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We study the magnetization process of a one-dimensional extended Heisenberg model, the J -Q model, as a
function of an external magnetic field h. In this model, J represents the traditional antiferromagnetic Heisenberg
exchange and Q is the strength of a competing four-spin interaction. Without external field, this system hosts a
twofold-degenerate dimerized (valence-bond solid) state above a critical value qc ≈ 0.85 where q ≡ Q/J . The
dimer order is destroyed and replaced by a partially polarized translationally invariant state at a critical field
value. We find magnetization jumps (metamagnetism) between the partially polarized and fully polarized state
for q > qmin, where we have calculated qmin = 2

9 exactly. For q > qmin, two magnons (flipped spins on a fully
polarized background) attract and form a bound state. Quantum Monte Carlo studies confirm that the bound state
corresponds to the first step of an instability leading to a finite magnetization jump for q > qmin. Our results show
that neither geometric frustration nor spin anisotropy are necessary conditions for metamagnetism. Working in
the two-magnon subspace, we also find evidence pointing to the existence of metamagnetism in the unfrustrated
J1-J2 chain (J1 > 0, J2 < 0), but only if J2 is spin anisotropic. In addition to the studies at zero temperature, we
also investigate quantum-critical scaling near the transition into the fully polarized state for q � qmin at T > 0.
While the expected “zero-scale-factor” universality is clearly seen for q = 0 and q � qmin, for q closer to qmin

we find that extremely low temperatures are required to observe the asymptotic behavior, due to the influence of
the tricritical point at qmin. In the low-energy theory, one can expect the quartic nonlinearity to vanish at qmin and
a marginal sixth-order term should govern the scaling, which leads to a crossover at a temperature T ∗(q) between
logarithmic tricritical scaling and zero-scale-factor universality, with T ∗(q) → 0 when q → qmin.
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I. INTRODUCTION

In this paper, we characterize the magnetization process
of a one-dimensional Heisenberg antiferromagnet with four-
spin interactions of strength Q in addition to the standard
antiferromagnetic exchange term of strength J (the J -Q model
[1,2]) as it is subjected to an external magnetic (Zeeman) field.
The model is defined in terms of singlet projectors acting on a
lattice of S = 1/2 sites:

Pi,j ≡ 1
4 − Si · Sj . (1)

The standard antiferromagnetic Heisenberg exchange is equiv-
alent to −JPij with J > 0. In the J -Q model, this interaction
is supplemented by the product −QPi,jPk,l (or products of
more than two projectors [3]) with the site pairs i,j and k,l

suitably arranged and summed over the lattice sites with all
lattice symmetries respected. The long-range ordered (in two
or three dimensions) or critical (in one dimension) antiferro-
magnetic (AFM) state of the pure Heisenberg model can be
destroyed for sufficiently large Q/J . A nonmagnetic ground
state with broken lattice symmetries due to dimerization (a
valence-bond solid, VBS) then appears. The VBS state and
the quantum phase transition between the AFM and VBS
states have been studied extensively in both one [4–6] and
two [1,7–10] dimensions. The J -Q model is a member of
a broad family [3] of Marshall-positive spin Hamiltonians
constructed from products of any number of singlet projection
and permutation operators.

Here, we consider the simplest one-dimensional (1D) J -Q
model, where the Q term is composed of a product of just two
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singlet projection operators:

HJQ = −J
∑

i

Pi,i+1 − Q
∑

i

Pi,i+1Pi+2,i+3, (2)

and add an external magnetic field of strength hz to define the
J -Q-h model:

HJQh = HJQ − hz

∑
i

Sz
i . (3)

We set the energy scale by fixing J = 1 and refer to the
dimensionless parameters q ≡ Q/J and h ≡ hz/J .

Our focus will be on the magnetization curve as a function
of the field, which we study both at T = 0 and T > 0. We
use the stochastic series expansion (SSE) [2,11] quantum
Monte Carlo (QMC) method with directed loop updates
[12], supplemented by quantum replica exchange [13,14]
to alleviate metastability problems in the simulations. We
show that the Q term has dramatic consequences for the
magnetization process. In the pure Heisenberg chain (q = 0),
and for small q, the magnetization curve at temperature T = 0
is continuous. When q exceeds a critical value, a magnetization
jump (metamagnetic transition) [15,16] appears between a
partially magnetized and the fully polarized state. Using
an ansatz motivated by numerical results for two magnons
in a saturated background, we obtain an exact analytical
result for the minimum coupling ratio qmin at which such
a magnetization jump can occur; qmin = 2

9 . This calculation
also reveals the mechanism of the magnetization jump: the
onset of attractive magnon interactions when q > qmin. At
exactly qmin, the magnons behave as effectively noninteracting
particles. The onset of a bound state of magnons is a
general mechanism for metamagnetism [17,18], but normally
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this phenomenon has been associated with frustration due
to competing exchange couplings [17–24] or strong spin
anisotropy [17,19,20] [including the classical two-dimensional
(2D) Ising model with second-neighbor interactions [25,26]].
We believe this effect could also explain the metamagnetic
transition reported in a ring exchange model [27] (a close
relative of the J -Q model), where the metamagnetic transition
corresponds to a first-order transition from a partially occupied
to a fully occupied state. Our study provides an example of
metamagnetism in a spin-isotropic system without traditional
frustration. Note that the onset value qmin = 2

9 of metamag-
netism is much smaller than the critical value qc ≈ 0.85 at
which the chain dimerizes in the absence of a field. Thus, the
metamagnetism here is not directly related to the VBS state of
the J -Q model.

A bound state of magnons does not occur in the standard
J1-J2 Heisenberg chain [28–30] with frustrated antiferromag-
netic couplings J1 > 0, J2 > 0, but it does occur [18,21,23]
for the also-frustrated FM-AFM regime J1 < 0, J2 > 0. In
our study of the unfrustrated regime, we find bound magnon
states in the J1-J2 chain with a ferromagnetic (FM) second-
neighbor coupling (AFM J1 > 0, FM J2 < 0), but only if this
second-neighbor coupling is also spin anisotropic, of the form
J2[Sz

i S
z
j + �(Sx

i Sx
j + S

y

i S
y

j )]. The existence of a bound state
for some values of the parameters � �= 0 and |J2/J1| is likely a
precursor to a metamagnetic transition as in the J -Q-h chain,
but we do not study it further with QMC here.

We also study the J -Q-h chain at T > 0 in the region
close to magnetic saturation when q � qmin. Here, one would
expect the dependence of the magnetization on the field
and the temperature to be governed by a remarkably simple
“zero-scale-factor” universal critical scaling form [31]. We
observe this behavior clearly for q = 0 and q � qmin. For q

closer to qmin we find that the scaling form is only obeyed at
extremely low temperatures, due to onset of metamagnetism at
q = qmin. We expect qmin to be a tricritical point at which the
sign of the quartic coupling (|ψ |4) of the boson field changes
in the low-energy effective field theory of the system. This
corresponds to the two-magnon interaction switching from
repulsive to attractive at this point. Precisely at q = qmin, the
two-magnon interaction vanishes and the system is dominated
by three-body interactions, represented in the effective field
theory by a |ψ |6 term which is marginal in d = 1. The
smallness of the quartic term close to qmin leads to a crossover,
which we observe, between tricritical and zero-scale-factor
behavior, with the crossover temperature approaching zero as
q → qmin.

