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Accurate model of the stripe domain phase of perpendicularly magnetized multilayers
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We develop an accurate analytical model for the stray field energy of parallel stripe domains in multilayer
films with perpendicular magnetic anisotropy, taking into account the effects of finite domain wall width and
variable domain wall angle. By minimizing the total energy, we predict the domain width, the domain wall width,
and the domain wall angle for given material parameters. We show how the domain wall width depends on the
film thickness and the domain size. We explore the domain wall angle as a function of Dzyaloshinskii-Moriya
interaction (DMI) and derive a threshold value Dthr beyond which the system is in a Néel state. We find that
thicker films require larger values of DMI to stabilize the Néel state. Finally, we test the effective medium theory,
which allows treating multilayers as effective single layer films, and provide criteria for the applicability of
the model in the presence of both surface and volume stray fields. Our results are supported by micromagnetic
simulations, which indicate that the predictions are still precise even if the system is in a labyrinthine domain
state. Using our model, otherwise inaccessible magnetic parameters, such as the DMI constant or the exchange
constant, can now be obtained straightforwardly from static measurements of the stripe domain width in such
films.
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I. INTRODUCTION

Magnetic thin films with perpendicular magnetic anisotropy
(PMA) play a significant role in modern applications, such as
magnetic memory and logic devices. Multidomain patterns in
these films form as a competition between various energies,
which has been appreciated since the days of Kittel [1].
A number of theoretical approaches based on the so-called
wall energy model [2–4] have been presented in the past
to describe the energy terms in magnetic thin films and in
multilayers. These approaches considered domains separated
by sharp domain walls, leading to two competing energy terms:
magnetostatic energy and domain wall energy. These terms
are crucial for understanding of various magnetic structures
formed in the films. The structures themselves, in turn, can
play a role in determining the magnetic parameters. For
instance, the domain width can be used to measure [5–8] the
exchange stiffness A or the Dzyaloshinskii-Moriya interaction
(DMI) [9–11] in multilayer films. However, the derivation of
magnetic constants from earlier theories, which ignore the
internal structure of the domain wall, leads to significant errors.
In this paper, we present an analytical model that considers
magnetic domains with an accurate domain wall profile, which,
unlike earlier theories, also accounts for the magnetostatic
interactions between magnetic charges residing within the
domain walls. Our model leads to substantial improvements
over earlier models at the same level of complexity. In
particular, we introduce a thickness dependence of the domain
wall width � and the domain wall angle ψ , for which we
provide simple analytical expressions in Eqs. (20) and (22). In
analogy to previous theories, the domain widths of majority
and minority stripe domains are obtained from numerical
minimization of the total energy function. The revised total
energy function of a multilayer film in a multidomain state,
as presented in Eq. (31), is the final main result of the paper.
Combined, Eqs. (20), (22), and (31) are sufficient for any
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applications. The interested reader can understand the origin
of these equations from the step-by-step derivations presented
in the paper and the appendix.

In the wall energy model, the energy density of the wall
is assumed to be a constant parameter σ that depends on the
magnetic material. The surface stray field energy of the binary
stripe state, in which domains are viewed as an alternating
sequence of parallel strips, has been calculated for single
layer films [3,12] and in multilayers [13,14]. Minimization
of the total energy yields the equilibrium domain width
W , which depends on domain wall energy σ , saturation
magnetization Ms , and film thickness d. The resulting curve
W (d) possesses a characteristic minimum and shifts up for
larger σ . Additionally, a bubble lattice phase has also been
considered [2]. It becomes more stable than the stripe phase
above a critical out-of-plane field. A labyrinthine domain
pattern, frequently occurring in experiments, has, to the best
of our knowledge, not been analyzed so far. The wall energy
model is valid only for a bulk material with sharp domain walls,
i.e., when � � W and � � d, where � is the domain wall
width and d is the film thickness. There exist a few corrections
to this model, but they only involve the surface stray field
energy of a stripe domain state with simplistic linear [15] and
sine domain walls [16]. However, studies for stripes with a
realistic profile are still absent in the literature. Also, stray
field interactions between domain walls have been ignored
so far. As we show later in the paper, ignoring these effects
for domains of intermediate size (W < 50�) leads to wrong
values of extracted parameters, such as exchange stiffness or
DMI strength.

