwise, one would need to include the higher-loop corrections
as well for the sake of consistency). The value of αp(T �
TN ) can be now obtained by substituting the calculated
paramagnon mass mp(T � TN ) = mphys(T � TN ) and the
coupling constant λphys(T � TN ) into Eq. (10). Note that,
since we insert the resummed quantities into the perturbative
(two-loop) expression, the latter procedure should be viewed
as a variation of renormalized perturbation theory and might be

not valid arbitrarily close to the classical transition point. The
corrections are, however, expected to be logarithmically small
in the renormalized mass scale [12,13], and hence we are not
concerned with them in the present discussion. It now becomes
apparent that, due to the emergence of the thermal mass,
αp(T � TN ) is of the same order as αH (T → 0), allowing
for the linear scaling between these quantities.

The calculated relation between αp(T � TN ) and αH (T �
TN ) is depicted in Fig. 4(a) by a black solid line, which
is the main result of the paper. In the regime of sta-
ble low-temperature amplitude mode (αH � 0.2), we get
αp(T � TN ) ≈ αH (T � TN ), in agreement with experiment
(the dashed straight line αp = αH is a guide to the eye and
the solid squares are experimental data for TlCuCl3). The
shaded area in Fig. 4(a) is defined by the requirement that
the effective zero-temperature quartic coefficient λphys(T =
0)/4 is smaller than 1, which ensures applicability of the
renormalized perturbation theory based on Eqs. (3) and (10).
On general grounds, one expects to fall into this regime
sufficiently close to the quantum critical point. Indeed, by
inspection of the T = 0 RG equation (4) one can see that,
for mH → 0, λphys(T = 0) ∝ 1/ ln(μ0/mH ), where μ0 is a
(nonuniversal) metric factor. In this limit one hence gets
λphys(T = 0) → 0 and the computational procedure becomes
well controlled.

In Fig. 4(a) we also plot the relation between αp(T � TN )
and αH (T � TN ) calculated with neglected thermal flow of
the coupling constant, i.e., λphys(T = 0) is used in Eq. (10)
instead of λphys(T � TN ) (red dot-dashed line). The effect of
renormalization of λphys(T ) is significant in the experimentally
accessed parameter range and must be included to match
the data. To further illustrate this point, in Fig. 4(b) we
plot the temperature dependence of λphys(T )/λphys(T = 0)
for the parameters chosen so that αH (T = 0) = 0.15. For
T � TN (i.e., in the regime most relevant to the present
discussion) the coupling constant saturates at the value reduced
relative to λphys(T = 0). This downward renormalization is
reflected in the value of the paramagnon stability parameter
αp(T � TN ) and thereby in the proportionality factor between
αp(T � TN ) and αH (T � TN ). As one moves towards the
Néel temperature, the effects of fluctuations become even more
pronounced and λphys approaches zero for T → TN . The latter
behavior is an indirect manifestation of critical slowing down,
which requires that the paramagnon decay rate τ−1

p goes to
zero as the classical transition is approached [12,14]. Indeed,
from the relation τ−1

p ∝ FWHMp and Eq. (10) it follows
that τ−1

p ∝ λ2
phys(T )/mp(T ) · T 2. Since the paramagnon gap

closes (mp → 0) for T → TN , one arrives at λphys → 0 in
this limit. Critical slowing down can be also seen directly
by plotting the normalized paramagnon width FWHMp/T

vs temperature [black solid line in Fig. 4(c)]. We observe
that the calculated FWHMp/T goes to zero for T → TN as
anticipated. The solid squares in Fig. 4(c) are experimental
values of FWHMp/T for specific pressure p = 1.75 kbar,
extracted from Ref. [5]. While the FWHMp/T at high
temperatures exhibits the tendency for saturation, in agreement
with thermal RG prediction, there is a qualitative difference
near the classical transition as the measured FWHMp/T

increases close to TN . This point will be addressed in greater
detail in the following section.
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FIG. 4. (a) The relation between the stability parameters of the high-temperature paramagnons and the low-temperature amplitude mode.
The black solid line is the solution to the thermal renormalization group (TRG) equations and the dashed line αp = αH is a guide to the eye.
Solid squares are experimental data of Ref. [5]. The red dot-dashed line shows the relation between αp(T � TN ) and αH (T � TN ) calculated
with discarded thermal flow of the coupling constant. The shaded area is defined by the condition λphys(T = 0)/4 < 1 that marks the regime
of applicability of the renormalized perturbation theory. (b) The ratio of the thermal- to the zero-temperature coupling constant as a function
of temperature for the parameters chosen so that αH (T = 0) = 0.15. (c) The calculated normalized width FWHMp/T of the paramagnons as
a function of temperature (solid line) for αH (T = 0) = 0.15 that roughly corresponds to the experimental value for TlCuCl3 at p = 1.75 kbar.
The green points are the data extracted from Ref. [5]. (d) Thermal flow of the parameters for T = 1.5 · TN and αH (T = 0) = 0.16. The dashed
lines are guides to the eye.