The outline of the rest of the paper is as follows: In Sec.
II we briefly summarize the numerical methods we have used.
We then discuss the phase diagram of the J -Q-h model in Sec.
III. In Secs. IV and V we discuss metamagnetism in the J -Q-h
and J1-J2 chains, respectively. Section VI contains our results
for zero-factor scaling of the saturation transition in the J -Q-h
chain. In Sec. VII we summarize and discuss our main results.

II. METHODS

The primary numerical tools employed in this work are
Lanczos exact diagonalization and the SSE QMC method [11]
with directed loop updates [12]. Symmetries are implemented

in the Lanczos calculations as described in Ref. [2]. SSE works
by exactly mapping a d-dimensional quantum problem onto a
(d + 1)-dimensional classical problem through Taylor expan-
sion of e−βH . This extra dimension is related to imaginary time
in a manner similar to the path integrals in world-line QMC, but
in the Monte Carlo sampling the operational emphasis is not
on the paths but on the operators determining the fluctuations
of the paths. We incorporate the magnetic field in the diagonal
part of the two-spin (J ) operators. Diagonal updates insert
and remove two- and four-spin diagonal operators, while the
directed loop updates change the operators from diagonal to
off-diagonal and vice versa [2]. When a two-spin operator
is encountered in the loop-building process, we choose the
exit leg using the “no-bounce” solution of the directed loop
equations for the Heisenberg model in an external field found
in Ref. [12]. When encountering a four-spin Q-type operator,
where the field contribution is not present, the exit leg is
chosen using a deterministic “switch and reverse” strategy,
essentially identical to the SSE scheme for the standard
isotropic Heisenberg model [2].

When using SSE alone, we found that simulations some-
times became stuck at metastable magnetization values for
long periods of time. This made it hard for simulations to
reach equilibrium and difficult to compute accurate estimates
of statistical errors. This problem can be easily seen in our
preliminary results presented in Figs. 2 and 3 of Ref. [32],
where the large fluctuations in the magnetization are due
to this “sticking” problem. To remedy this, in this work
we implemented a variation of the replica exchange method
[13] for QMC known as quantum replica exchange [14],
implemented using the MPI (Message Passing Interface)
parallel computing library.

In the traditional replica exchange method [13] (also known
as parallel tempering), many simulations are run in parallel
on a mesh of temperatures. In addition to standard Monte
Carlo updates, replicas are allowed to swap temperatures
with each other with some probability that preserves detailed
balance in the extended multicanonical ensemble. This allows
a replica in a metastable state to escape by wandering to
a higher temperature. In the SSE simulations with replica
exchange [14], we run many (10 ∼ 100) simulations in
parallel. Instead of using different temperatures as in standard
parallel tempering, we use a mesh of magnetic fields. After
each Monte Carlo sweep, we allow replicas to exchange
magnetic fields with one another in a manner that preserves
detailed balance within the ensemble of SSE configurations.

For relatively little communications overhead, we find
that replica exchange can dramatically reduce equilibration
and autocorrelation times, thus allowing simulations of much
larger systems at much lower temperatures. In practice, adding
additional replicas slows down the simulation because the time
required to complete a Monte Carlo sweep varies and all the
replicas have to wait for the slowest replica to finish before
continuing. This slowdown can be somewhat alleviated by
running more than one replica on each core.

III. PHASE DIAGRAM

The J -Q model has so far been of theoretical interest mainly
as a tool for large-scale studies of VBS phases and AFM-VBS
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FIG. 1. Examples of VBS configurations of S = 1/2 spins
in one dimension. Each blue ellipse represents a singlet pair:
(|↑↓〉 − |↓↑〉)/√2. In a real VBS there are also fluctuations in the
singlet patterns (except in special cases) but the density of singlets
on the bonds is still modulated with periodicity two lattice spacings.
(a), (b) Show the two degenerate VBS ground states, (c) illustrates a
triplet excitation in which a singlet bond is broken, and (d) illustrates
a triplet excitation deconfined into two independently propagating
spinons.

transitions. In a VBS (dimerized state), spins pair up to form
a crystal of localized singlets, thus breaking translational
symmetry but preserving spin-rotation symmetry as illustrated
in Figs. 1(a) and 1(b). The elementary quasiparticle excitations
of a VBS are gapped triplet waves (triplons) formed by exciting
a singlet pair to a triplet, as seen in Fig. 1(c). Triplons
sometimes deconfine into pairs of spinons: fractionalized
spin-1/2 excitations that correspond to VBS domain walls
as shown in Fig. 1(d). For dimensionality d > 1, the spinons
are confined by a string in a manner similar to quarks, the
energy associated with the shifted VBS arrangement resulting
from separating two spinons is directly proportional to the
distance between the spinons (see Ref. [33] for a recent
discussion of this analogy). In a one-dimensional VBS, the
spinons are always deconfined, unless the Hamiltonian breaks
translational symmetry [5,34]. The frustrated Hamiltonians
that were traditionally used to study VBS physics, e.g., the
J1-J2 chain [28,29,34,35], suffer from the sign problem,
which prevents large-scale numerical simulations using QMC
methods; the J -Q model is sign-problem free.

Our main aim in this paper is to study the magnetization
process of the J -Q-h chain from h = 0 all the way to the
fully polarized state where the concept of spinons in a dimer
background breaks down. To understand the basic physics in
this regime, it is more appropriate to consider flipped spins
(“magnons”) relative to the vacuum of a fully magnetized
state. For completeness, in this section we also comment on
the T = 0 phases of the system in the full q-h plane.

Figure 2 shows a schematic phase diagram assembled
from the literature and our own calculations. The parameter
regions corresponding to the horizontal and vertical axes are
well understood from past studies; the off-axes area has not
been previously studied and is therefore the primary focus of
this paper. The h axis is the standard Heisenberg chain in a
magnetic field, where the transition into the fully polarized
state is continuous. The q axis corresponds to the previously
studied zero-field J -Q model [5], where for q < qc there is a
Heisenberg-type critical AFM state with spin-spin correlations
decaying with distance r as 1/r (up to a multiplicative
logarithm) [36]. At q = qc ≈ 0.8483 the chain undergoes a
dimerization transition into a VBS ground state [5]. This

h

q=Q/JqC

VBS

Fully polarized/saturated

Partially Polarized
Critical XY
C(r)~r-2

Critical Néel
C(r)~r-1

hs

qmin

FIG. 2. Schematic phase diagram of the J -Q-h chain defined in
Eqs. (2) and (3). The different phases and special points indicated are
described in the text.

transition is similar to the Kosterlitz-Thouless transition and
identical to the quasi-AFM to VBS transition in the J1-J2 chain
[4,5,34].

In the full phase diagram for q > 0 (which we focus on
here because q < 0 leads to QMC sign problems), there are
three phases: a fully polarized phase, a VBS, and a partially
polarized critical XY phase. If we start from a VBS state
(h = 0,q > qc) and add a magnetic field, the field will “pull
down” the triplet excitations with magnetization mz > 0 and at
some hc(q) a magnetized state becomes the ground state. These
triplets originating from “broken singlets” will deconfine into
spinons [5,37], as illustrated in Figs. 1(c) and 1(d). Each spinon
constitutes a domain wall between VBS-ordered domains (as
discussed in detail in Ref. [5]), and we therefore expect any
finite density of spinons to destroy the VBS order. The phase
boundary extending from qc should therefore follow the gap to
excite a single triplet out of the VBS. We expect the destruction
of the VBS to yield a partially polarized state with critical XY
correlations, as in the standard AFM Heisenberg chain in an
external field. We do not focus on this part of the phase diagram
here, and will not discuss the nature of the VBS-XY transition
or the exact form of this phase boundary.