It is commonly agreed that the profile of straight domain
wall (with a domain wall plane orthogonal to the x direction)
is analytically described by

mx(x) = sin(ψ) cosh−1(x/�), (1)

my(x) = cos(ψ) cosh−1(x/�), (2)

mz(x) = tanh(x/�), (3)
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FIG. 1. (a) The profile of a straight domain wall in a multilayer
film with arrows denoting the magnetization distribution (adapted
from Ref. [17]). (b) Top view and (c) side view of the magnetization
in a magnetized multidomain state with domain periodicity λ, domain
width W , domain wall width �, and domain wall angle ψ . The
schematic distribution of surface (volume) charges is depicted with
red (white) plus and minus signs.

where m = (mx,my,mz) is the normalized magnetization, �

is the domain wall width, and ψ is the domain wall angle
(see Fig. 1). Depending on ψ , the domain walls belong to the
Bloch type if sin(ψ) = 0, Néel if | sin(ψ)| = 1, and transient
for all other cases. Stripe domains of width W and periodicity
λ [see Fig. 1(b)] can be described as a periodic repetition of
the single domain wall profile (1)–(3), as long as the distance
between the domain walls is at least 8�, as shown later in this
paper. The magnetostatic energy associated with interactions
between volume charges (i.e., the volume stray field energy)
formed in a single-wall state with a given profile has been
calculated in single layer films and multilayers [17]. The result
is a thickness-dependent transverse anisotropy, i.e., a local
hard-axis anisotropy that describes the energetic costs to tilt
the spins from Bloch to Néel orientation. The surface stray
field energy of single walls has been calculated for ultrathin
and ultrathick film limits [18,19]. Within those limits, the
equilibrium wall parameters can be expressed as

� =
√

A/K, (4)

σ = 4
√

AK, (5)

where K is the local effective anisotropy value, which should
not be confused with the total effective magnetic anisotropy
energy Keff, as measured from the in-plane and out-of-plane
hysteresis loops,1 [20]. Depending on the film thickness, K

can be estimated as

K =
{

Ku − μ0M
2
s

2 = Keff for ultrathin films,

Ku + μ0M
2
s

2 sin2(ψ) for ultrathick films,
(6)

where Ku is magnetocrystalline anisotropy. The motivation
for these equations comes from the fact that in ultrathin films

1Keff, when defined as the difference in the areas of the in-plane and
out-of plane loops, is equal to Ku − μ0M

2
s /2 regardless of the film

thickness.

it is the interaction between surface charges surrounding the
domain wall that dominates, while in thicker films volume
charge interactions take over.

In this paper, we calculate the equilibrium parameters of
an isolated wall with a profile (1)–(3) including the effects
of DMI and (surface and volume) stray field energies. We
quantitatively predict the Bloch-Néel evolution of the wall as
a function of DMI and film thickness. We also consider the
multidomain state, calculating its equilibrium domain size and
domain wall width. We extend our calculations to multilayers,
for which we derive the exact analytical energy expressions
and rigorously prove the limits of the previously suggested
effective medium approach [5,8,13] with incorporated Zeeman
and volume stray field energy effects. We use micromagnetic
simulations to confirm our calculations as well as to compare
the labyrinthine (mazelike) domains that are more common
experimentally, with the binary stripe pattern.

