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First-principles modeling of the Invar effect in Fe65Ni35 by the spin-wave method

A. V. Ruban
Department of Materials Science and Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

and Materials Center Leoben Forschung GmbH, A-8700 Leoben, Austria
(Received 4 January 2017; revised manuscript received 25 February 2017; published 22 May 2017)

Thermal lattice expansion of the Invar Fe0.65Ni0.35 alloy is investigated in first-principles calculations using the
spin-wave method, which is generalized here for the ferromagnetic state with short-range order. It is shown that
magnetic short-range order effects make a substantial contribution to the equilibrium lattice constant and cannot
be neglected in the accurate ab initio modeling of the thermal expansion in Fe-Ni alloys. We also demonstrate that
at high temperatures, close to and above the magnetic transition, magnetic entropy associated with transverse and
longitudinal spin fluctuations yields a noticeable contribution to the equilibrium lattice constant. The obtained
theoretical results for the temperature dependent lattice constant are in semiquantitative agreement with the
experimental data apart from the region close the magnetic transition.
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I. INTRODUCTION

Magnetic and structural transformations in Fe are the origin
of a large variety of Fe-based alloys with diverse mechanical
and magnetic properties, which can be obtained by the proper
alloying and processing of these materials. The fcc Invar
FeNi-based alloys are an example of such a tuning, using an
alloy composition that results in the anomalously low thermal
expansion known as the Invar effect [1]. It exists in a relatively
narrow range of compositions: between 30 and 45 at.% of Ni
and is most distinct at 35 at.% of Ni [2]. It can be made even
more pronounced using other alloying schemes [3].

The fact that the Invar effect (as well as the Elinvar
effect) is somehow related to magnetism was understood
by Guillaume a century ago, who started his Noble lecture
[4] with a description of magnetic properties, namely the
magnetic transition temperatures of Fe-Ni alloys, although
at that time there was no sensible theory of magnetism in
solids. Only in 1963 did Weiss make that connection clear
in his well-known 2γ -state model [5] arguing that the usual
thermal lattice expansion due to the lattice anharmonicity was
compensated in the Fe-Ni alloys by a temperature induced
“electronic’ transition of the states with a higher moment and
a large volume to the high temperature states having a lower
magnetic moment and volume.

What was, however, confusing in the Weiss model was the
identification of the high-temperature “γ phase” as antiferro-
magnetic. Thirty years later, the low volume and low magnetic
moment state was discovered in a number of ferromagnetic
first-principles calculations [6–12]. The connection to the Invar
effect due to thermal spin excitations then was accomplished
using a phenomenological Ginzburg-Landau model.

Unfortunately, these calculations and models have little to
do with the finite-temperature magnetic state in the real Invar
Fe-Ni alloys, which is ferromagnetic with a certain degree
of randomness leading to the lowering of the magnetization
with temperature. The origin of the problems with these earlier
ab initio calculations is the use of the local spin density ap-
proximation, which, as is well known nowadays, significantly
underestimate the equilibrium volume of 3d metals and their
alloys. So, the theoretical equilibrium volume was too small
and close to the so-called low-spin–high-spin transition, which
was not actually the case of the real Fe65Ni35 alloys.

The first adequate semiempirical theory of the Invar effect
was developed by Kakehashi [13,14] who explained it by
a reduction of the local moments of Fe due to temperature
induced magnetic disorder. Such a reduction of the magnetic
moment in the magnetically disordered state compared to the
ground state ferromagnetic one was for the first time confirmed
in the first-principles calculations by Johnson et al. [15,16]
using the disordered local moment (DLM) model [17] for the
paramagnetic state and later by Akai and Dederichs [18].

Thus the qualitative picture of the Invar effect is related to
the reduction of the equilibrium 0 K ground state volume of the
finite-temperature ferromagnetic phase due to the increasing
randomness of the magnetic configuration. If one assumes
that the thermal expansion due to the lattice anharmonicity is
fixed, i.e., does not depend on temperature, the description
of the Invar effect will be reduced to finding the 0 K
equilibrium volume of the alloy in the magnetic state with
the reduced magnetization that corresponds to the given
temperature.

This simple model was used in the first-principles cal-
culations by Crisan et al. [19], who almost quantitatively
reproduced the experimental thermal expansion coefficient of
Fe65Ni35 between 0 and 1000 K. Although some of the details
of this modeling are questionable [20], this was the first ab
initio investigation that reproduced the Invar effect.

A similar first-principles-based modeling of the Invar effect,
using 0 K total energies of alloys with different spin configura-
tions representing the finite-temperature magnetic state of the
Invar alloy, was successfully applied by Khmelevskyi et al. to a
number of different Invar systems [20–24]. A more elaborate
approach was adopted by Liot and coauthors [25–27], who
actually calculated the finite-temperature lattice constant and
thermal expansion coefficient of some Invar alloys using the
Debye-Grüneisen model [28].

It is obvious, that the above mentioned computational
schemes are approximate in many details. The most important
one, especially in the case of Fe-Ni Invar alloys, is a quite
approximate description of the finite-temperature magnetic
state in the density-functional theory (DFT) based calculations.
Unfortunately, going beyond DFT with the proper quantitative
modeling of the Invar effect is unrealistic at the present time.
Nevertheless, until the proper methods and computers are
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available, one can still try to improve the existing DFT-based
models.

In particular, in this work, a more elaborate model of the
thermal expansion in the Invar Fe65Ni35 alloy is developed. It
(1) includes a consideration of the magnetic short-range order
(MSRO) effects both below and above the Curie temperature
and (2) takes into consideration magnetic entropy related to the
temperature induced spin fluctuations. The MSRO effects are
incorporated using the spin-wave method (SWM) [29], which
is generalized here for the ferromagnetic state with arbitrary
magnetization.

Heisenberg Monte Carlo simulations, with magnetic ex-
change interaction parameters obtained in first-principles
calculations, are done to determine the magnetic state charac-
terized by the corresponding magnetic short- and long-range
order (LRO) for every temperature. This information is used
in the SWM calculations to get the total energy of the
system in the given magnetic state and parameters of the
Debye-Grüneisen model, yielding finally the lattice constant
[28,30] at the corresponding temperature.

II. SPIN-WAVE METHOD FOR SYSTEMS WITH
MAGNETIC LONG- AND SHORT-RANGE ORDER

The SWM is based on the assumption that the magnetic
energy of a system is given by Heisenberg Hamiltonian

H = −
∑

p

∑
i,j∈p

Jpeiej , (1)

where Jp are the magnetic exchange interaction parameters,
which do not depend on the magnetic state, p is the coordina-
tion shell, and ei is the direction of the magnetic moment at
site i.