We focus mainly on the line hs(q) separating the XY
and saturated phases in Fig. 2, and will provide quantitative
results in the following sections. The magnetization curve is
continuous along the dotted portion of hs ; here, the saturation
transition is governed by a remarkably simple zero-scale-factor
universality [31]. The solid portion denotes the presence of a
magnetization jump: a first-order quantum phase transition
known as the metamagnetic transition. The point qmin marks
the lower metamagnetic bound, a tricritical point where the
magnetization jump is infinitesimal.

IV. METAMAGNETISM IN THE J- Q CHAIN

The introduction of the four-spin Q term has a dramatic
effect on the magnetization process. In Fig. 3, we plot the
magnetization density m(h), normalized to be unity in the
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FIG. 3. Magnetization density of the J -Q-h chain as a function
of the external field for a set of coupling ratios 0 � q � 1.2 (from
Heisenberg limit to beyond the VBS transition). The system size is
L = 96 and the inverse temperature is β = 12 in all cases. Error bars
are smaller than the markers.

fully polarized state

m ≡ 2

L

L∑
i=1

〈
Sz

i

〉
(4)

for periodic J -Q-h chains with 0 � q � 1.2, L = 96, and
inverse temperature β = 12 (where the finite-temperature
effects are already small on the scale used in the figure).
We begin in the Heisenberg limit (q = 0) and increase q.
For small q, the saturation field is unchanged, but the shape
of the magnetization curve changes significantly, becoming
steeper near saturation. As q increases, the magnetization
seems to develop a jump to saturation and the size of this
jump grows with increasing q. It is especially interesting that
this jump appears for q < qc, a regime where the h = 0 chain
is in the critical AFM state and not yet in the VBS state.
This magnetization jump is an example of a metamagnetic
transition [15,16] and shows many hallmarks of a first-order
phase transition, including hysteresis in the QMC simulations
(as documented in our earlier, preliminary paper [32]).

In Fig. 4 we plot the magnetization density at q = 1.2
for chains of sizes ranging from L = 8 to 256 and inverse
temperature β = L/4. In this regime, we observe two distinct
phases: a paramagnetic regime and a fully polarized state
separated by a sharp jump. The magnetization curves exhibit
near perfect agreement for all sizes studied, limited only by the
discretized values of m for each size (visible in greater detail
in the inset). Because of the way in which the temperature is
scaled, for the smallest sizes the steps are thermally smeared
out but become visible for the longer chains. Figure 4, as in
Fig. 3, shows no signs of any magnetization plateaus apart
from the fully polarized one. There is also no sign of the
VBS gap (to the first triplet excitation), which should manifest
itself as a m = 0 plateau for q > qc, reflecting the finite field
needed to close the gap. While there is a gap in the VBS,
at these sizes and temperatures the VBS gap is too small to

0 1 2 3 4
h

0.0

0.2

0.4

0.6

0.8

1.0

m

  L=8.0
 L=16.0
 L=32.0
 L=64.0
L=128.0
L=256.0

0.0 0.5 1.0 1.5 2.0 2.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

FIG. 4. Magnetization density of the J -Q-h chain at q = 1.2 as
a function of the external field h, with the inverse temperature scaled
with size as β = L/4. The system sizes are between L = 8 and 256
as indicated. The inset shows a zoomed-in view of the paramagnetic
regime. The error bars are smaller than the markers in main figure
and have been omitted for clarity also in the inset (where they are
some times slightly larger than the markers).

produce a noticeable effect. We have computed finite-size gaps
using Lanczos calculations but they are difficult to extrapolate
to infinite size, and we can only extract an upper bound; the
triplet gap at q = 1.2 should be less than 0.02 [38].

It was difficult to extract precise results for the saturation
field hs or mc (the magnetization at which the jump occurs)
due to the tendency of simulations to get stuck in metastable
states near the transition [32] (itself a characteristic of a first-
order transition). Although the use of replica exchange has
dramatically reduced this problem, it is still apparent for large
chains and at lower temperatures. To extract hs precisely, we
therefore used Lanczos exact diagonalization. The external
field commutes with the Hamiltonian, so we can diagonalize
the zero-field J -Q model and add the contribution from the
field in afterwards. Figure 5 shows the critical magnetic field
for L = 30 (we have also studied smaller systems in this way).
For q � qmin, the saturation field is exactly hs = 2J . In this
regime, hs is determined by a level crossing between the m = S

and S − 1 states which is independent of both q and L; see
also Eqs. (A2) and (A10a) and (A10b). For q > qmin, we find
a positive relationship between hs and q, consistent with our
QMC results in Fig. 3; here, we should expect some finite-size
effects, but they do not alter the qualitative character of the
line hs(q).

A. Origin of the magnetization jump

Although the excitations of the zero-field J -Q chain are
classified as spinons, near the saturation transition the density
of domain walls is too high for this picture to be relevant, and
the excitations are better characterized as magnons: bosonic
spin-1 excitations corresponding to spin flips on a background
of uniformly polarized spins. We will now show that the
magnetization jump in the J -Q-h chain (and later, the J1-J2
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0 0.2 0.4 0.6 0.8 1 1.2
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2.8

3

h
s

FIG. 5. Saturation field versus the coupling ratio for the L = 30
periodic J -Q-h chain calculated using the Lanczos method. The dot
indicates qmin.

chain with anisotropy in Sec. V) is caused by the onset of an
effective attractive interaction between these magnons.

Using an analytical approach and diagonalization of short
chains, we will now derive qmin, the minimum value of q

required to produce a jump (see Fig. 2). This argument is
described in more detail in Appendix A. We begin with the fact
that the jump is always to the saturated state and assume that the
size of the jump �mz/L → 0 at qmin as L → ∞. In an infinite
system, the smallest possible jump is infinitesimal; in this
case the “jump” corresponds only to a higher-order singularity
(a divergence of the magnetic susceptibility). In a finite-size
system, the magnetization advances by steps of �mz � 1. In a
trivial paramagnet, the magnetization advances by the smallest
possible increment: �mz = 1; this effect can be seen for L =
256 in the inset of Fig. 4. Larger magnetization steps indicate
the presence of some nontrivial effect; the smallest nontrivial
jump is �mz = 2, i.e., a direct level crossing between mz =
S − 2 and S. In Appendix A, we discuss the details of a two-
magnon approach to solving this problem using the condition
for the level crossing:

Ē2 � 2Ē1, (5)

where Ēn is the zero-field n-magnon ground-state energy as
defined in Eq. (A10).

Equation (5) essentially requires that the interaction be-
tween the magnons be attractive since the energy of two
interacting magnons is lower than twice the energy of a single
magnon. Metamagnetism can be brought on by the appearance
of bound states of magnons if there is an instability toward
bound states of ever more magnons. Thus, the existence of
such a bound state is suggestive of, but does not guarantee,
the existence of a macroscopic magnetization jump. If the
bound pairs of magnons are not attracted to other bound
pairs of magnons, then the magnetization merely advances
by steps of �mz = 2 without any macroscopic jump. This
effect has been documented previously [22,39]: in a liquid
of bound states of two or more magnons, the magnetization
undergoes microscopic jumps where �mz is an integer equal

0 0.05 0.1 0.15 0.2 0.25 0.3

−4.04

−4.02

−4

−3.98

−3.96

q

E

   L=8
  L=16
  L=32
L=1024

0.216 0.218 0.22 0.222 0.224 0.226

−4.002

−4

−3.998

FIG. 6. The lowest-energy eigenvalue Ē2(J = 1, Q = q,L) in
the two-magnon sector (mz = S − 2) in the J -Q-h chain for system
sizes L = 8,16,32,1024.

to the number of bound magnons with, in principle, an infinite
number of such phases existing, but never a macroscopic jump.