II. CALCULATIONS OF EQUILIBRIUM PARAMETERS

In the following section, we calculate the equilibrium
parameters, such as domain wall width �, domain wall angle
ψ , and domain width W in magnetic films with PMA. We
consider a domain wall state described by Eqs. (1)–(3) with
demagnetized stripe domains (i.e., the domain periodicity is
λ = 2W ). The total energy of the film per unit volume can be
summarized as

E i,j
tot (�,W,ψ) = 1

W

[
2�Ku + 2A

�
+ πD sin(ψ)

+ σ
i,j

d,s (�,W ) + σ
i,j

d,v(�,W, sin(ψ))
]
, (7)

where σ
i,j

d,s and σ
i,j

d,v are the surface and the volume stray field
energies per domain wall area with i denoting the number of
domain walls and j is the number of multilayer repeats. Local
energy terms are derived in Appendix A. Here, by D we mean
the interfacial DMI constant, although the bulk DMI can be
incorporated by adding [21] an extra term −πDbulk cos(ψ) to
Eq. (7). Nonlocal magnetostatic interactions σ

i,j

d,s , σ
i,j

d,v can be
calculated using the Coulomb integral

E i,j

d = μ0

8π

∫∫
d3r d3r ′ρα(r)ρβ(r′)

1

|r − r′| , (8)

with the volume charges ρv = −∇ · M and the surface
charges ρs = (M · nk)δ(z − zk), where M = Msm, the index
k enumerates the surfaces, and nk is the surface normal. The
exact solutions for single-wall and multidomain states in single
layer and in multilayer systems are provided in Appendixes B
and C. The strategy behind all the calculations there is to
eliminate the r − r′ dependency by transforming to Fourier
space, in which the integrations become more straightforward.
This allows us to eventually reduce a sixfold integral either to
an analytical function or to a sum over a single variable. Note
that the cross interactions between the surface and the volume
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FIG. 2. Domain wall width as a function of film thickness from
micromagnetic simulations with 1-nm grid (dots), from numerical
solution of the isolated wall theory and from our multidomain theory
(dashed).

charges vanish due to the symmetry2 of our system, i.e.,

E i,j

d,sv ≡ 0. (9)

The minimization of Eq. (7) with respect to ψ,�,W leads to
the system of nonlinear equations3

sin(ψ) = f̃

(
− πD

2σ
i,j

d,v(ψ = 3π/2)

)
,

∂σ
i,j

d,s

∂�
+ ∂σ

i,j

d,v

∂�
= 2A

�2
− 2Ku, (10)

∂
(
σ

i,j

d,s/W
)

∂W
+ ∂

(
σ

i,j

d,v/W
)

∂W
= 2�Ku + 2A

�
+ πD sin(ψ)

W 2
,

where

f̃ (x) =
{
x, x � |1|
sgn(x), else (11)

with the first equation in (10) stemming from the form of the
volume charge interactions σ

i,j

d,v(ψ,�,W ) ≡ sin2(ψ)α(�,W ).
Note that the form of the equation allows us to separate
the variable ψ from other variables and, hence, reduce the
number of independent equations by one. Below, we describe
the results of the total energy minimization for single and
multilayer films.

2For magnetic domains separated by domain walls with the profile
from Eqs. (1)–(3), assuming that the chirality and the width of the
walls are constant over all layers and domains, the distribution of
the surface charges ρs is antisymmetric with respect to z, while the
distribution of the volume charges ρv is a symmetric function with
respect to z. Hence, their product is an antisymmetric function and
so the mutual interaction between these charges is zero.

3In this paper, we choose the domain wall angle and DMI to follow
sin(ψ) < 0, D > 0 as a convention.

A. Single domain wall

First, consider an isolated domain wall in a single, uniform
layer of magnetic material. Figure 2 illustrates the results of the
micromagnetic simulations for the equilibrium � as a function
of film thickness d. We can immediately observe an intrinsic
thickness dependence of � that is caused by the magnetostatic
interactions, which change the local value of anisotropy K in
the proximity of the domain wall.