For such a Hamiltonian, the magnetic configuration is
uniquely identified by spin-spin correlation functions

ξp ≡ 〈eiej 〉p = 1

Nzp

∑
i,j∈p

eiej , (2)

where N is the number of atoms and zp is the coordination
number. The magnetic energy of a system presented by
Hamiltonian (1) then can be determined as

E = −
∑

p

Jpzpξp = −
∑

R

J (R)ξ (R). (3)

Since, in the ideal paramagnetic (IPM) state ξ (R) = 0, and
therefore (3) is just the energy of the magnetic long- and short-
range order.

Using the definition of the Fourier transform of the spin-spin
correlation function,

ξ (q) =
∑

R

ξ (R)eiqR, (4)

magnetic energy (3) can be determined in another form,

E = 1

�BZ

∫
BZ

dqJ (q)ξ (q), (5)

where J (q) is the Fourier transform of the magnetic exchange
interactions (see, for instance, Ref. [31]):

J (q) = −
∑

R

J (R)eiqR, (6)

which is, up to an additive constant, just the energy of the
planar spin spiral (PSS) with wave vector q.

The spin-spin correlation function of such a PSS is [32]

ξq(R) = cos(qR), (7)

and the equally weighted superposition of all the PSS with
different wave vectors q yields the IPM since

1

�BZ

∫
BZ

dqξq(R) = ξ (R) = 0 (8)

for all R except for R = 0, where ξ (R = 0) = 1.
The Fourier transform of ξq(R) for some specific q′ is

the Dirac δ function, ξq(q′) = δ(q − q′), and therefore the
following important normalization condition holds:

1

�2
BZ

∫
BZ

dq
∫

BZ

dq′ξq(q′) = 1. (9)

This means that the PSS form a complete and orthogonal
basis with eigenvalues E(q), which are in general the total
energies of a system within some general Hamiltonian, in the
the PSS magnetic configuration with wave vector q. In the
case of Heisenberg Hamiltonain (1), E(q) = J (q). If E(q)
is obtained in first-principles calculations and the magnetic
energy of the system can be described by Hamiltonian (1),
E(q) = J (q) + E0, where, as will be shown below, E0 is the
total energy of the IPM obtained in the same first-principles
calculations.

The energy of the IPM state within the first-principles
formalism can be found using the fact that its real space
spin-spin correlation functions are given by the equal weighted
superposition of all the PSS in the reciprocal space (8). Then
one can use (5) by substituting E(q) instead of J (q), which
defines the energy of specific magnetic configuration given by
a set of spin-spin correlation functions, ξ (R) or equivalently
ξ (q), so that

EIPM = 1

�2
BZ

∫
BZ

dqE(q)
∫

BZ

dq′ξq(q′)

= 1

�BZ

∫
BZ

dq E(q). (10)

If one uses J (q) instead of E(q) in (10), the last integral
is formally equal to J (R = 0), which is routinely accepted
to be zero in (1). Thus EIPM = E0 and it indeed connects
the Fourier transform of the magnetic exchange interactions
of Hamiltonian (1), J (q) and E(q), from first-principles
calculations.

The presence of the MSRO leads to a deviation of ξSRO(q),
or simply ξ (q), from the equal weighted distribution of the
PSS in the reciprocal space. However, its does not violate the
normalization of the expansion in terms of the PSS since

1

�BZ

∫
BZ

dqξ (q) = 0, (11)
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and thus the energy of the MSRO is

�ESRO = 1

�BZ

∫
BZ

dq E(q)ξ (q). (12)

Then the total energy is given by the sum of the energy of the
IPM state and MSRO:

E = 1

�BZ

∫
BZ

dq E(q)[1 + ξ (q)], (13)

The latter expression defines the energy of the paramagnetic
state with MSRO and can be used in first-principles calcula-
tions.

The formalism outlined aboveshould be modified in the
presence of magnetic long-range order. Here, it is done for
the ferromagnetic state. In this case, spin-spin correlation
functions ξ (R), and respectively ξ (q), can be divided below the
Curie temperature into two contributions: from the long-range
order, s0, and short-range order, ξSRO(R), defined in the
following way:

s0 = lim
R→∞

ξ (R), (14)

ξSRO(R) = ξ (R) − s0. (15)

It is clear that s0 is the long-range order parameter, or the
reduced magnetization in the case of a ferromagnet.

The Fourier transform of ξ (R) will contain then also two
contributions: from the long-range order, which is s0δ(q − 0),
and from the short-range order part, ξSRO(q), which is the
Fourier transform of ξSRO(R). The latter does not contribute
to the total normalization, and therefore, in order to have the
proper normalization, one should add the completely random
background, compensating for the part missing from the long-
range order contribution; i.e., normalize by 1 − s0. Thus, the
total energy of the FM state with reduced magnetization s0 is

E = s0E(q = 0) + 1

�BZ

∫
BZ

dq E(q)[1 − s0 + ξSRO(q)].

(16)

The first term is just the energy of the completely ordered
FM state, while the second one is the contribution from the
randomly oriented magnetic moments (with some MSRO),
which reduces the magnetization of system from its completely
ordered value.

If one neglects the SRO effects in the second term, i.e. if
ξSRO(q) = 0, Eq. (16) defines the so-called partial disordered
local moment (PDLM) model, which is used for the modeling
of a ferromagnetic (FM) state at finite temperatures within the
coherent potential approximation (CPA) calculations.

III. DETAILS OF AB INITIO CALCULATIONS

According to the existing experimental data [33,34] as
well as the results of first-principles modeling [20], Fe-Ni
Invar alloys are random, without noticeable atomic short-range
order. The easiest way to determine the electronic structure and
the total energy of such alloys is to use the CPA [35], which
works very well for this systems, as has been demonstrated
previously [20] and also confirmed in this work. The CPA
calculations have been done in the framework of the Green’s

function exact muffin-tin orbitals (EMTO) method [36–38].
In particular, the Lyngby version of the EMTO code has been
used, which allows noncollinear and spin-spiral calculations
as well as the correct treatment of the screened Coulomb
interactions within the single-site approximation [39]. In the
latter case, the on-site screened electrostatic potential, V i

scr,
and energy, Ei

scr [39], are

vi
scr = −e2αscr

qi

S
, (17)

Ei
scr = −e2 1

2
αscrβscr

q2
i

S
. (18)

Here qi is the net charge of the atomic sphere of the ith alloy
component, S the Wigner-Seitz (WS) radius, and αscr and βscr

the on-site screening constants. The screening constants of a
random Fe65Ni35 alloy in the FM and DLM states have been
obtained in 560-atom supercell locally self-consistent Green’s
function (LSGF) [40] calculations using the ELSGF method
[41], including the first two coordination shells in the local
interaction zone [40]. The screening constants are found to
be very little dependent on the magnetic state and the lattice
constant, and αscr = 0.8 and βscr = 1.14 have been then used
in all the EMTO-CPA calculations.