Thanks to the QMC data, there can be no doubt of the
existence of a macroscopic magnetization jump in the J -Q-h
chain for q > qmin, but it would be difficult to extract an
accurate value for qmin from these data alone. Instead, we
will determine a precise value of qmin using the condition
in Eq. (5). To do this, we first note that the effect of the
Q term on the two-magnon subspace is a short-range attractive
interaction, albeit an unusual one including correlated hopping
(see Appendix A for a detailed analysis). From Eq. (A2) we
know that Ē1 = −2J and we can then find a condition on Ē2

for a bound state to form as a result of this attraction:

Ē2 � −4J. (6)

With this in hand, we may interpret the magnetization
jumps seen in the QMC data for q > qmin as follows: At
higher magnetization densities, this short-range attractive
force dominates, causing the gas of magnetic excitations to
suddenly condense, producing a magnetization jump. Indeed,
when the magnetization was fixed at a nonequilibrium value in
the QMC calculations (for example, m = 1/2, q = 1.2), we
observed phase separation: the chain would separate into a
region with magnetization density mc and another region that
was fully polarized. Therefore, we may identify qmin with the
threshold value of q at which Eq. (6) is first satisfied.

In Fig. 6, we plot Ē2(J = 1, Q = q); we can determine
qmin by finding the smallest value of q that satisfies Eq. (6).
In this way, we obtain qmin = 0.2̄ = 2

9 to machine precision
for all L > 6. For q < qmin, finite-size effects result in an
overestimate of Ē2(L → ∞), and for q > qmin, they result in
an underestimate. At exactly q = qmin, these effects cancel and
Ē2 becomes independent of L (for L > 6). Note that qmin < qc

(the VBS critical point); we should not expect qc and qmin

to match since the magnetization jump occurs not from the
VBS, but from the critical XY state and they are arise from
completely different mechanisms.
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FIG. 7. The probability P (r) = 〈ψ0(r)|ψ0(r)〉 of the particles
being separated by distance r in the lowest state in the two-magnon
sector (mz = S − 2) of the J -Q-h chain.

In Fig. 7, we plot the probability density |ψ0(r)|2 for L = 40
chains at several values of q (r is the magnon separation
in the separated center-of-mass and relative-coordinate basis
as defined in detail in Appendix A). For q < qmin, the
magnons scatter off one another with a finite-range effective
repulsive interaction, and the relative wave function takes on
(essentially) the form of a particle in a box. For q > qmin,
the magnons scatter with a finite-range effective attractive
interaction, in this case the wave function has an exponential
decay for r � 3, indicating a bound state. At q = qmin,
magnons cross between these two regimes, scattering off one
another acquiring no phase and, thus, their wave function
and ground-state energy resemble that of two noninteracting
magnons, with Ē2(J,Qmin) = 2(−2J ). The wave function
is exactly constant in the bulk (3 < r < L/2 − 1). This
completely flat wave function in the bulk at qmin (which we will
discuss analytically further below) is not a generic behavior
at the onset of a bound state; typically, one would find an
exponentially decaying short-distance disturbance (as we will
show in one case of the J1-J2 chain in Sec. V). As q → qmin

from above, the expectation value of the separation between
the magnons diverges.

Finally, with the precise value of qmin determined in this
way, we use large-scale QMC data to confirm (Fig. 3) that
qmin is indeed the beginning of an instability that leads to a
macroscopic discontinuity in the magnetization. This is con-
sistent with previous work [17,22], where bound states of such
magnons have been found to be the cause of metamagnetism in
spin chains, though previously the attractive interactions were
directly related to geometric frustration (which is not present
in the J -Q chain; the Q term competes in a different way
against AFM order).

B. An exact solution at qmin

The absence of finite-size effects, the fact that qmin is a
ratio of small whole numbers, and the flat wave function
are remarkable and they provide a hint that there may be an

unusually simple analytic solution of the two-magnon system
at qmin. Using the separation basis, we can combine Eqs. (A8)
and (A9), set J = 1, Q = q, and the total momentum K = 0,
and write the Hamiltonian as

−4H (7)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 + q 4 + 2q q 0 0 · · · 0
4 + 2q 8 + 4q 4 + 2q 0 0 · · · 0

q 4 + 2q 8 + q 4 0 · · · 0
0 0 4 8 4 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 4 8 4 0

...
...

. . . 0 4 8 4
√

2
0 0 · · · · · · 0 4

√
2 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using the simple-looking numerical result for the wave
function ψ(r,q = qmin) in Fig. 7 as inspiration for finding the
ground state, we will now assume (and later confirm) that it
has the following form:

|ψ〉 ∝ + a |1〉 + b |2〉 + c |3〉 +
L/2−1∑
r=4

|r〉 + d |L/2〉 . (8)

The wave function is constant in the bulk, but at the edges of
the r subspace the state has weights a,b,c,d that can be easily
determined. Acting on |ψ〉 with H in Eq. (7) produces a set
of five equations which can be solved for a,b,c,d,qmin and the
eigenvalue λ with the following results:

a = 1
3 , b = 5

6 , c = 1, d = 1√
2
, (9a)

λ = −4J, (9b)

qmin = 2
9 . (9c)

When this solution is plugged back into Eq. (8), we indeed
find an exact match for the numerical results for q = qmin

plotted in Fig. 7.

C. Excluded mechanisms for metamagnetism

We will now discuss some other processes known to
cause magnetization jumps, such as localization [40–42],
magnetization plateaus [43], and multipolar phases [44], and
then show that none explain the behavior of the J -Q-h
chain. Although metamagnetism can be caused by localization
[40–42], this cannot be the cause in this case because the
J -Q-h chain has no intrinsic disorder and we see no other
signs of localization. Metamagnetism has also been observed
in a study of the frustrated FM Heisenberg chain [18,23,44],
which has a sequence of multipolar phases. If such phases
existed near qmin, we would observe a “cascade” of jumps.
First, the smallest possible jump of �mz = 2 would appear,
but then for slightly larger values of q > qmin, there should be
a series of system-size-independent jumps �mz = 3,4,5, . . .

until, eventually, a macroscopic jump in the thermodynamic
limit. Based on exact diagonalization of chains up to L = 28,
we see no evidence of such size-independent jumps in the
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FIG. 8. Alternating dimer-dimer correlation function, defined in
Eq. (10), for several values of the magnetization in chains of length
L = 96 at β = 12, q = 1.2.

J -Q-h chain nor do we see any evidence of such an effect in
our QMC data.