To describe the domain wall profile theoretically, we can
use the expression for the stray field energy associated with the
volume charges inside of the isolated domain wall obtained by
Büttner et al. [17]:

σ
1,1
d,v (�,ψ) = πμ0M

2
s �2 sin2 (ψ)

2d
G

(
d

2π�

)
, (12)

with

G(α) =
∫ +∞

0
dq

e−qα + qα − 1

q cosh2(q/4)

= −8

{
�−2(α + 1) − �−2

(
α + 1

2

)

− α ln[(α + 1)]

+α ln

[


(
α + 1

2

)]
− �−2(1) + �−2

(
1

2

)}
, (13)

where �−2(z) = ∫ z

0 dt ln (t) is the second antiderivative
of the digamma function. For the stray field energy of
surface charges surrounding the domain wall, we can use the
expression that we derive in Appendix B [Eqs. (B11) and
(B20)]. Our derivation of the surface stray field energy deals
with two domain walls forming a magnetic domain of width
W , but we can isolate them by considering the limit W → ∞:

σ
1,1
d,s (�) = lim

W→∞
σ�

d,s

= μ0M
2
s

πd

{
πd� + d2

2
− d2 ln

(
d

π�

)

+ 2πd� ln

[


(
d

π�

)]
− 2π2�2�−2

(
d

π�

)}
,

(14)

where we ignored the term from Eq. (B11), which has no �

dependence. After the total energy minimization, the first two
equations of the system (10) take the form

sin(ψ) = f̃

(
− 2πD

�μ0M2
s G∗( d

2π�

)
)

,

μ0M
2
s sin2(ψ)

8

(
1 + �

∂

∂�

)
G∗

(
d

2π�

)
+ 1

2

∂σ
1,1
d,s

∂�

= A

�2
− Ku, (15)

where G∗(x) = G(x)/x. By inserting sin(ψ) from the first
equation in system (15) into the second one, we obtain an
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expression that depends only on �.4 In the limit of small and
large d, the resulting system can be expanded in series, which
leads to the following explicit form for the equilibrium domain
wall width:

lim
d→0

� = �0 − μ0M
2
s

4πKeff
d, (16)

lim
d→∞

� = �∞ =
√

A

Ku + μ0M2
s

2 sin2(ψ)
, (17)

where

�0 =
√

A

Keff
, (18)

Keff = Ku − μ0M
2
s

2
. (19)

Although the exact solutions for films of an intermediate
thickness can be found only numerically, we can use the fact
that the resulting � is a linear function of d for ultrathin films
and a constant function for ultrathick films and approximately
extrapolate � to the intermediate thickness regime as follows:

�(d,ψ) = �0 − 1
2π(Q−1)

d
+ 1

�0−�∞(ψ)

, (20)

with the quality factor Q being defined as

Q = 2Ku

μ0M2
s

. (21)

The domain wall width as described by the simplified explicit
Eq. (20) accurately represents the exact implicit result of
Eq. (15), unless Q is very close to one. Specifically, we find
that in the intermediate thickness regime the relative error of
Eq. (20) is below 10% for Q � 1.2, with the error decreasing
rapidly for larger Q. For thin and thick films, Eq. (20) becomes
precise for any Q > 1.

The domain wall width implicitly depends on DMI
[Fig. 3(a)] via the ψ = ψ(D) dependence of �. Such a
dependence exists only for transient walls, in which the
contribution of the volume stray field energy depends on the
domain wall angle ψ . After plotting the numerical solution for
sin(ψ) [Fig. 3(b)], we can see that thicker films require larger
values of DMI in order to stabilize Néel walls. The transient
regime spreads from DMI values of zero, at which the domain
wall has a Bloch profile, up to some threshold value Dthr of
DMI. Once D = Dthr, a transient wall becomes purely Néel.
A further increase of DMI leads to no change of domain wall
width � as a function of DMI.

Dthr can be found by imposing the Néel character of
the walls, i.e., by plugging | sin(ψ)| = 1 into Eq. (15). The
resulting numerical solution is plotted in Fig. 4(a). We can
derive the ultrathick and ultrathin film limits of Dthr and
the equilibrium ψ by inserting the analytical limits of the
equilibrium � from Eqs. (16) and (17) into the first equation
in the system (15). Just like in the case of �, we can use these

4This is an implicit equation for �.