Finally, a typical thermal RG flow of the parameters
is depicted in Fig. 4(d). The initial conditions at 
 = ∞
correspond to the Néel phase (m2


=∞ < 0). The thermal effects
become significant for 
 ≈ 3T and drive the system to the
disordered phase (m2


=0 = m2
phys > 0) in the physical limit


 → 0.

V. COMPARISON WITH EXPERIMENT: TlCuCl3

In order to make a comparison of the hybrid RG results
with the experimental data for the case of a dimerized
antiferromagnet TlCuCl3 across the phase diagram, one needs
to address relevant material-specific features, such as easy-
plane-type magnetic anisotropy �an ≈ 0.38 meV, present in
this compound. The latter becomes appreciable if some of
the paramagnon masses are smaller than �an. This happens,
e.g., in a narrow slab around the classical transition line,
where the anisotropy is expected to induce the crossover from
SU(2) to XY behavior. For TlCuCl3 at p = 1.75 kbar the
above condition is fulfilled for T/TN − 1 ≈ 0.4. Remarkably,
below this temperature, the experimental FWHMp/T starts to
increase [cf. Fig. 4(c)], which is difficult to reconcile with the
anticipated critical slowing down, reproduced by the thermal
RG calculation [solid line in Fig. 4(c)]. Similar behavior
has been observed in other anisotropic antiferromagnets,
e.g., S = 5

2 MnF2 and Rb2MnF4 [15,16]. From the relations
FWHMp/T ∝ λ2

phys/mp · T and λphys = λ
 |
=0 one can see

that such an upturn of FWHMp/T is consistent with a
partial suppression of the thermal RG flow of λ
 below
the scale of �an. Motivated by this observation, instead
of systematic inclusion of the anisotropies as new critical
variables, we adopt a heuristic approach and cut off the flow
of the coupling constant by taking μ = max(|m2

phys|1/2,�an)
as the renormalization scale and performing a shift in the
infrared-singular polarization loop contributions to the thermal
RG equations [I ′′


(M2) → I ′′

(M2 + �2

an) in Eqs. (6) and (7)].
At this point we are fully equipped to make a comparison

of the hybrid RG results with experiment and proceed as
follows. We define the theory at an arbitrarily chosen scale
μ0 = 1 meV and end up with two free parameters: m2

μ0
and

λμ0 . Close to the critical pressure, we can further expand
m2

μ0
(p) = a · (pc − p), where a is a numeric coefficient.

The two numbers a and λμ0 are obtained by fitting to the
pressure dependence of the Néel temperature for TlCuCl3
with the result a = 0.53 meV2 kbar−1 and λμ0 = 7.25. Note
that sizable λμ0 does not control the renormalized perturbation
theory. Explicitly, for μ0 = 0.5 meV we get different values,
λμ0 = 4.27 and a = 0.42 meV2 kbar−1, whereas the physical
quantities remain unchanged. The actual expansion parameter
should be identified either with the coefficient of the ϕ4

term in the effective Lagrangian, 1/4 · λμ |μ=|mphys| (cf. shaded
area in Fig. 4(a)), or with the low-temperature amplitude
mode stability parameter, αH ≈ (8π )−1 · λμ |μ=|mphys|, which
yields a less stringent criterion. The quality of the fit (blue
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FIG. 5. Fit to the experimental data of Ref. [5]. (solid squares).
Blue line – hybrid RG. Black dashed line – fit with a square root form
TN (p) = b · √

p − pc.

line in Fig. 5) is remarkable, in contrast to a fit by a
simple mean-field form TN (p) = b · √

p − pc that yields
b ≈ 5.83 K kbar−1/2 (dotted line). Such a nontrivial pressure
dependence of the Néel temperature is likely a manifestation
of the logarithmic corrections to scaling at the upper critical
dimension, accounted for by the Callan-Symanzik equations
[17,18]. With no other fitting parameters, we can now calculate
masses and widths of magnetic excitations across quantum and
classical transitions by using the RG equations (4)–(5), (6)–(7),
combined with Eqs. (3) and (10). The results are confronted
with the experimental data of Ref. [5] in Fig. 6.