A jump in the magnetization can also be connected to a
magnetization plateau [43]. There is no sign of a magnetization
plateau in Figs. 3 or 4, but to conclusively rule this out, we
can also examine spin correlation functions. A magnetization
plateau indicates the presence of a gap between different spin
states and is allowed (by an extension of the Lieb-Shultz-Mattis
theorem) only when the magnetization per unit cell m obeys the
constraint that (S − m) is an integer [45]. For a S = 1/2 chain,
this can only occur by breaking translational symmetry. We
examined the alternating part of the dimer-dimer correlation
function D(r) for signs of translational symmetry breaking.
This correlation function is defined as

D(r) = (−1)r [B(r) − B(r + 1)], (10)

where B(r) = 〈Pi,i+1Pi+r,i+1+r〉 measures the correlations
between bond singlet densities. In the VBS-ordered phase,
D(r) has the form D(r) ∝ (e−r/ξ + D0), where D0 is the VBS
order parameter. In Fig. 8, we plot D(r) for several different
values of the magnetization. For mz > 0, D(r) develops
long-wavelength oscillations with a wavelength proportional
to the inverse magnetization density λ ∝ 1/m (a similar effect
was predicted in 1D quantum fluids by Haldane [46]), but we
find no evidence of broken symmetry. The Sz spin correlations
develop a similar pattern of long-wavelength oscillations, and
also show no signs of a symmetry-broken state. As a final test,
we looked at chains with open boundaries and found no signs
of symmetry-broken states in that case either.

V. METAMAGNETISM IN THE J1- J2 CHAIN

In the J -Q-h chain, the Q term favors AFM ordering
at the classical level (where the singlet-projection aspect is
not manifested), but nonetheless it produces a short-range
attractive interaction for low densities of magnons (against a
saturated background). Other Hamiltonians with these features
may exist, and since they also lack frustration, they are likely

to be understudied. Using the recipe from the J -Q-h chain:
(AFM first-neighbor interaction) + (short-range attractive
magnon-magnon interaction), a natural challenge is then to
create a minimal unfrustrated quantum spin model which
also exhibits this effect using only two-spin interactions. We
can construct a minimal model by adding an anisotropic
ferromagnetic (FM) next-nearest-neighbor term to the AFM
Heisenberg chain. We will now show that a bound state
of magnons occurs in the J1-J2 model, but only with spin
anisotropy in the J2 term, i.e., with the Hamiltonian

HJ1J2 = − J1

∑
i

Pi,i+1 (11)

− J2

∑
i

[
1

4
− Sz

i S
z
i+2 − �

2

(
S+

i S−
i+2 + H.c.

)]
.

Here, we have defined � in such a way as to guarantee that
the SzSz interactions of the second-neighbor term are FM for
all J2 < 0.

When � = 1, J2 > 0 (AFM), Eq. (11) becomes the simplest
example of a frustrated spin model; this case has been
well studied [17–19,22–24,28–30,47–49]. Several papers have
presented evidence of metamagnetism in the J1-J2 chain in
this regime for both the isotropic [18,21–24] and anisotropic
[17,19,20,24] cases. Naively, a FM second-neighbor term is
trivial since it does not produce frustration; with an AFM
first-neighbor coupling it would serve to strengthen the AFM
order. Probably for this reason, the FM J2 case has been almost
completely overlooked in the literature. Only a few papers
[48–50] have considered this case and none of them investi-
gated the possibility of metamagnetism. Metamagnetism has
been reported in the 2D and 3D AFM Ising model with a
FM second-neighbor term [25], and a physically equivalent
square-lattice-gas model [26].

As with the J -Q-h chain, we will identify the onset of
a bound state of two magnons on a fully polarized FM
background. As we discussed in Sec. IV B, such a bound state
is a possible signature of metamagnetism, but not a guarantee
of it (although in any case the onset of a bound state is an
important aspect of other possible transitions). We define the
criterion for the bound state as

Ē2(j,�) �2Ē1(j,�), (12)

where J1 = 1 (AFM), j ≡ −J2/J1 (j > 0 corresponding to
FM J2). The magnon binding energy is therefore

�(j,�) ≡ 2Ē1 − Ē2, (13)

such that � > 0 indicates the presence of a bound state.
The exact one-magnon energy Ē1 is derived in Appendix

B and displayed in Eq. (B5). The two-magnon energy Ē2

can be determined numerically using the separation-basis
Hamiltonian constructed from HJ1 and HJ2 [Eqs. (B6) and
(B7)]. We will limit ourselves to the unstudied case of FM
J2 (j > 0) and, for simplicity, we will consider only three
values of �: � = 1 (the isotropic case); � = 0 (the Ising
case); and � = −1 (where the Ising interaction is FM and the
XY interactions are AFM).

In Fig. 9, we plot �(j,�) versus j for chains of length L =
128. For large L, the level crossing occurs at a very shallow
angle and the lines in Fig. 9 tend to overlap; we therefore
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FIG. 9. The binding energy defined in Eq. (13) for a J1-J2 chain
with j ≡ −J2/J1 and anisotropy parameters � = 0, ± 1. Here, a
relatively small system (L = 128) is used, to make it easier to see the
crossings. When �(j,�) > 0, there is a bound state of two magnons.

use a small system size here to make the crossing more clear.
In the isotropic case, � = 1, �(j,0) < 0 for all j and there
is no bound state. In the Ising case � = 0, there is a level
crossing at jmin = 2

3 (verified to machine precision for chains
up to L = 4096), and for � = −1 the bound state occurs above
jmin = 0.236 067 977 499 (to machine precision for L � 32).

For � = 0, the wave function takes on a flat form at jmin =
2
3 . Using the same approach we used for qmin in Sec. IV B,

|ψ〉 ∝ − 1

3
|1〉 +

L/2−1∑
r=2

(−1)r |r〉 + 1√
2

|L/2〉 . (14)

Except for the alternating sign, this is almost identical to the
flat wave function for the J -Q-h chain at qmin and finite-size
effects are similarly absent at this point. For � = −1, the form
for the ground state at jmin is nearly flat with an exponential
tail,

|ψ〉 ∝
L/2−1∑
r=1

(−1)r (1 − ae−r/b) |r〉 + (−1)L/2

√
2

|L/2〉 , (15)

where a = 1.447 and b = 2.078, based a fit to the numerical
wave function (solving directly involves a transcendental
equation that we have not studied further). In this case, finite-
size effects are present, but vanish exponentially in L. The
existence of this two-magnon bound state may be a precursor
to a macroscopic magnetization jump, but there is no guarantee
that it produces the required instability to multimagnon bound
states. Confirming the existence of this transition with large-
scale calculations would be an interesting topic for a future
study, although the regime � < 0 is inaccessible to QMC due
to the sign problem.

VI. ZERO-SCALE-FACTOR UNIVERSALITY

The critical behavior that has become known as zero-
scale-factor universality occurs when response functions are
universal functions of bare coupling constants with no nonuni-
versal factors [31]. Zero-scale-factor universality is expected
to apply in one-dimensional systems whenever there is a
continuous quantum phase transition that corresponds to the
smooth onset of a nonzero ground-state expectation value
for a conserved density variable. In spin chains, the most
well-studied realization is the field-tuned transition from the
Haldane-gapped singlet state of integer spin chains to a state in
which one polarization of triplet magnons (S = 1 quasiparticle
excitations above the singlet state) condenses to give a nonzero
magnetization density.