(a)

(b)

FIG. 3. The values of equilibrium domain wall width � and
domain wall angle sin(ψ) as a function of DMI for an isolated
wall in an infinite single layer film with material parameters:
A = 1.0 × 10−11 J/m, Ms = 6.0 × 105 A/m, Ku = 5.0 × 105 J/m3.
Continuous curves represent theoretical values, corresponding to
the exact numerical solutions of (15), while dots represent single
layer micromagnetic simulations, with a slight mismatch caused by
a finite-cell size.

solutions to approximate the equilibrium ψ and Dthr in the
entire film thickness range as follows:

sin(ψ) =
{−D/Dthr, |D| < Dthr

−sgn(D), |D| � Dthr
(22)

Dthr(d) = 2μ0M
2
s

π2

d ln(2) + π

√
Ku+ μ0M2

s
2

A

. (23)

To further confirm our predictions, we performed a series
of micromagnetic simulations with MUMAX3 micromagnetic
software [22]. We used a fine monolayer grid of 1 nm
in lateral directions and the number of cells (Nx , Ny ,
Nz) = (32 768 × 512 × 1), in which we applied the periodic
boundary conditions to remove the influence of boundary
effects [23] caused by DMI. By starting from an isolated
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(a)

(b)

FIG. 4. Theoretical values of the threshold DMI. (a) Dthr as a
function of film thickness for single layer films. The dots indicate the
results from 1-nm-grid micromagnetic simulations with varying the
DMI, where Dthr was found from the minimum D, yielding a Néel
state. (b) Dthr as a function of scaling factor f = T /P for multilayer
films (via the effective medium model) with single magnetic layer
thickness T = 1 nm, and unscaled magnetic parameters Ms = 1.4 ×
106 A/m, A = 1.0 × 10−11 J/m, for different values of magnetic
layer quality factor Q = 2Ku/μ0M

2
s and multilayer repeats N .

transient wall state, we further relaxed it until the minimum
energy state was reached. Such simulations precisely confirm
the equilibrium � and ψ obtained numerically from Eq. (15).

B. Extension to stripes

Consider a single, uniform layer of a magnetized film
with a periodic domain pattern with a periodicity λ, minority
domain width of W , and domain wall width � (see Fig. 2).
In Appendixes B 2 and C 1, we calculate for the surface and
volume stray field of such a state, resulting in the following
expressions normalized per unit volume of the film:

E∞,1
d,s = μ0M

2
s

2

(
1 − 2W

λ

)2

+ 2πμ0M
2
s �2

λd

×
∞∑

n=1

sin2
(

πnW
λ

)
sinh2

(
π2n�

λ

) 1 − exp
(− 2πnd

λ

)
n

, (24)

E∞,1
d,v = 2πμ0M

2
s �2 sin2(ψ)

λd

×
∞∑

n=1

sin2
(

πnW
λ

)
cosh2

(
π2n�

λ

) exp
(− 2πnd

λ

) + 2πnd
λ

− 1

n
. (25)

We can find the equilibrium values of W and � after
incorporating the magnetostatic energies E∞,1

d,s and E∞,1
d,v into

the total energy expression

E∞,1
tot = 2

λ

[
2A

�
+ 2Ku� + πD sin(ψ)

]

+ E∞,1
d,s (Ms,d,λ,W,�) + E∞,1

d,v (Ms,d,λ,W,�,ψ)

− Ms

(
1 − 2W

λ

)
Bz, (26)

where Bz is the component of the external field along the mag-
netization direction. Considering a demagnetized state W =
λ/2, the minimization of Eq. (26) with respect to W,�,ψ leads
to Eq. (10). Figure 5 shows the results of the numerical mini-
mization procedure, i.e., the equilibrium domain width is plot-
ted as a function of film thickness for a material with Q > 1.

The equilibrium domain width W = W (d) possesses a
minimum as a function of film thickness, enclosed by a
slow increase of W towards larger d and a sharp increase
(divergence) for thinner films. Qualitatively, such a trend is in
agreement with theories developed earlier [3], which used a
constant wall energy model. Quantitatively, however, earlier
theories possess an inherent error as they completely ignore
the thickness dependence of the domain wall energy and
neglect the interwall interactions. These errors are addressed
in the multidomain model that we developed.