The temperature dependence of masses of the magnetic
excitations for the two selected values of pressure is shown in
Fig. 6(a). At low temperatures the data refer to the amplitude
mode in the Néel phase, while at high temperatures the data
refer to the paramagnon in the disordered state. The transitions
between these phases are marked by closing of the gaps at
the pressure-dependent Néel temperature TN (p). The same

quantities as a function of pressure for fixed temperature are
depicted in Fig. 6(b).

The corresponding width to mass ratios along T = const.
and p = const. lines are shown in Figs. 6(c) and 6(d),
respectively. One can see that the inclusion of the empir-
ical anisotropy scale �an has allowed us to reconcile the
theoretically predicted critical slowing down with the sharp
increase of αp and αH close to the Néel temperature. Moreover,
the relevance of residual quantum fluctuations (manifested as
corrections to the mean scaling at low temperatures) can be
inferred from Fig. 6(c). This can be shown by noting that,
at the lowest temperatures T < 2 K, the measured width to
mass ratio of the amplitude mode increases by ∼100% as
the pressure is varied from 1.75 to 3.6 kbar (corresponding
to over threefold change of the distance from the quantum
critical point p − pc). Since in this temperature range kBT

is by an order of magnitude smaller than the amplitude
mode energy [cf. Fig. 6(a)], damping is dominated by the
quantum contribution αH ≈ (N − 1)(16π )−1 · λphys(T = 0).
The low-energy behavior of the amplitude mode stability
parameter αH is then controlled by the coupling constant
λphys(T = 0), which is suppressed at a logarithmically slow
rate close to the quantum critical point. This relatively weak
effect is correctly reproduced by the hybrid RG that also
quantitatively agrees with experiment [cf. Fig. 6(c)]. Solving
both T = 0 RG equations (4)–(5) and thermal RG equations
(6)–(7) is hence necessary to match the data across the phase
diagram.

Finally, in Figs. 6(e)–6(f) the temperature dependence of
the full widths and masses of the magnetic excitations is
presented as a function of temperature at the critical pressure
pc ≈ 1.07 kbar. The hybrid RG solution for the paramagnon
mass obeys a linear-T scaling and agrees quantitatively with
experiment at low temperatures. The width of the paramagnon,
however, deviates from linear T dependence and exhibits
a hump close to T = 4 K. We attribute this behavior to
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FIG. 6. (a)–(d) Temperature and pressure dependence of masses and widths of the magnetic excitations in TlCuCl3. The curves in the
low-temperature regime above pc = 1.07 kbar correspond to the amplitude (Higgs) mode, whereas in the high-temperature and low-pressure
range to the paramagnons. (e)–(f) Masses and widths of the magnetic excitations at critical pressure as a function of temperature. In all panels
the solid lines are solutions to the hybrid RG equations, while the solid squares are the experimental data of Ref. [5].
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the spin anisotropy �an, which remains nonzero across the
phase transition and becomes comparable with the thermal
mass around this temperature. Interestingly, a weak feature
can be seen in the experimental data at ∼3 K, but detailed
analysis cannot be performed due to small numbers of available
data points. Worse agreement of the thermal RG result with
experiment in Fig. 6(f) relative to Figs. 6(a)–6(e) is likely a
consequence of approximate inclusion of magnetic anisotropy
in our analysis.

VI. SUMMARY AND DISCUSSION

We have proposed a mechanism leading to a linear
scaling (with proportionality factor ≈ 1) between the width
to mass ratios of the high-temperature paramagnon and the
low-temperature amplitude (Higgs) mode in a dimerized
antiferromagnet TlCuCl3, based on: (i) reorganization of the
perturbation expansion by the emergence of the thermal mass
∼√

λphys · T and (ii) sizable thermal flow of the effective
multimagnon coupling λphys.

The hybrid Callan-Symanzik + thermal RG approach has
allowed us to include both characteristics of the quantum
critical point (such as logarithmic suppression of the zero-
temperature coupling constant) and the classical critical point
(e.g., critical slowing down close to the classical transition).
These aspects of the hybrid RG approach, after inclusion of the
empirical anisotropy scale, have made it possible to perform
a successful comparison with experimental data for TlCuCl3
across the phase diagram in the pressure-temperature plane.