The basis functions in all the EMTO calculations have been
expanded up to lmax = 3. We have also taken into consideration
the multipole moment contributions to the electrostatic energy.
The summation over multipole moments for the electrostatic
part of the one-electron potential and total energy have
been carried out up to lmax = 6. The integration over the
irreducible part of the Brillouin zone has been performed using
a 36×36×36 Monkhorst-Pack grid [42].

The self-consistent calculations have been done within
the local density approximation (LDA) [43], while the total
energy has been obtained using the Perdew-Burke-Ernzerhof
(PBE) generalized gradient approximation (GGA) [44]. The
point is that the LDA self-consistency does not affect
the final GGA total energy, but it affects the magnitude of
the magnetic moment, which is usually slightly overestimated
in the PBE-GGA compared with the LDA one.

In spite of the existing theoretical investigation of local
lattice relaxations in Fe65Ni35 in the FM state [45], nothing is
known about their effect on the thermal lattice expansion and
the Invar effect, in particular. Therefore, in order to estimate the
role of local lattice relaxations in the energetics of Fe-Ni Invar
alloys, we have calculated the equilibrium lattice constants
and total energies of a 64-atom supercell (4×4×4) modeling
the Fe62.5Ni37.5 random alloy [46] with relaxed (locally) and
unrelaxed atomic positions.

The PBE-GGA calculations have been done by the projector
augmented wave (PAW) method [47,48] as implemented
in the Vienna ab initio simulation package (VASP) code
[49–51]. We find that the lattice constant of the supercell with
relaxed atomic positions is only 0.0006 Å smaller than that
of the unrelaxed one. The relaxation energy is also small: 7
meV/atom. This means that local lattice relaxations can hardly
have any effect on the Invar effect, which is in fact expected
from the relatively small size difference of Fe and Ni.
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IV. MODELS OF FINITE TEMPERATURE MAGNETISM
IN Fe-Ni ALLOYS

Magnetism plays crucial role in the Invar effect, which
exists in Fe-Ni alloys in the FM state. However, the para-
magnetic state is not less important, since it determines the
type of thermal magnetic excitations both above and below
the Curie temperature. In all the previous ab initio modelings
of the Invar effect in FeNi, it has been tacitly assumed that the
main thermal magnetic excitation is the thermal disorder of the
orientation of the local magnetic moments, whose magnitude
remains unchanged, or transverse spin fluctuations (TSF).

However, the magnitude of the local magnetic moments on
Fe and Ni in Fe65Ni35 is quite sensitive to the magnetic state,
and, for instance, the magnetic moment on Ni vanishes in the
DLM representation of the paramagnetic state. This does not
correspond to what really happens in the paramagnetic state
at finite temperature, where nonzero magnetic moment exists
due to an entropic effect of thermally induced longitudinal
spin fluctuations (LSF). As will be demonstrated below, the
LSF play important role in Fe65Ni35 and therefore, in this
section, we introduce a simplified model of the LSF, which
will be used further both in the calculations of magnetic
exchange interactions and in the modeling of the thermal lattice
expansion.

A. Longitudinal spin fluctuations in Fe65Ni35

Unfortunately, accurate first-principles modeling of the
LSF is too cumbersome for the case of random alloys. An
approximate DFT-based model developed in Ref. [52] is also
quite complicated for Fe-Ni alloys due to pronounced local
chemical environment effects [53], which require an additional
consideration of different possible local atomic configurations.
Therefore, a simple model is used here just for a qualitative
estimate of LSF, which was previously introduced in Ref. [54].

Here, we consider LSF in the paramagnetic state given
by the DLM model, assuming that they are adiabatically
connected with a particular electronic structure, which results
in specific magnitudes of the local magnetic moments of
alloy components. In this case, the local magnetic moment
of specific alloy component, i, at a given temperature T can
be determined in the single-site mean-field approximation as
[54,55]

〈mi〉 =
∫

m3 exp
[−βELSF

i (m)
]
dm∫

m2 exp
[−βELSF

i (m)
]
dm

, (19)

where β = 1/T and ELSF
i (m) is the so-called LSF energy of

the ith component, which is the total energy of an alloy per
atom of this alloy component. It is determined here for each
alloy component in the constrained DLM-CPA calculations by
fixing the local magnetic moment of alloy component i, while
allowing the magnetic moment of the other alloy component
to relax to the corresponding self-consistent magnitude.

In Fig. 1, the LSF energy of Ni and Fe in Fe65Ni35 is
shown for a lattice constant of 3.59 Å. The calculations are
done at 1000 K, and the LSF energy contains also the entropy
contribution from the one-electron excitations, and in the case
of the LSF energy of Ni also the contribution from the magnetic
entropy of Fe, taking the usual form of the magnetic entropy

FIG. 1. LSF energy of Ni and Fe in random Fe65Ni35 at 1000 K.

of paramagnetic gas:

STSF = ln(mFe + 1), (20)

where mFe is the magnetic moment of Fe in the DLM-CPA
calculations. The latter, in fact, corresponds to the magnetic
entropy of the TSF. Thus, the LSF energy of Ni contains also
the entropy contribution from the one-electron excitations on
both components and magnetic entropy (20) on Fe.

This approach, however, does not work for the LSF energy
of Fe, since the magnetic moment of Ni vanishes in the DLM-
CPA calculations and therefore one should consider LSF on Ni
at the given temperature. Asdemonstrated in Ref. [54], if the
LSF energy has a quadratic form (as a function of magnetic
moment), the LSF entropy is

SLSF = 3 ln(〈mi〉), (21)

where 〈mi〉 is the average magnitude of the magnetic moment
of the ith alloy component. This expression is valid in the high-
temperature (classical) limit. In the single-site approximation,
one can simply substitute 〈mi〉 with mi , and mi can be found
from the free energy minimization of the alloy.

This is, however, a quite tedious procedure. Fortunately, this
task can be substantially simplified in the DFT self-consistent
calculations if one notice that such a minimization results in
the appearance of additional contributions to the one-electron
potential, which can be obtained from the corresponding
functional derivatives of (21) with respect to spin-up and
spin-down densities [56]. Then the magnetic moment induced
by the LSF at a given temperature is just the result of
the corresponding DFT self-consistent calculations, which
simplifies enormously the whole calculation procedure.