The saturation transition in the J -Q-h chain provides a
different realization: the magnons are now single spin-flip
excitations above the saturated (i.e., fully polarized) ground
state (the same magnons as in Sec. IV B), and the transition in
question is the transition from the saturated state to the partially
polarized critical state. When this transition is continuous,
the density of magnons turns on continuously. Moreover, the
density of these magnons is conserved by virtue of the U(1)
symmetry of spin rotations about the z axis. Therefore, the
magnetization density (4), in the vicinity of the saturation
transition, is expected to obey the following form [from Eq.
(1.23) of Ref. [31]]:

〈m〉 = gμB

(
2M

h̄2β

)1/2

M(μβ), (16)

where M is the magnon mass and μ = (hs − h).
The single magnon dispersion (A2) obeys the low-energy

quadratic form ε(k) ∝ k2/(2M), with M = 1 (in our units
where J = 1) independently of Q. The Q term gives rise to
an additional contribution to the hopping if two magnons are
within three lattice spacings of each other. Considering the low
magnon density and repulsive magnon-magnon interactions,
we only expect a negligible renormalization of M due to this
correlated hopping term. We define 〈m〉 = gμB 〈n〉, where n is
the density of flipped spins and μ = (hs − h). In this way, the
field above the saturation value represents the “gap” for these
magnetic excitations and a negative μ corresponds to h > hs .
We insert these definitions into Eq. (16):

〈n〉
(

h̄2β

2M

)1/2

= M[β(hs − h)]. (17)

To simplify further, we set h̄ = 1 and define the rescaled field
t ≡ β(hs − h):

ns(q,t) ≡ 〈n〉
√

β

2M
= M(t). (18)

We will henceforth call ns the rescaled magnon density. The
one-dimensional case is unique here, in that there is a known
analytic form [31] for the universal scaling function M(t):

M(t) = 1

π

∫ ∞

0
dy

1

ey2−t + 1
= − 1

2
√

π
Li1/2(−et ). (19)
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FIG. 10. Test of zero-factor scaling using the rescaled density (18) of flipped spins near saturation for a J -Q-h chain of 96 sites for several
different inverse temperatures β and values of the coupling ratio q (in different panels as indicated). The results are graphed versus the rescaled
magnetic field t ≡ β(hs − h). The black lines are the exact predicted universal function (19) with the bare magnon mass M = 1.

In the limit |t | → ∞, the polylogarithm simplifies and the
universal function becomes

M(t) =
{√

t

π
, t → ∞

et

2
√

π
, t → −∞ (20)

but we will use the full form without approximations.
The critical behavior of the magnetization near the satu-

ration field was recently studied using the finite-temperature
Bethe ansatz in the case of the standard S = 1/2 Heisenberg
chain [51], and detailed comparisons were also made with
experimental results for AFM chain [52,53] and ladder [54]
systems. In order to explicitly test the validity of the zero-
scale-factor universality, we here analyze our data in a different
manner from Ref. [51].

In Fig. 10, we plot the rescaled density ns as a function of
the rescaled field t for L = 96 J -Q-h chains near the saturation
transition for q = 0, 0.1, 0.2 and q = qmin. In all these cases,
hs = 2J (see Fig. 5). The rescaled data collapse reasonably
well for q = 0, as shown in Fig. 10(a), although it is also
clear that we have not quite reached the asymptotic large-β
scaling limit (the curves for even the highest β values still
exhibit some drift). We have investigated other system sizes
to ensure that finite-size corrections are not important here
(see also Fig. 11). In Figs. 10(b)–10(d), we apply the same
rescaling and find that the agreement with the theory becomes
progressively worse for increasing q. The curves for different
temperatures still collapse rather well onto one another for
t < 0, but the collapsed data no longer match the shape of the
universal function, even if we choose M different from the bare
value M = 1 in the single-magnon dispersion (and, as already
noted, we do not expect any significant renormalization of

M due to many-body effects at these low magnon densities).
Additionally, the quality of the collapse itself deteriorates for
t > 0. As expected, for q > qmin (not shown) the zero-factor
scaling fails completely: the magnons now interact attractively,
and there is discontinuity in 〈n〉 which cannot be rescaled to
match an analytic function.

It is not obvious from Fig. 10 that this scaling form works at
all for q �= 0. To explore this more carefully, we examine the
finite-size scaling of ns with the field set to saturation (t = 0)
in Fig. 11. In this case, the exact universal function has no
dependence on β, but in all panels of Fig. 11, there remains
significant β dependence. Clearly, we have not yet reached the
low temperatures (high β) where the universal form applies
without significant corrections (as seen in Fig. 12, exceedingly
low temperatures are required to observe this convergence,
especially for q > 0). The β dependence becomes stronger for
larger values of q. We also see nonmonotonic β dependence
for q = 0.1 and 0.2, which manifests as the crossing of lines in
Figs. 11(b) and 11(c). This nonmonotonic behavior explains
why, in Figs. 10(b) and 10(c), the agreement with the exact
function sometimes gets worse for increasing β. At q = qmin

the agreement with the exact form is far worse and ns at t = 0
shows no signs of convergence. Instead, it shows a monotonic
increase with β; this supports the notion that qmin is a tricritical
point with a different scaling behavior. The crossovers seen in
the β dependence for 0 < q < qmin should then be due to a
crossover temperature related to the tricritical point.

We take a closer look at the temperature dependence in
Fig. 12, where we plot ns at t = 0 versus the temperature
T = β−1 for a fixed size L = 96. Here, the crossover behavior
is clear and we know from Fig. 11 that finite-size effects are
not important at this size. The dashed black line represents the
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exact value of the universal function from Eq. (19) evaluated at
t = 0, M = 1. For q = 0, we can see that the results converge
monotonically toward the expected value from below. With
q = 0.05, ns(t = 0) is extremely close to the exact value, but
a careful examination shows that the behavior is nonmonotonic
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FIG. 12. Temperature dependence of the rescaled magnon density
(18) for an L = 96 J -Q-h chain at h = hs and several values of the
coupling ratio q. Error bars are smaller than the markers. The black
dashed line shows the exact asymptotic (T → 0) value from the
universal function (19), setting the bare magnon mass M = 1.

with a broad maximum before a flattening out at lower
temperatures, consistent with asymptotic convergence to the
expected value. For q = 0.1, the behavior of ns(t = 0) is
similar and more clearly visible on the scale of Fig. 12. For
q = 0.15, 0.2, there is a maximum at lower T but we cannot see
the convergence to the universal value when T → 0, although
we expect this to take place at still lower temperatures. For
q = qmin, the behavior is essentially a logarithmic divergence,
but we do not know the power of the logarithm. All these
behaviors are consistent with a low-energy description with a
|ψ |4-type field theory, where the coefficient of the |ψ |4 term
vanishes at qmin, and at this point the critical behavior is
controlled not by the zero-scale-factor theory, but by the
marginal |ψ |6 term (causing the logarithmic scaling). The
crossover temperature between the two critical behaviors, as
manifested by the maximum in ns(t = 0) versus T , should
gradually approach T = 0 as q → qmin from below, as we
indeed observe in Fig. 12.