We now comment on the limits of applicability of the
present discussion. From a theoretical point of view, the
analysis relies on the proximity to the Gaussian quantum
critical point in D = 4. The T = 0 results are thus universal,
with the coupling constant vanishing at the QCP. The thermal
RG for the φ4 model, on the other hand, suggests that well
above the Néel temperature, the (four-dimensional) coupling
constant never becomes larger than its T = 0 counterpart [cf.
Fig. 4(b)]. Moreover, the excitations have well-defined thermal
gaps for T � TN , and the problem is not spoiled by a singular
infrared behavior. The results of the renormalized perturbation
theory, based on the thermal-RG transformed Lagrangian,
hence retain their validity for T � TN and the calculated
relation between αp and αH should hold. From the model
perspective, at least asymptotically close to the QCP, one can
thus universally expect αp ≈ αH .

The question as to what materials the analysis should apply
to is, however, delicate for the two reasons:

1. The coupling constant λ in D = 4 is marginal and van-
ishes at a logarithmically slow rate as the QCP is approached.
For some compounds, λ might then turn out to be large enough
to invalidate the discussion in the experimentally accessible
parameter range. This can be checked a posteriori once the
fitting has been performed. The case of TlCuCl3 is special
in this respect, since the amplitude mode turns out to be
narrow, indicating the weak-coupling regime [understood as
(N − 1)/16π · λμ |μ=|mphys|� 1].

2. At high temperatures, one cannot formally argue about
application of the pure ϕ4 model to real materials by referring
to the critical point proximity as the lowest-energy excitations
are gapped by the large thermal mass. Eventually, other

degrees of freedom, not included in the ϕ4 model, would
participate in the excitation spectrum. These could potentially
alter the results at the temperature which is material dependent.
(An attempt to account for departures from the ϕ4 model
physics by including selected dimension six operators is
proposed in Ref. [19].) As far as TlCuCl3 is concerned, the
thermal masses in the disordered phase do not exceed 1 meV,
even for kBT comparable to the T = 0 excitation energies
[cf. Fig. 6(a)]. This number is small as compared to the
dominant microscopic exchange integral J ≈ 5.5 meV [7],
which supports the applicability of the effective ϕ4 theory
description in the considered temperature range.

In summary, we require that (i) the low-temperature
coupling constant of the material is small, and (ii) there exists
a window of temperatures between the classical critical region
(governed by the Wilson-Fisher fixed point) and the regime,
where the effects of non-ϕ4 degrees of freedom become
substantial.

We have considered performing a similar analysis for
KCuCl3, where the amplitude mode has also been observed
[4]. Such a study would be interesting as a different parameter
regime is realized in the latter system, resulting in a rather
broad amplitude mode. However, since the high-temperature
paramagnon data are not available for this compound, the
results would not be testable at the present time. Moreover,
to the best of our knowledge, the magnetic anisotropies that
we need in the fitting procedure have not been measured.

At the end, we would like to point out that there exist alter-
native approaches to damped excitations, implicitly involving
resummation of subclasses of higher-order processes. One of
them is based on substitution of “dressed”, rather than bare,
propagators into the expressions for the dynamical structure
factors of magnetic modes. This approach has been employed
in the context of the longitudinal spin fluctuations in iron
pnictides [20] and extended to a dimerized antiferromagnet
[21], which yields a good agreement with the experimental
data for TlCuCl3 in the disordered phases for p > pc and
p = 0 kbar but fails in the intermediate regime 0 < p < pc.
The hybrid renormalization group, used here, agrees with the
data reasonably well in the disordered state for both p > pc

and 0 < p < pc but overestimates FWHMp for the lowest
pressure p = 0 kbar at T = 5.8 K [cf. Figs. 6(a)–6(d) and the
subsequent discussion in Sec. V).

ACKNOWLEDGMENTS

This work was supported by MAESTRO Grant No. DEC-
2012/04/A/ST3/00342 from the Narodowe Centrum Nauki
(NCN). The authors are grateful to Prof. Assa Auerbach for
discussion.

APPENDIX A: WIDTHS OF THE MAGNETIC
EXCITATIONS

In this Appendix all the calculations are performed using
resummed parameters m2

phys and λphys, but we omit the
subscripts for brevity.

1. Amplitude mode below TN

The leading-order process, giving rise to the amplitude
mode decay, is given by the diagram of Fig. 2(b), whose
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contribution to the mass operator �H (iωn,k) reads

�H = λm2
H (N − 1) · T

∑∫
m

d3q
(2π )3

GTM(iωn−m,k − q)

× GTM(iωm,q), (A1)

where ωn = 2πn/T are bosonic Matsubara frequencies, and
GTM(iωn,k) = (ω2

n + k2)−1 denotes the propagator of the
spin-wave mode.