Therefore, in order to account for the (qualitatively) correct
magnetic state of Ni during the LSF energy calculations of
Fe, the LSF on Ni were taken into consideration using (21) at
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1000 K and adding the corresponding entropy term to the total
energy of the alloy.

Although the LSF energy of Ni does not have the exact
quadratic form, Eq. (21) still provides a reasonable description
of the LSF entropy. For instance, it yields 0.70μB for the local
magnetic moment of Ni in Fe65Ni35 at 1000 K, while a more
accurate result from (19) is 0.82μB . At the same time, it is
clear that (21) somewhat underestimates the magnetic entropy
related to the LSF on Ni atoms in Fe65Ni35 and consequently
the magnetic moment of Ni in the paramagnetic state at high
temperatures.

The LSF energy of Fe is quite different from that of Ni: its
minimum is at 1.77μB , although it is quite shallow with a steep
increase beyond 2.5μB . Although the LSF energy of Fe does
not resemble a parabola, the magnetic moment of Fe due to the
LSF is about 1.8μB at 1000 K, independently of whether (21)
or (19) is used in the calculations. One can also see that the
LSF affect little the magnitude of magnetic moment. However,
as will be shown below, the magnetic entropy of Fe affects
substantially the thermal lattice expansion in the paramagnetic
state.

B. Magnetic exchange interactions in Fe65Ni35

The magnetic state given by the corresponding spin-spin
correlation functions, and its temperature dependence, are key
parameters needed for a quantitatively accurate modeling of
the Invar effect. Although there exist experimental data on the
reduced magnetization [57], nothing is known about MSRO
or spin-spin correlation functions in Fe-Ni alloys. Therefore
the only way to get this information is to use theoretical
simulations.

We assume that the magnetic energy and spin configuration
of the Fe-Ni Invar alloys at a particular temperature can be
determined in statistical thermodynamics simulations using
the following classical Heisenberg Hamiltonian:

H = −
∑

p

∑
i,j∈p

∑
α,β=Fe,Ni

J αβ
p cα

i c
β

j eiej . (22)

Here, J
αβ
p are the magnetic exchange interactions between α

and β alloy components for coordination shell p and ei is the
direction of the spin at site i; cα

i takes on value 1 if site i is
occupied by atom α and 0 otherwise.

Of course, the Fe-Ni Invar alloys are not a Heisenberg
system: the corresponding magnetic exchange interactions
depend not only on the local and global magnetic state
but also on the local chemical environment [53]. However,
the dependence on the local environment is strongest in
the completely ordered FM state and can be neglected in
qualitative statistical thermodynamics simulations at elevated
temperatures. Therefore we calculate magnetic exchange in-
teractions in random alloys within the CPA using the magnetic
force theorem [58] as implemented in the Lyngby version of
the EMTO code [59] within the LDA [60].

As already mentioned, the magnetic exchange interactions
in Fe-Ni alloys depend quite strongly on the magnetic state,
as is also the case of magnetic exchange interactions in bcc Fe
[61]. In Fig. 2, we show the magnetic exchange interactions in
Fe65Ni35 random alloy as a function of magnetization, which
have been determined in the CPA-PDLM model calculations

FIG. 2. Magnetic exchange interactions in random Fe65Ni35 alloy
in the FM state with different magnetizations and in the paramagnetic
state with LSF on Ni at 500 K, which is the Curie temperature of
Fe65Ni35.

in the same way as in Ref. [62]. In this case, the first-principles
CPA calculations have been done for the following model alloy
configuration: (Fe ↑y Fe ↓1−y)cNi1−c, where y is connected
to the reduced magnetization, m, as m = 1 − 2y, and c is the
concentration of Fe [62]. That is, only Fe atoms are used for
the modeling of the reduced magnetization, while Ni atoms
are left to acquire the magnetic moment according to the self-
consistent calculations.

One can see that Fe-Ni and Ni-Ni magnetic exchange
interactions decrease together with decreasing magnetization,
and in the paramagnetic state, when m = 0, they should vanish
in this model, since the Ni magnetic moment disappears in the
DLM-CPA calculations. This is not, however, the case if one
consider the LSF on Ni at finite temperature. In Fig. 2, we show
the Fe-Ni and Ni-Ni magnetic exchange interactions at 500 K
(which is the Curie temperature of Fe65Ni35) due to the LSF on
Ni. The latter were taking into consideration using (21) for the
LSF entropy on Ni during DFT self-consistent calculations.
As a result, the Fe-Ni and especially Ni-Ni magnetic exchange
interactions at the first coordination shell become substantially
larger than those in the FM state. This produces a pronounced
effect on the Cuire temperature, as will be demonstrated below.

C. Magnetic transition in Fe-Ni alloys

The dependence of magnetic exchange interactions on the
global magnetic state can be neglected in the calculations
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TABLE I. Calculated local magnetic moments on Ni in the
paramagnetic state due to LSF at the experimental Curie temperature
and lattice constants [57,63] from (21) and from (19) and theoretical
and experimental Curie temperatures of some Fe-Ni alloys including
pure Ni. The results obtained in the FM state are also shown for
comparison.

Alloy Fe65Ni35 Fe50Ni50 Fe30Ni70 Ni

mNi FM 0.75 0.71 0.66 0.62
mNi DLM-LSF (21) for Ni 0.52 0.65 0.70 0.68
mNi DLM-LSF (19) for Ni 0.66 0.69 0.66 0.58
Tc: Jxc FM 520 560 540 310
Tc: Jxc DLM-LSF (21) for Ni 360 630 810 810
Tc: Jxc DLM-LSF (19) for Ni 430 650 800 710
Tc experiment 500 780 880 630

of the magnetic phase transition, which, being second order,
happens practically in the paramagnetic state (although with
a large amount of the MSRO). In this case, one can chose
only one set of magnetic interactions, which corresponds to
the paramagnetic state just above the Curie temperature, and
do statistical thermodynamics simulations of the magnetic
transition. This is the corresponding state approach [61], which
has been, for instance, used before in the Curie temperature
calculations of bcc Fe.

Here, we determine magnetic exchange interactions for the
lattice constant and thermal one-electron excitations, which
correspond to the experimental Curie temperature [57,63]. The
use of the experimental Curie temperature in the calculations of
the magnetic exchange interactions also simplifies accounting
for the LSF. As demonstrated above, the LSF on Ni lead
to a substantial renormalization of the magnetic exchange
interactions.