We summarize our findings on the zero-scale-factor uni-
versality. In Fig. 10, we observe that this scaling works
very well for q = 0, but the scaling appears to work poorly
for 0 < q � qmin. By examining finite-size scaling of the
rescaled magnetization in Fig. 11, we observe nonmonotonic
temperature dependence for 0 < q < qmin. Finally, in Fig. 12,
we plot ns as a function of T for t = 0, here we can see that
for all q < qmin, ns appears to converge toward the exact value
at T → 0. As q approaches qmin, the temperature required
to observe convergence becomes extremely low due to the
influence of the tricriticality. These results are consistent with
the behavior predicted by the theory: the zero-scale-factor
universality applies for all q < qmin and fails only at the
tricritical point qmin. Finally, this divergence occurs for qmin =
2
9 which confirms the results of the level-crossing analysis
documented in Sec. IV B.
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VII. CONCLUSIONS AND DISCUSSION

In this paper, we have studied the J -Q chain in the presence
of an external magnetic field using range of techniques
including exact diagonalization, a few-magnon expansion, and
a parallelized quantum replica exchange within the SSE QMC
method. We have established the existence of a metamagnetic
transition (i.e., magnetization jump) to the saturated state for
q � qmin = 2

9 , a first-order quantum phase transition caused
by the onset of a bound state of magnons (flipped spins on a
FM background). This proves that metamagnetism can occur
in the absence of both frustration and intrinsic anisotropy. The
magnetization jump begins with zero magnitude at q = qmin

and increases gradually in magnitude with q. Below qmin,
magnons interact with a finite-range effectively repulsive
interaction. Above qmin, magnons interact with a finite-range
effectively attractive interaction, despite the absence of any
explicitly FM interactions. At the onset of the jump, magnons
become noninteracting (for sufficiently low density) and the
problem of two magnons in a polarized background can be
solved analytically. The point at which two magnons bind
represents the onset of an instability where an arbitrary number
of magnons attract to form a macroscopic magnetization
jump. Motivated by the work presented here, the existence
of metamagnetism in the J -Q-h chain and our proposed
mechanism for it have been confirmed by calculations using
the density matrix renormalization group. [55]

It may be difficult to find an experimental realization of
the J -Q model itself, but interactions similar to the Q term
can appear in effective models of spin-phonon chains where
the phonons have been integrated out [56]. Thus, spin-
phonon systems may possibly harbor metamagnetism even in
the absence of longer-range frustrated Heisenberg exchange
interactions. We again stress that qmin, the threshold for
metamagnetism, is significantly smaller than qc, the threshold
for dimerization; therefore, spin-phonon systems may also
harbor metamagnetism even if the spin-phonon coupling is
insufficiently strong to produce dimerization [57].

The saturation transition in the J -Q-h chain is rich, and
we have shown that the magnetization near saturation obeys
a zero-scale-factor universality [31] at q = 0, which becomes
increasingly difficult to observe as q is increased above about
≈0.1. This is explained by the influence of the tricritical point
at qmin, where the low-energy effective field theory changes,
leading to a different criticality and crossover behavior. The
most natural scenario is that the coefficient of |ψ |4 vanishes
in the |ψ |4 effective field theory for the saturation transition
at the threshold for formation of the two-magnon bound
state, thereby allowing the |ψ |6 term to control the scaling
behavior of the saturation transition at this threshold. This term
is marginal in spatial dimension d = 1 since the dynamical
exponent for the transition is z = 2, implying the presence of
logarithmic violations of scaling at q = qmin. In our QMC data,
we indeed observe logarithmic scaling of the magnetization
density exactly at qmin.

Using the same two-magnon approach from the J -Q-h
chain, we have studied the AFM-FM J1-J2 chain with
anisotropy � in the J2 term [see Eq. (11)]. We have found that
for � = 0,−1, there is a bound state of magnons for j > jmin

with jmin = 2
3 , 0.236, respectively. It is likely that these bound

states will cause a magnetization jump to saturation in this
model, but we have not investigated this possibility using
large-scale simulations. The Sz interactions in the J2 term
are in both cases FM and have the effect of reinforcing the
zero-field ground-state correlations. Thus, they produce no
frustration in the conventional sense, but still lead to nontrivial
behavior. To our knowledge, no study has previously attempted
to find metamagnetism in the AFM-FM J1-J2 chain, and
this would be an excellent topic for a future study using the
density matrix renormalization group method, which is well
suited for frustrated one-dimensional systems. Such a study
could also confirm whether the zero-scale-factor universality
is obeyed by the J1-J2 chain near saturation and compare
the breakdown as j → jmin to the breakdown that occurs
in the J -Q-h chain. Indeed, the AFM-FM J1-J2 chain may
be generally understudied due to its lack of conventional
frustration. The existence of a nontrivial behavior in this
previously overlooked unfrustrated spin chain may mean that
there are other phenomena to explore in such naively trivial
Hamiltonians.

The methods developed for this work, including the
parallelized replica exchange quantum Monte Carlo program,
are now being extended to study the 2D J -Q-h model in the
presence of a magnetic field. Our preliminary results indicate
magnetization jumps above a coupling ratio qmin and a similar
mechanism of bound states of magnons as in one dimension. In
two dimensions we do not expect zero-scale-factor universality
close to saturation for q < qmin because we are then at the
upper critical dimension (2+2) of this theory. Logarithmic
corrections may then be expected for all q < qmin, and the
behavior at qmin is unclear at present.

The lower metamagnetic bound qmin is less than qc (the
dimerization transition) and, indeed, the physics of metam-
agnetism appears completely unrelated to the physics of the
dimerization transition. More generally, we note the utility
of J -Q-type models for studies of phenomena normally
associated with frustration due to competing exchange inter-
actions, e.g., J1-J2 Heisenberg models. Due to the absence
of sign problems, these models can be studied with QMC
simulations in any number of dimensions, while techniques
for frustrated models (e.g., the density matrix renormalization
group technique) are restricted to one dimension and (still)
relatively small two-dimensional systems. VBS physics, in
particular the AFM-VBS transition, has so far been the primary
goal of studies with J -Q models, and this work now adds
metamagnetism and high-field scaling to this repertoire of
phenomena accessible to QMC simulations of this family of
“designer Hamiltonians” [3].
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APPENDIX A: FEW MAGNONS IN THE J- Q-h chain

Continuing from Sec. IV B, we will attempt to find qmin,
the value of q where the jump first appears. To do this, we
will look for a direct level crossing between saturated state
mz = S and the state with two flipped spins mz = S − 2
and therefore we must calculate E(mz,J,Q,L) for mz =
S, S − 1, S − 2. Finding energy of the saturated state is trivial:
there are no places for a singlet projection operator to act,
so H |mz = S〉 = −hS. If we add a single spin-down site
(magnon), the Heisenberg term produces a tight-binding-like
effective Hamiltonian on this flipped spin: the diagonal terms
give it an onsite energy and the off-diagonal terms allow it
to hop to neighboring sites. A Q term cannot act on this
single-magnon state. The one-magnon state is a one-body
problem with the analytic solution

E1 = − J (1 − cos k) − h(S − 1) (A1)

for periodic boundary conditions.
For purposes of algorithmic convenience, we will perform a

“sublattice rotation,” a unitary transformation on one sublattice
which rotates S+

j → S−
j . This transformation has the effect of

flipping the signs of all off-diagonal terms in the Hamiltonian
without changing the spectrum [2]. After the sublattice
rotation, Eq. (A1) becomes

E1 = − J (1 + cos k) − h(S − 1). (A2)

Note that the sign of the cos k term has changed. With J > 0,
the ground state has momentum k = 0; therefore,

E1 = − 2J − h(S − 1) (A3)

for all L. For q < qmin, the saturation field is determined by
a direct level crossing between E0 and E1, so the saturation
field is independent of Q:

hs(q < qmin) =2J. (A4)

For the two-magnon case, we can begin in the basis
of the positions of each flipped spin: |x1,x2〉; the size of
this basis is L(L − 1)/2. We will assume that L is even.
We can reduce this two-particle problem to single-particle
problem using translation invariance. Consider a basis of
the center-of-mass position and the distance between the
spin-down sites: |X,r〉. The center of mass takes on the values
X ≡ x2 + x1 = 3,4,5,6, . . . (2L − 1) and the separation takes
on the values r ≡ min [x2 − x1,L + x1 − x2] = 1,2, . . . ,L/2.
The Hamiltonian is translation invariant for the center-of-mass
coordinate X, so we can consider momentum states: |K,r〉.
Where K is the center-of-mass momentum and r is the
separation between the magnons,

Kn = 2πn

L
, n = 0,1,2, . . . ,L − 1. (A5)

For a given Kn, r = 1,2,3, . . . ,rmax. We must be careful with
our definitions to avoid double counting states. For even n,
r = 1,2, . . . ,L/2, but for odd n, r = 1,2, . . . ,L/2 − 1. Thus,
for each of the L/2 even-n momentum states, there are L/2 r

states, and for each of the L/2 odd-n momentum states, there
are L/2 − 1 r states, for a total of L(L − 1)/2 states.