The imaginary part of the real-time mass operator at the
magnetic zone center �

′′
H (E,0) can be evaluated by switching

to the real-time representation

1

ω2
n + E2

k

=
∫ 1/T

0
dτ

eiωnτ

2Ek
· [eτEknk + e−τEk (1 + nk)],

(A2)

and performing analytic continuation iωn → E + iε after
working out the integrals over τ variables. The full width
of the amplitude mode FWHMH is then evaluated as

FWHMH ≡ �
′′
H (mH,0)/mH = πλmH (N − 1)

×
∫

d3q
(2π )3

δ(mH − 2Eq) · 1 + 2nq

(2Eq)2

= λmH (N − 1)

16π
· [1 + 2 · n(mH/2)], (A3)

from which Eq. (3) follows.

2. Paramagnons above TN

The contribution to the paramagnon mass operator from the
diagram, shown in Fig. 2(a), is given by

�p = 2λ2(N + 2) · T
∑∫
m

d3q1

(2π )3

d3q2

(2π )3
Gp(iωn−m,k − q1)

× Gp(iωm−l ,q1 − q2) · Gp(iωl,q2), (A4)

where Gp(iωn,k) = (ω2
n + k2 + m2

p)−1. By switching to the
real-time representation and performing analytic continua-
tion iωn → E + iε, we arrive at �′′

p(E,0) ≡ �(1)′′
p (E,0) +

�(2)′′
p (E,0), where

�(1)′′
p = 3

∫
d3q1

(2π )3

d3q2

(2π )3

δ
(
E − Eq1 − Eq1 + Eq1−q2

)
(
2Eq1

) · (
2Eq2

) · (
2Eq1−q2

)
× [e

(
−Eq1 −Eq1 +Eq1−q2

)
/T − 1] · (1 + nq1

)
× (

1 + nq2

) · nq1−q2 · 2λ2(N + 2), (A5)

�(2)′′
p =

∫
d3q1

(2π )3

d3q2

(2π )3

δ
(
E − Eq1 − Eq1 − Eq1−q2

)
(
2Eq1

) · (
2Eq2

) · (
2Eq1−q2

)
× [

e(−Eq1 −Eq1 −Eq1−q2 )/T − 1
] · (

1 + nq1

)
× (

1 + nq2

) · (
1 + nq1−q2

) · 2λ2(N + 2) (A6)

for E > 0. By inspecting the arguments of the Dirac δ

functions in Eqs. (A5)–(A6) one can see that the first term
�(1)′′

p involves paramagnons from the thermal bath and hence
is nonzero for E = mp, while �(2)′′

p is the three-paramagnon

decay process, which vanishes for E < 3mp. It is then
sufficient to calculate �(1)′′

p .
By introducing dimensionless variables x = Eq1/T and

y = Eq2/T we arrive at the formula

�(1)′′
p (mp,0) = 3λ2(N + 2)

32π3
· T 2 · (1 − e−mp/T )

×
∫ ∞

mp

T

dx

∫ ∞

mp

T

dy
1

e−x − 1

× 1

e−y − 1

1

ex+y−mp/T − 1

= 3λ2(N + 2)

32π3
· T 2 · Li2(e−mp/T ), (A7)

where Li2(x) is the dilogarithm. The full width of the param-
agnon then reads FWHMp = �(1)′′

p (mp,0)/mp and Eq. (2) is
thus reproduced.

APPENDIX B: DERIVATION OF THE RG EQUATIONS

We start with the Lagrangian, given by Eq. (1). The model
can be discussed in a unified manner both at T = 0 and T > 0
in terms of the quantum effective action, which is a generator of
the one-particle irreducible vertex functions [22]. At the one-
loop level, the latter may be computed by performing the shift
ϕ → ϕcl + δϕ, where ϕcl is the classical field, and integrating
out the fluctuations quadratic in δϕ. One then obtains

Seff = S[ϕcl] + 1
2 Tr ln

{
(−� + m2)δαβ + λϕ2

cl[P
αβ

⊥ + 3P
αβ

|| ]
}
,

(B1)

where S(ϕcl) = ∫ 1/T

0 dτ
∫

d3xL(ϕcl), and P
αβ

|| = ϕα
clϕ

β

cl/ϕ
2
cl,

P
αβ

⊥ = δαβ − P
αβ

|| are projectors onto the directions parallel
and perpendicular to the classical field ϕcl, respectively. The
effective potential for a constant field ϕi

cl = Fδi,N is then given
by Veff(F ) = T

V
· Seff(ϕcl), where V is the volume of space.