We have used two different schemes to account for the
LSF on Ni: (1) DFT self-consistent calculations using (21)
for the LSF entropy on Ni at a given temperature and (2)
the use of the single-site mean-field approximation (19) for
the average magnetic moment of Ni at a given temperature
from the corresponding LSF energy. Although the second
approach is quite time consuming, it is more accurate, and this
is important since magnetic exchange interactions are roughly
proportional to the magnitude of the local magnetic moment.

In order to demonstrate that the above described method
works reasonably well, we calculate the magnetic phase
transition in several Fe-Ni alloys covering the whole con-
centration range of the fcc Fe-Ni alloys, including pure
Ni. All the calculations have been done for random alloys
using the CPA. The latter is probably a rough approximation
for Ni-rich Fe-Ni alloys, where the Curie temperature is
quite close to the atomic order-disorder phase transition. For
instance, the Curie temperature of Fe25Ni75 is just about 100 K
above the order-disorder phase transition. Nevertheless, we
disregard the atomic short-range ordering, going mainly after
a qualitative picture.

The calculated and experimental Curie temperatures are
presented in Table I. The theoretical Curie temperatures have
been obtained in the Heisenberg Monte Carlo simulations
using a simulation box of 12×12×12(×4) on the fcc un-

derlying lattice. The transition temperature was determined
approximately from the maximum of the heat capacity. Since
the temperature step was 10 K, this is a kind of an error bar
for the theoretical Curie temperatures.

One can see that the Curie temperature is indeed sensitive
to the magnitude of the Ni local magnetic moment. The
overall best agreement of the calculated Curie temperature
with experimental data is obtained using the magnetic moment
from single-site mean-field modeling (19). As one can see in
Table I, the LSF entropy given by Eq. (21) underestimates
the induced magnetic moment of Ni in the Fe-rich alloys and
overestimates it in the Ni-rich alloys and pure Ni.

It is interesting that the magnetic exchange interactions in
the completely ordered FM state yield the best results for the
Curie temperature of the Invar Fe65Ni35 alloy (see Table I).
However, the FM interactions do not reproduce the general
trend of the concentration dependence of the Curie temperature
in Fe-Ni alloys with a maximum around 70 at.% of Ni. This is
so since these alloys are not Heisenberg systems, and thus the
FM exchange interactions are hardly relevant to the magnetic
exchange interactions at the Curie temperature close to the
paramagnetic state.

V. SPIN-WAVE METHOD RESULTS
FOR THE 0 K TOTAL ENERGY

A. Completely ordered ferromagnetic and ideal
paramagnetic states

To get a reasonably accurate account for the MSRO, the
integration over q points in the SWM [see Eq. (16)] was done
using a 7×7×7 Monkhorst-Pack grid [42], which results in
20 nonequivalent q points in the irreducible part of the fcc
Brillouin zone. For every Wigner-Seitz (WS) radius within the
range 2.6–2.7 a.u. (with steps of 0.005 a.u.), the total energies
of Fe65Ni35 alloy were calculated in the corresponding 20 PSS
states by the EMTO-CPA method (see Appendixes A and B for
details). Then, for every WS radius, the total energy of Fe65Ni35

in the given magnetic state was obtained by the corresponding
weighting of the total energies obtained in the PSS calculations
(see Appendix B).

The total energy of the completely ordered ferromagnetic
state is, of course, just the total energy of the PSS with q = 0.
The total energy of the IPM state is given by the equal weighted
sum of the total energies of all spin spirals. Another way to
calculate the total energy of the IPM state is to do collinear
DLM-CPA calculations. For a Heisenberg system these two
methods should produce the same energy.

However, this is not the case for Fe65Ni35. As is seen in
Fig. 3, the energy of the IPM state in the SWM is 1 mRy lower
than the DLM-CPA energy. At the same time, the FM energy is
only about 5 mRy below the energy of the paramagnetic state.
The reason for such disagreement between the DLM-CPA
and SWM total energies is a pronounced itinerant electron
character of magnetism in this alloy. It is also reflected in the
difference of the local magnetic moments of Fe and Ni in the
IPM state. While the local magnetic moment of Ni vanishes
in the DLM-CPA calculations, its average magnitude in the
SWM is about 0.1μB .
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FIG. 3. Total energy of random Fe65Ni35 in the FM and PM states.
The latter is obtained in the CPA-DLM (diamonds) and SWM (circles)
calculations. The arrows show the positions of equilibrium WS radii.

The latter is due to the contributions from long-wave PSS.
The magnetic moment of Fe in the SWM calculations is also
larger than that obtained in the DLM-CPA calculations for the
same reason. At the same time, the magnetic moment of Fe in
the paramagnetic state is substantially smaller than one in FM
state, as one can see in Fig. 4.

FIG. 4. Local magnetic moment of Fe in Fe65Ni35 as a function
of the WS radius in the FM and paramagnetic states.

FIG. 5. Reduced magnetization as a function of reduced temper-
ature in Fe65Ni35: experiment [57] vs present theoretical modeling.

Let us note that, in spite of all the above mentioned
differences in results for energies and magnetic moments, the
SWM and DLM-CPA agree on the equilibrium volume or WS
radius of the IPM state. The latter is about 2.626 a.u. in both
cases (which corresponds to a lattice constant of 3.554 Å).
The equilibrium WS radius in the FM state, SFM, is 2.653 a.u.
(the lattice constant is 3.593 Å, without contribution from zero
point lattice vibrations). This is exactly what was reported in
the previous EMTO calculations [20].

B. Magnetic short-range order effects

In the SWM, the MSRO effects are taken into consideration
through the corresponding spin-spin correlation functions.
In this work, the spin-spin correlation functions have been
obtained in the Heisenberg Monte Carlo simulations described
in Sec. IV C. Although those calculations have been done for a
fixed set magnetic exchange interactions which correspond to
the paramagnetic state, the calculated reduced magnetization
of Fe65Ni35 turns out to be in good agreement with the
experimental one [57] in the whole temperature range, as
shown in Fig. 5. Therefore we expect that the theoretical results
for the spin-spin correlation functions are qualitatively correct
and can be used in the SWM modeling.

Since the homogenous magnetic state is assumed in
the single-site CPA spin-spiral calculations of Fe65Ni35, the
component-resolved spin-spin correlation functions from the
Monte Carlo simulations should be reduced to the average ones
consistent with the first-principles spin-spiral calculations in
order to be used in the SWM. For the completely random alloy,
the average spin-spin correlation function is

ξ̃ (R) = c2ξFe-Fe(R) + 2c(1 − c)ξFe-Ni(R)

+ (1 − c)2ξNi−Ni(R), (23)

174432-7



A. V. RUBAN PHYSICAL REVIEW B 95, 174432 (2017)

FIG. 6. Average spin-spin correlation function in Fe65Ni35 at
different temperatures.

where ξFe-Fe(R), ξFe-Ni(R), and ξNi-Ni(R) are the Monte Carlo
results for the spin-spin correlation functions of different alloy
pairs.