Now, consider how the Heisenberg term acts on a two-
magnon state |x1,x2〉:

HJ |x1,x2〉 = −2J |x1,x2〉 − J

2

[
|x1 + 1,x2〉

+ |x1 − 1,x2〉 + |x1,x2 + 1〉 + |x1,x2 − 1〉
]
. (A6)

There are two ways to hop the magnons toward each other,
two ways to hop them away from each other, and four ways to
leave them where they are, each with magnitude −J/2. In the
separation basis, this becomes

HJ |r > 2〉 = − 2J |r〉 − J

2
(1 + e−iK ) |r − 1〉

− J

2
(1 + eiK ) |r + 1〉 . (A7)

Thus, in the “bulk” (1 < r < L/2), the result is very similar
to the one-magnon problem. For r = 1, there are two slight
modifications: the spin-down sites are hardcore bosons (they
cannot hop across each other) and the diagonal term is only
−J . For r = L

2 − 1 and L
2 , there are slight modifications due

to the boundary conditions. Put this all together and we get

HJ = −J
(A8)

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1+eiK

2 0 . . .

1+e−iK

2 2 1+eiK

2 0 . . .

0 1+e−iK

2 2 1+eiK

2 0 . . .

...
...

. . .
. . .

. . .

...
...

. . .
. . .

. . .
1+e−iK

2 2 1+eiK

2 0

0 1+e−iK

2 2 1+eiK√
2

0 1+e−iK√
2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the last row and last column (underlined entries) are
omitted in the odd-n momentum sectors.

Now consider the Q term, which only contributes for r � 3,
so we can represent it as a 3 × 3 matrix:

HQ = −Q

4

⎛
⎝ 1 1 + eiK eiK

1 + e−iK 2(1 + cos K) 1 + eiK

e−iK 1 + e−iK 1

⎞
⎠. (A9)

Somewhat counterintuitively, the Q term produces an effective
attractive interaction by lowering the energy of states where
the flipped spins are separated by no more than three lattice
spacings. This will be the key to producing the magnetization
jump.

Now, we have the energies of each magnetization sector:

ES = −hS, (A10a)

E1 = Ē1(J,Q,L) − h(S − 1), (A10b)

E2 = Ē2(J,Q,L) − h(S − 2), (A10c)
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where Ēn is the ground-state energy of the zero-field n-magnon
chain. In order to find qmin, we must first find the saturation
field hs by demanding that ES = E2:

hs = − 1
2 Ē2(J,Q,L). (A11)

To guarantee a direct level crossing between mz = S − 2 and
mz = S, require E1 � ES = E2:

−hsS �Ē1 − hs(S − 1), (A12)

hs � − Ē1. (A13)

Combining Eqs. (A11) and (A13) and eliminating hs , we find
a condition for qmin:

Ē2 � 2Ē1. (A14)

This condition is also essentially the condition for an attractive
interaction: the energy for two magnons is less than twice the
single-magnon energy because the interactions lower the total
energy. From Eq. (A2), we know that Ē1 = −2J , so we can
find a condition on Ē2 for the existence of a jump:

Ē2 � −4J. (A15)

APPENDIX B: DERIVATION OF MAGNETIZATION JUMP
IN J1- J2 CHAIN

The anisotropic J2 term is given by

HJ2 = −J2

∑
i

[
1

4
− Sz

i S
z
i+2 − �

2

(
S+

i S−
i+2 + H.c.

)]
. (B1)

We will set J2 = −j (j > 0 is ferromagnetic) and follow the
same steps from Appendix A. First, we need the one-magnon

energy, which can be derived in much the same way we derived
the one-magnon energy for the J -Q-h chain:

Ē1(j,�) = −J1(1 − cos k) − J2(1 − � cos 2k), (B2)

Ē1(j,�) = −1 + cos k + j − j� cos 2k. (B3)

Note that here we do not use the sublattice rotation employed
in Appendix A; this difference can be seen by comparing
Eq. (B3), where the potential energy (−1) and kinetic energy
(cos k) terms have the opposite sign, to Eq. (A2), where they
have the same sign. For � � 0, Ē1 is always minimized by
k = π . For � < 0, kmin can take on two values

kmin(j,�) =
{

π, (j�) � −1/4

arccos
(

1
4j�

)
, (j�) < −1/4.

(B4)

This means that the ground-state energy for one magnon is
given by

Ē1(j,�) =
{−2 + j (1 − �), (j�) � −1/4

−1 + j (1 + �) + 1
8j�

, (j�) < −1/4.
(B5)

Now we want to write the two-magnon Hamiltonian in the
separation basis (as defined in Appendix A). We have already
worked out the separation basis Hamiltonian for the J1 term in
Eq. (A8), but in this case we cannot use the sublattice rotation.
Reversing the sublattice rotation done to Eq. (A8), we arrive
at a form for HJ1 :

HJ1 = J1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1+eiK

2 0 . . .

1+e−iK

2 −2 1+eiK

2 0 . . .

0 1+e−iK

2 −2 1+eiK

2 0 . . .

...
...

. . .
. . .

. . .

...
...

. . .
. . .

. . .
1+e−iK

2 −2 1+eiK

2 0

0 1+e−iK

2 −2 1+eiK√
2

0 1+e−iK√
2

−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)

Notice that Eq. (B6) is identical to Eq. (A8), except for the signs of the off-diagonal terms. HJ2 can be derived in the same way that
we derived the separation basis Hamiltonian for the Heisenberg chain (A8). Applying the same logic to the J2 term, we arrive at

HJ2 (K) = j

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − � cos K 0 −�(1+e2iK )
2 0 0 · · ·

0 1 0 −�(1+e2iK )
2 0 · · ·

−�(1+e−2iK )
2 0 2 0 −�(1+e2iK )

2 · · ·
. . .

. . .
. . .

. . .
. . .

−�(1+e−2iK )
2 0 2 0 −�(1+e2iK )

2 0
0 −�(1+e−2iK )

2 0 2 0 −�(1+e2iK )√
2

0 0 −�(1+e−2iK )
2 0 2 − � cos K 0

0 0 0 −�(1+e−2iK )√
2

0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B7)
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where the rows and columns represent r = 1,2,3, . . . ,L/2. As in Appendix A, for even-n momentum sectors, r = 1,2,3, . . . ,L/2
and for odd-n momentum sectors the basis is truncated r = 1,2,3, . . . ,L/2 − 1, so we must cut off the last row and column of Eqs.
(B6) and (B7) (the underlined entries). This approach is based on one used by Kecke et al. to study the FM-AFM J1-J2 chain [22].
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