We identify the physical temperature-dependent mass
parameter mphys(T ) and coupling constant λphys(T ) with
the proper derivatives of the effective potential, taken at its
minimum, i.e.,

m2
phys = ∂2Veff

∂F 2
− 1

2
F 2 ∂4Veff

∂F 4

= m2 + δm2 + λ[(N − 1)A(m2 + λF 2)

+ 3A(m2 + 3λF 2)] − λ2F 2[(N − 1)B(m2 + λF 2)

+ 9B(m2 + 3λF 2)], (B2)

λphys = 1

6

∂4Veff

∂F 4
= λ + δλ + λ2[(N − 1)B(m2 + λF 2)

+ 9B(m2 + 3λF 2)], (B3)

where

A(M2) = A0(M2) +
∫ ∞

0

dkk2

2π2

n(
√

M2 + k2)√
M2 + k2

, (B4)

B(M2) = B0(M2) +
∫ ∞

0

dkk2

2π2

d

dM2

n(
√

M2 + k2)√
M2 + k2

, (B5)
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A0(M2) = μ2ε

∫
d4−2εk

(2π )4−2ε

1

k2 + M2

= − M2

(4π )2

[
1

ε
− γ + ln

(
μ2

M2

)

+ ln(4π ) + 1 + O(ε)

]
, (B6)

B0(M2) = − μ2ε

∫
d4−2εk

(2π )4−2ε

1

(k2 + M2)2
= − 1

(4π )2

×
[

1

ε
− γ + ln

(
μ2

M2

)
+ ln(4π ) + O(ε)

]
,

(B7)

and γ ≈ 0.577 2 denotes the Euler’s constant. The term
−1/2 · F 2 · ∂2Veff/∂F 2 in the definition of m2

phys [Eq. (B2)]
is to cancel the trivial shift coming from the quartic interaction
λϕ4 in the ordered phase (F 2 > 0). The integrals A(M2)
and B(M2) [Eqs. (B4) and (B5)] have been split into the
zero-temperature parts A0 and B0, and finite-temperature
remainders. The short-range divergences are contained only in
A0 and B0 which have been computed by dimensional regular-
ization with ε = 2 − D/2 and μ being the regularization scale.

To this point, the expressions (B2) and (B3) are equivalent to
the environment-dependent resummation scheme, developed
in Ref. [23]. In the following sections we describe renormal-
ization group improvement of this procedure.

1. Callan-Symanzik equations

Since at finite temperatures no new divergences are gener-
ated, one can first set T = 0 (or, equivalently, introduce the
cutoff to the Bose factors n(Ek) → n(Ek) × θ (|k| − 
) and
take the limit 
 → ∞). The 1/ε terms, divergent for D → 4,
are now canceled by the counterterms,

δm2

m2
= λ(N + 2)

(4π )2
·
(

1

ε
− γ + ln(4π ) + 1

)
, (B8)

δλ = λ2(N + 2)

(4π )2
·
(

1

ε
− γ + ln(4π )

)
, (B9)

so that the limit ε → 0 can be taken. Note that the form of
counterterms is the same for F = 0 (disordered phase) and
F 2 > 0 (ordered phase).

For F = 0 and T = 0 one arrives then at the simple
expressions

m2
phys = d2Veff

dF 2
= m2 − 2(N + 2)λ

(4π )2
· m2 · ln

(
μ

m

)
, (B10)

λphys = 1

6

∂4Veff

∂F 4
= λ − 2(N + 8)λ2

(4π )2
· ln

(
μ

m

)
. (B11)

Equations (4) and (5) can now be obtained from the
requirement that the bare vertex functions do not depend on
the scale μ. Technically it can be achieved by requiring that
the total derivative of the right-hand side of Eqs. (B10) and
(B11) is zero to the leading order in λ. Moreover, one can also
see that m2

phys = m2
μ |μ=mphys and λphys = λμ |μ=mphys .

In the ordered phase the discussion is more subtle, as
Eqs. (B2) and (B3) become spoiled by infrared divergences

arising from the massless Goldstone modes. This problem
can be overcome by noting that the physical parameters,
controlling the amplitude mode, are defined by vertex func-

tions at energy scale E ≈ mH ≈
√

2|m2
phys| rather than at

E = 0, as implicitly encoded in the effective potential. (This
issue is not essential in the disordered phase, where the
divergences are suppressed by the paramagnon mass.) Taking
that into account would effectively cut off the contribution
from the Goldstone modes at E ≈ mH . Here we adopt the
formulas m2

phys(T = 0) = m2
μ |

μ=
√

|m2
phys| and λphys(T = 0) =

λμ |
μ=

√
|m2

phys| for both ordered and disordered phase.