In fact, the difference between these three alloy-component
resolved spin-spin correlation functions is quite small in the
FM state, and becomes pronounced only at high temperatures,
especially for distant coordination shells. However, in the latter
case, the correlation functions themselves become quite small.
For instance, the largest nearest-neighbor spin-spin correlation
functions at 300 K are 0.820, 0.750, and 0.677, while at 1000 K
they are 0.091, 0.070, and 0.024 for Fe-Fe, Fe-Ni, and Ni-Ni
pairs, respectively. This means that averaging (23) does not
introduce a noticeable error.

The spatial behavior of the spin-spin correlation functions
is shown in Fig. 6. In the totally ordered FM state, ξ̃ (R) = 1,
and in the IPM, ξ̃ (R) = 0. In the PDLM model for the FM
state with reduced magnetization s0, ξ̃ (R) = s0. One can see
that the MSRO becomes important close to the magnetic phase
transition, exactly where the Invar effect is observed.

The average spin-spin correlation functions have been used
in the SWM calculations in order to get the total energy of
Fe65Ni35 at a given temperature (see Appendix B for details).
Since the calculated Curie temperature and theoretical one
differ, the theoretical temperature dependence of the spin-spin
correlation functions has been rescaled in order to have the
Curie temperature and MSRO consistent with the experiment
[57].

In Fig. 7, we show the results for the 0 K equilibrium
lattice constant of Fe65Ni35 obtained in the SWM calculations
from the spin-spin correlation functions at the corresponding
temperature, which is shown on the x axis. In the same figure,
we also show the results of the PDLM-CPA calculations, where
the mapping to the temperature is done only according to the
reduced magnetization since the MSRO effects are absent in

0 200 400 600 800 1000
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FIG. 7. Zero-temperature lattice constant obtained in the SWM
and PDLM calculations as a function of magnetic state translated to
the corresponding temperature shown on the x axis.

the PDLM-CPA model. The latter is, in particular, the reason
for the abrupt change of the lattice constant at 500 K, which
is the Curie temperature, and its constant value above the
magnetic phase transition. It is clear that the MSRO effects are
pronounced and cannot be neglected in the accurate ab initio
modeling of the Invar effect.

VI. CALCULATED THERMAL LATTICE EXPANSION

A. Debye-Grüneisen model

As mentioned above, the Debye-Grüneisen model [28,30]
is the only way to account for the thermal lattice expansion
in the FeNi Invar alloys at present time. A combination of
chemical randomness with highly nontrivial thermal electronic
and magnetic excitations leaves no chance, for instance, of
using quasiharmonic approximation based on the ab initio
phonon calculations.

Three parameters are needed for the Debye-Grüneisen mod-
eling: bulk modulus, Grüneisen constant, and zero-temperature
equilibrium lattice constant. However, it is quite difficult to
obtain stable results for the Grüneisen constant, especially in
the FM state, where the magnetic moment of Fe does not
change linearly (see Fig. 4).

In the present study, the Morse fit [28] was used for a
parametrization of the total energy (or the Helmholtz free
energy) as well as for determining the parameters of the
Debye-Grüneisen model, which seemed to be quite stable and
not so sensitive to the range of energy fitting, the size of the
step, and other details. But even in this case, the calculated
Grüneisen constant exhibited some fluctuations related to the
details of calculations. So, in the end, in order to simplify the
tedious numerical exercise, its value was fixed to 1.8, which
is close to the obtained values also by Liot et al. [25], for all
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FIG. 8. Temperature dependence of the lattice constant of
the IPM of Fe65Ni35 obtained in the Debye-Grüneisen model using
(1) the total energy of from the DLM-CPA calculations (E, DLM)
and (2) the total energy from the SWM calculations (E, SWM ).
The other results are obtained using the Helmholtz free energy
at the corresponding temperatures with contributions from the
one-electron excitations, LSF using (21), and TSF using (20) in
different combinations. Liot and Hooley EMTO-CPA results are from
Ref. [26].

the Debye-Grüneisen calculations, which were done using the
formalism outlined in Ref. [30].

B. Transverse and longitudinal spin fluctuations in the ideal
paramagnetic state

Before we discuss the effect of the MSRO, we would
like to demonstrate the effect of spin fluctuations on the
temperature dependence of the lattice constant of Fe65Ni35

in the IPM. The starting point here is the total energy of
the IPM state without contributions from the electronic and
magnetic thermal excitations. In Fig. 8, the corresponding
lattice constants obtained in the Debye-Grüneisen model from
the DLM-CPA and SWM total energies (E) are shown. They
agree well with each other and with the results by Liot and
Hooley [26] obtained in similar DLM-CPA calculations.

The other results shown in Fig. 8 are obtained in the Debye-
Grüneisen model using the Helmholtz free energy, which
includes contributions from the one-electron and magnetic
excitations at the corresponding temperature. Three different
combinations have been considered and are shown in Fig. 8:
(1) LSF on Ni and TSF on Fe using entropies (21) and (20),
respectively (LSF: Ni, TSF: Fe); (2) LSF on both Fe and Ni
(LSF: Fe,Ni); and (3) TSF on both alloy components, although,
in effect, it is only on Fe, since the local magnetic moment on
Ni vanishes in this case (TSF: Fe,Ni).

As one can see, the entropy contribution produces a
considerable effect on the lattice constant. Even the inclusion

of only TSF on Fe (TSF:Fe,Ni) leads to a noticeable change
of the lattice constant at high temperature. The reason why the
TSF on Fe play so important a role in the thermal expansion
of Fe65Ni35 in the paramagnetic state can be traced back to the
quite steep increase of the local magnetic moment of Fe with
the lattice constant, as seen in Fig. 4.

The addition of the LSF on Ni (LSF: Ni, TSF: Fe) also
increases the lattice constant at high temperatures, but to a
lesser degree than TSF on Fe. Even more drastic increase of
the high temperature lattice constant is obtained with LSF on
both Fe and Ni (LSF: Fe,Ni). As mentioned above, there is
no doubt that LSF are very much relevant for Fe too, since its
magnetic moment is quite sensitive to the lattice constant and
magnetic state.