2. Thermal renormalization group

We now recover the finite-temperature physics by going
from 
 = ∞ to 
 = 0 in the Wilson renormalization group
sense. By integrating out thermal fluctuations with wave
vectors |k| in the infinitesimal slabs (
,
 + d
) and taking
into account the flow of the parameters through the process,
from Eqs. (B2)–(B7) we get

λ
+d
 = λ
 + (N − 1) · λ2

 · I ′′


(m2
⊥,
) · d





+ 9λ2

 · I ′′


(m2
||,
) · d




, (B12)

and

m2

+d
 = m2


 + (N − 1)λ
 · I ′

(m2

⊥,
) · d





+ 3λ
 · I ′

(m2

||,
) · d




− 9λ2


F 2

 · I ′′


(m2
||,
)

× d




− (N − 1)λ2


F 2

 · I ′′


(m2
⊥,
) · d




, (B13)

where I ′

 and I ′′


 are given by Eqs. (8) and (9).
Equations (B12)–(D2) can be now transformed into Eqs. (6)
and (7).

APPENDIX C: ROBUSTNESS TO THE CHOICE OF
THERMAL RG FORMALISM

The thermal RG exists in a number of variants that differ
in the manner in which the effective potential is expanded and
truncated. One of the relevant questions is how sensitive are
the quantitative results (e.g., the solid lines in Fig. 6) to the
choice of the formalism, that we briefly address here.

To expose the potential scheme dependence, in Fig. 7
we plot the damping rates γ ≡ FWHMp/2 and the coupling
constant λ, both as a function of temperature for N = 3,
generated by our method, and compare it with the thermal
RG variant of Ref. [14], derived within a slightly different
truncation scheme. (Note that Ref. [14] is concerned with the
N = 1 theory and a straightforward extension to N = 3 is
needed to make the comparison.) We plot the results for two
choices of the T = 0 coupling constant: λ(T = 0) = 1.0 and
λ(T = 0) = 0.01.

Both quantities agree with each other far away from
the classical critical point, whereas the differences appear
below (T − TN )/TN ≈ 0.001. Given that the typical Néel
temperature scale is TN � 10 K for TlCuCl3 (cf. Fig. 5), the
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FIG. 7. A comparison of the damping rates γ (T ) ≡
FWHMp(T )/2 and the thermal coupling constant λ(T ) calculated
within the formalism of the present paper and the thermal RG variant
of Ref. [14] (other scheme). The calculations have been performed
for three field components (N = 3) and two choices of the zero-
temperature coupling constant λ(T = 0) = 1.0 and λ(T = 0) = 0.01.
The thin purple solid lines are the fits to the curves close to the critical
point, as discussed in the text.

two approaches are expected to diverge in a narrow window
of ∼0.01 K around TN . This regime is beyond the reach of
current measurements on dimerized magnets and thus is not
directly relevant to the present discussion.

The different slopes of the two sets of curves close to
TN , shown in Fig. 7, are by no means unexpected, as they
reflect different values of the critical exponents obtained within
these approximations. Indeed, both the mass and the coupling
constant follow the scaling mp(T ) ∝ tν and λ(T ) ∝ tν [12],
where t ≡ (T − TN )/TN is the reduced temperature. Since,
within both schemes, γ ∝ λ(T )2/mp(T ) ∝ tν , the damping
rate also scales with the same critical index ν.

By performing a linear fit to λ(T ) for the curves obtained
within our scheme, we can extract ν = 0.780 and ν = 0.784
for λ(T = 0) = 1.0 and λ(T = 0) = 0.01, respectively. The
same procedure for the other scheme yields ν = 0.530 and
ν = 0.536. These values are remarkably consistent within each
of the approximations, given that the initial coupling constants
differ by factor of 100. The thin purple lines in Fig. 7 show
the fitted slopes close to TN . The sensitivity of the estimate for
ν to the details of the thermal RG procedure has been noted
previously for the case of N = 1, where ν varies in the range
0.53–0.689 5 [9].

APPENDIX D: RELATION TO THE HARD THERMAL
LOOP FORMALISM

The hard thermal loop formalism is aimed at preserv-
ing the consistency of the perturbation expansion at finite
temperatures by resummation of the diagrams that otherwise
invalidate the perturbation scheme. The latter happens due to

FIG. 8. (a) A representative superdaisy diagram accounted for
by resummation. (b) The one-loop contribution to the magnon mass
operator in the resummed model.

the emergence of the thermal mass scale ∝ √
λ, which changes

the order of certain diagrams contributing to the physical
quantities (cf. the analysis of Sec. IV). Here we briefly review
the HTL approach and discuss its relation to our calculation.