However, the LSF energy of Fe, which has minimum at
1.77μB , does not resemble a parabola, and therefore the use
of (21) here should be considered as a very rough estimate.
Nevertheless, it is clear that the LSF on Fe should be considered
too in the accurate modeling of the Invar effect in Fe65Ni35.
This point will be also clear in the next section, where
the effects of the magnetic long- and short-range order are
considered.

C. Contribution from magnetic long- and short-range
order effects

As demonstrated above (see Fig. 7), the inclusion of the
MSRO leads to a noticeable increase of the 0 K lattice
constant, especially in the case of magnetic states in the
vicinity of the Curie temperature. Consequently, this results
in the corresponding shift of the equilibrium lattice constants
at finite temperatures obtained in the Debye-Grüneisen model.
In Fig. 9, we show the SWM results, which include the MSRO
effects, and the PDLM-CPA results by Liot and Hooley [26]
where the effect of the MSRO is absent. Clearly, the MSRO
leads to a substantial shift of the lattice constant. The inclusion
of the MSRO effects changes also the slope of the temperature
dependence of the lattice constant in the temperature range
between 0 and 400 K from negative in the PDLM-CPA
calculations to positive, thereby making theory consistent with
the experimental data.

As demonstrated in the previous section, one has also to
account for the magnetic entropy contribution in quantitative
analysis of the thermal lattice expansion in Fe-Ni alloys.
Fortunately, it can be easily done within the SWM for the
TSF since the magnitude of the magnetic moment entering
(20) is just the average magnitude of the magnetic moment in
the SWM calculations. Then the TSF magnetic entropy in the
SWM in the presence of magnetic long- and short-range order
can be determined using a PDLM-like single-site mean-field
approximation, which is consistent with the corresponding
definition of the total energy in the SWM [see Eq. (16)]:

SPDLM = (1 − s0)
∑

i

ci ln(1 + mi). (24)

Here, s0 is the reduced magnetization and ci and mi are the
concentration and local average magnetic moment of alloy
component i. In Heisenberg systems with localized type of
magnetism, the local magnetic moments are constant, but this
is not the case in Fe-Ni alloys, and therefore they have been
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FIG. 9. Lattice constant of Fe65Ni35 obtained from the SWM total
energy calculations (SWM) without and with the PDLM entropy
(SWM + SPDLM), from DLM calculations with LSF on Ni and TSF
on Fe and LSF on both elements. The experimental data are taken from
Ref. [64]. Liot and Hooley EMTO-CPA results are from Ref. [26].
The arrow (a0) indicates the equilibrium lattice constant obtained in
the FM state without the zero point lattice vibration contribution.

determined as the average over all the magnetic moments of
spin spirals except for q = 0, weighted according to the given
MSRO.

Equation (24) does not account, however, for the MSRO. In
an approximate way, it can be done by using s0 = ξ1, i.e.,
the value of the spin-spin correlation function at the first
coordination shell. This, at least, provides a smooth behavior
of the entropy as a function of magnetic state near the Curie
temperature.

The lattice constant of Fe65Ni35 with MSRO and TSF is
shown in Fig. 9 (SWM + TSF). Although accounting for the
TSF improves the results for the lattice constant near the Curie
temperature (500 K), still the lattice constant has a pronounced
minimum in this region. The experimental lattice constant, in
contrast, exhibits a very smooth temperature dependence with
two different slopes below and above the Curie temperature. It
is clear that something is still missing in the theory, and this is
most probably the LSF, the proper account of which can lift up
the lattice constants in the paramagnetic region and eliminate
the minimum at the Curie temperature.

The point is that the SWM results are in fact in good
agreement with experimental data up to 400 K in the FM
region, but are shifted up by approximately 0.01 Å. In the
paramagnetic region, this shift, however, disappears, and the
inclusion of the TSF helps but little. An additional shift can
be obviously obtained from the LSF, which is obvious if one
compares the DLM+LSF results with the DLM results by Liot
and Hooley in Fig. 9. The LSF are small in the FM state and
practically disappear with increasing magnetization—and vice

versa, with decreasing magnetization—while, approaching the
magnetic transition, the role of the LSF increases. Therefore
one can speculate that they are important in order to reproduce
the smooth temperature dependence of the lattice constant in
Fe65Ni35 near the Curie temperature.

Thus, both contributions, MSRO and LSF, are important for
a quantitatively correct description of the thermal expansion
in Fe-Ni alloys. The problem is, however, that it is not clear
how to combine the LSF formalism with the SWM, which
seems to be at the moment the only practical theoretical tool
that allows the inclusion of the MSRO effects in random
alloys. Most probably, the solution requires the development
of other types of techniques, which effectively combine these
two finite-temperature features of the itinerant magnets.

VII. SUMMARY

(1) The spin-wave method is generalized here to the
ferromagnetic state.

(2). The developed SWM in combination with the CPA
spin-spiral calculations is used then to calculate the contribu-
tion from the magnetic long- and short-range order to the total
energy of the Fe65Ni35 Invar alloy.

(3) The calculations show that the MSRO effects yield a
significant contribution to the temperature dependence of the
lattice constant. In particular, they correct the PDLM-CPA
results in the FM region up to 400 K, producing the thermal
lattice expansion consistent with the experimental data.

(4) The entropy contribution associated with the LSF and
TSF has been considered in the ab initio modeling of the Invar
effect. It provides a quite significant shift of the lattice constant
at high temperatures in the paramagnetic state, and should be
considered in the accurate modeling of the thermal expansion
in Fe-Ni alloys.

(5) Although both the MSRO effect and LSF are important
for accurate calculations of the equilibrium lattice constant
of Fe-Ni alloys at elevated temperatures, it is practically
impossible to include them together in the modeling within the
theoretical techniques used here. This results in an abnormal
behavior of the temperature dependence of the lattice constant
close to the Curie temperature.

(6) The magnetic transition temperature in the fcc Fe-Ni
alloys is calculated taking the LSF on Ni into consideration.
It is demonstrated that the LSF on Ni provide a substantial
strengthening of the Ni-Ni and Fe-Ni magnetic exchange
interactions in the paramagnetic state.

ACKNOWLEDGMENTS

The author acknowledges the support of the Swedish
Research Council (VR Project No. 2015-05538), the VINNEX
center Hero-m, financed by the Swedish Governmental
Agency for Innovation Systems (VINNOVA), Swedish indus-
try, and the Royal Institute of Technology (KTH). Calculations
were done using NSC (Linköping) and PDC (Stockholm)
resources provided by the Swedish National Infrastructure
for Computing (SNIC). The support from the Austrian
federal government (in particular from Bundesministerium
für Verkehr, Innovation und Technologie and Bundesmin-
isterium für Wirtschaft, Familie und Jugend) represented

174432-10



FIRST-PRINCIPLES MODELING OF THE INVAR EFFECT . . . PHYSICAL REVIEW B 95, 174432 (2017)

by Österreichische Forschungsfürderungsgesellschaft mbH
and the Styrian and the Tyrolean provincial government,
represented by Steirische Wirtschaftsfürderungsgesellschaft
mbH and Standortagentur Tirol, within the framework of the
COMET Funding Program, is also gratefully acknowledged.

APPENDIX A: SPIN-SPIRAL AND NONCOLLINEAR
CALCULATIONS BY THE EMTO-CPA METHOD

The present implementation of noncollinear and spin-spiral
calculations in the EMTO-CPA Green’s function method (in
the Lyngby version of the EMTO Green’s function code)
is done within the atomic sphere approximation, where the
magnetic configuration is site projected, with the magnetic
moment of a site given by the integrated magnetic density
within the corresponding atomic sphere:

mi =
∫

�i

dr m(r − Ri). (A1)

Here, m(r − Ri) is the magnetic density centered at site i in
position Ri , and mi is the magnetic moment of site i.

The magnetic configuration of the system is then given by
polar angels θi and φi of the local magnetic moments mi =
mi (sin θi cos φi, sin θi sin φi, cos θi) of each site relative to the
z axis of the global frame of reference. If the local magnetic
moment mi is defined in the local frame of reference along
the local z direction, it transforms to the global frame by the
corresponding spin- 1

2 rotation matrix [32,65]:

Ui =
[

cos(θi/2)eiφi/2 sin(θi/2)e−iφi/2

− sin(θi/2)eiφi/2 cos(θi/2)e−iφi/2

]
. (A2)

As demonstrated by Mryasov et al. [65], in the site-
projected formalism, the electronic structure of a noncollinear
system in the KKR or LMTO methods can be obtained using
the local frame references of individual sites by the following
transformation of the structure constants, or slope matrix
[36,37] in the case of the EMTO method:

S̃ij

LL′ = U−1
i Sij

LL′Uj . (A3)

Here, Sij

LL′ = ISij

LL′ and S
ij

LL′ is the slope or structure constants
matrix of the EMTO method and I is the unit matrix. Since Ui

is unitary, U−1
i = U†

i .
A similar formalism is valid in the case of spin-spiral

calculations [65]. Here, it is outlined for Bravais lattices in
order to simplify notations, since its generalization to the
multisite systems is straightforward. The spin-spiral magnetic
configuration for a fixed azimuth angle θ and wave vector q is
determined by

mi = mi( sin θ cos(qRi), sin θ sin(qRi), cos θ ), (A4)

and the corresponding site-projected spin rotation matrix (A2)
is obtained by the substitution φi = qRi .

In the absence of the spin-orbit interaction, one can use
the generalized Bloch theorem [32,65], which allows one to
disentangle the magnetic and crystal structures’ translational
symmetries, thereby reducing electronic structure calculations
to the primitive unit cell of the underlying magnetic structure
Bravais lattice. A spin-spiral magnetic structure in this case is
set up by the corresponding transformation of the structure

constants (or slope matrixes). In particular, the structure
constants or slope matrix for a spin-spiral with wave vector
q and azimuth angle θ are

SLL′(k) = U−1

[
SLL′(k − q

2 ) 0

0 SLL′(k + q
2 )

]
U, (A5)

where spin transformation matrix U is given by (A2) with
φ = 0.

The potential function of the EMTO method, DL(z) [36,37],
for particular energy z and angular magnetic moments L =
(l,m), is obtained in the local frame of reference and thus it is
a diagonal matrix in the spinor basis with “spin-up” and “spin-

down” components: D
( 1

2 )
L (z) and D

(− 1
2 )

L (z). The path operator,
whose poles are the electronic spectrum of the system and
which is the main quantity for calculating electron density in
the Green’s function formalism, is then

gLL′(k,z) = 1

SLL′(k,z) − DL(z)
. (A6)

The above formalism is in fact straightforwardly gener-
alized to the case of random alloys within the single-site
coherent potential approximation. The path operator of the
CPA effective medium is

g̃LL′(k,z) = 1

SLL′(k,z) − D̃LL′(z)
, (A7)

where g̃LL′(k,z) and D̃LL′(z) are the path operator and potential
function of the CPA effective medium, respectively. The latter
is in general a nondiagonal matrix in the angular moment
representation.

The CPA effective medium path operator and potential
function are found from the set of CPA equations [35] but
in the spinor representation:

g̃LL′(z) =
∫

dkg̃LL′ (k,z) ≡ g̃, (A8)

gα = g̃ + g̃[Dα − D̃]gα, (A9)

g̃ =
∑

α

cαgα. (A10)

Here, cα , Dα , and gα are the concentration, potential function,
and on-site path operator of alloy component α in the CPA
effective medium. Both Dα and gα are diagonal in the spinor
representation, and therefore the rest of the formalism for the
self-consistent and total energy calculations is similar to the
one for the collinear EMTO-CPA method [38].

APPENDIX B: DETAILS OF THE SPIN-WAVE
METHOD CALCULATIONS

The total energy of a system in magnetic configuration α,
specified by its long-range order parameter sα

0 and spin-spin
correlation functions ξSRO

α (R) or ξSRO
α (q), is given by (16). In

the actual spin-wave calculations, when the Monkohrst-Pack
[42] q-point grid is used, the total energy of the system in
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magnetic state α for a particular volume per atom, �, is

Eα(�) = sα
0 E(q = 0,�)

+
∑

i

wiE(qi ,�)
[
1 − sα

0 + ξSRO
α (qi)

]
, (B1)

where qi and wi are the q-points of the grid and their weights.
E(qi ,�) is the total energy of a system for a planar spin-spiral
(θ = π/2) with wave vector qi and volume per atom �. E(q =
0,�) is the energy of the ferromagnetic state (point q = 0 can
be in the grid or calculated separately).

Thus, the set of the total energies E(qi ,�) on the q-point
grid uniquely defines the total energy of the system in any
given magnetic configuration α, Eα(�). The accuracy of such
a representation of a particular magnetic state can be always
checked for the given grid of q points by calculating ξSRO

α (R)
from ξSRO

α (qi) [29]. Although, obviously, there always be a
problem with ξSRO

α (R) for R → ∞ when a finite grid is used,
in most cases it cannot affect the result for the total energy
due to the relatively short-range character of the magnetic
exchange interactions, which is in particular the case of Fe-Ni
alloys, where the the 7×7×7 Monkhorst-Pack grid provides
quite accurate total energies for the whole range of magnetic
states.
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