In order to apply the resummation to the ϕ4 model, given
by Eq. (1), we rewrite it in the following form by adding and
subtracting the two terms δm2

T and δm2
c ,

L = 1
2 (∇ϕ)2 + 1

2m2
T ϕ2 + 1

4λ(ϕ2)2

+ 1
2δm2ϕ2 + 1

4δλ(ϕ2)2 − 1
2δm2

T ϕ2 + 1
2δm2

cϕ
2

− 1
2δm2

cϕ
2, (D1)

where m2
T ≡ m2 + δm2

T now has the interpretation of the
thermal mass, whereas δm2

c is a shift of the mass counterterm
that has to be performed [23] to ensure consistency between
the resummation and renormalization at each order of the loop
expansion. The resummed perturbation theory is implemented
by using GT (ωn,k) = (ω2

n + k2 + m2
T )−1 as the three-level

propagator and including the terms in the second and the
third line of Eq. (D1), starting from the one- and two-loop
order, respectively. The optimal δmT is determined from the
requirement that the one-loop correction to the magnon mass
vanishes. Physically, in terms of the original propagators
G(ωn,k) = (ω2

n + k2 + m2)−1, the latter procedure accounts
for the resummation of the superdaisy diagrams, whose
representative is shown in Fig. 8(a).

The one-loop self-energy, now involving all terms in the
second line of Eq. (D1) [cf. Fig. 8(b)], reads

�1-loop =λ(N + 2)A
(
m2

T

) + δm2 + δm2
c − δm2

T , (D2)

where A(m2
T ) is given by Eq. (B5). At high temperatures, the

integral on the right-hand side of Eq. (B5) can be evaluated
as [24]

∫ ∞

0

dkk2

2π2

n
(√

m2
T + k2

)
√

m2
T + k2

= T 2

12
− T mT

4π
− m2

T

32π2

(
ln

m2
T

T 2
+ 2γ − 2 ln(4π ) − 1

)

+ O

(
m4

T

T 2

)
, (D3)
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which, in conjunction with with Eq. (B6), yields

�1-loop ≈ λ(N + 2)

[
T 2

12
− T mT

4π

]
− δm2

T

− λ(N + 2)
m2

T

32π2

(
1

ε
+ ln

μ2

T 2
+ γ − ln(4π )

)

+ δm2 + δm2
c . (D4)

The necessity of the additional resummation by introducing
δm2

c becomes apparent now as the coefficient of the 1/ε pole
involves the thermal mass and is thus temperature dependent.
At this point we can cancel the 1/ε term by the combined
counterterm δm2 + δm2

c to obtain a finite result.
The remaining task is to find δm2

T that zeros the self-energy
to desired order in λ in the high-temperature limit. To cancel
the O(λ) terms it is sufficient to take

δm2
T ≈ (N + 2)

12
T 2 · λ + O(λ3/2). (D5)

Since, for T � TN , δm2
T dominates the zero-temperature

mass, we get m2
T ≈ δm2

T = λ(N + 2) · T 2/12 + O(λ3/2), in
agreement with the analysis of Sec. IV. Note that, in principle,
the methodology discussed here could be refined to perform the
coupling constant resummation as well. In this Appendix we
restrict ourselves to the leading-order expressions and do not

track the corrections to λ, which is justified for weak coupling
and high temperatures [cf. Fig. 3(a)].

Finally, we show that the expression (D5) is reproduced
by the truncated version of the thermal RG equations (6) and
(7). To do so, we neglect the thermal flow of λ by discarding
Eq. (6). In the high-temperature limit, Eq. (7) can be then
recast in the integral form

m̃2

̃

= (N + 2)

2π2

∫ ∞


̃

d
̃′
̃
′2√


̃
′2 + λm̃2


̃′

1

e
√


̃
′2+λm̃2


̃′ − 1
, (D6)

where we have switched to the normalized parameters 
̃ =

/T and m̃
̃ ≡ m
/(

√
λ · T ) and utilized the paramagnetic

phase (F 2

 = 0). Since for m̃2


̃
� 0 and λ > 0, the structure of

the right-hand side of Eq. (D6) implies that

0 � m̃2

̃

� (N + 2)

2π2

∫ ∞

0


̃d
̃

e
̃ − 1
= (N + 2)

12
(D7)

and the integrand in Eq. (D6) behaves regularly for 
̃ > 0,
we can take the λ → 0 limit and set λm̃2


̃′ to zero. The weak-
coupling solution then reads

m2

 = λT 2(N + 2)

12
− λT 2

2π2
· Li2(1 − e−
/T ), (D8)

where Li2(x) is the dilogarithm. For physical 
 → 0 Eq. (D5)
is recovered.
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