Our explicit model can be simplified using the following
approximation: (i) use �, ψ found from the derived single-
wall model [Eqs. (20) and (22)], (ii) plug them into the total
energy [Eq. (26)], and (iii) minimize it with respect to a single
variable W . This approach is valid (see Fig. 5, dotted-dashed
curve) because the equilibrium � depends on the domain size
W only weakly (dashed lines on Fig. 2).

Note that the DMI interaction leads to the shrinking of the
domain size by lowering the energetic cost of the formation
of domain walls. Above some critical DMI, Dcr 	= Dthr, the
multidomain state evolves into a cycloid state [23]. It is hence
useful to compare our theoretical results with micromagnetic
stripe simulations at extremes. The limits of our theory can
be tested by tuning DMI to the point at which the size of the
domain becomes equal to the domain wall width. From Fig. 6
we can see that our theory works well as long as W � 8�.
Real domains rarely exceed this limit, so our theory holds true
for the majority of experimentally relevant cases.

Our calculations are verified by micromagnetic simulations
that reproduce the desired values for W , �, and ψ (Fig. 7, dots
and stars in Fig. 5). In addition, simulations show that those pa-
rameters are also the same if the system is in a state of randomly
oriented labyrinthine domains. We attribute contradicting
experimental observations [24,25] to the effect of pinning.

C. Extension to multilayers and revised
effective medium approach

Now, consider multidomain patterns in a multilayer struc-
ture, which has N multilayer repeats with a stack periodicity
P and a single magnetic layer thickness T . In Appendixes B 3
and C 2, we provide the exact solution of Eq. (8) for the surface
σ

∞,N
d,s and volume σ

∞,N
d,v stray field energies [see Eqs. (B34)

174423-5
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(a)

(b)

FIG. 5. (a) Equilibrium domain width at remanence as a function
of film thickness for films with a single magnetic layer: from the exact
theory and from the micromagnetic simulations of the labyrinthine
and stripe state (see also Fig. 7). (b) Mismatch between various
multidomain approximations, micromagnetic simulations, and our
multidomain theory. Our theory uses the numerical minimization
of Eq. (10). The models that we compare it against are constant
wall energy models (depicted with dashed lines), and the isolated
wall approximation to our multidomain theory (shown with a dotted-
dashed line), which uses � and ψ found from the single-wall model
[Eq. (15)], followed by the minimization of Eq. (26) with respect to
a single variable W . Note that the thin film deviation of simulation
results from our predictions originates in the quantization due to a
finite simulation area, which is more restricting for larger domain
sizes, i.e., smaller film thicknesses.

and (C24)]. We thus provide the reader with all the tools to
find the equilibrium multilayer parameters λ, W , �, ψ , which
can be accomplished by minimizing the total energy

E∞,N
tot = 2

λ

[
2A

�
f + 2Ku�f + πD sin(ψ)f

]

+ E∞,N
d,s (Ms,T ,P,λ,W,�)

+ E∞,N
d,v (Ms,T ,P,λ,W,�,ψ)

− Ms

(
1 − 2W

λ

)
Bzf, (27)

FIG. 6. The ratio of the equilibrium domain size W and domain
wall width � as a function of DMI for states with Néel walls (D >

Dthr ≈ 1.0 × 10−3 J/m2) following the developed theory and mul-
tidomain stripe simulations with d = 10 nm, A = 1.0 × 10−11 J/m,
Ms = 6.0 × 105 A/m, Ku = 5.0 × 105 J/m3.

where E∞,N
d,s , E∞,N

d,v are defined as follows:

E∞,N
d,s = μ0M

2
s

2

(
2W

λ
− 1

)2 T
P

+ 2πμ0M
2
s �2

λP

∞∑
n=1

sin2
(

πnW
λ

)
n sinh2

(
π2n�

λ

)

(a) (b) (c)

FIG. 7. Simulated demagnetized multidomain patterns of a mate-
rial with A = 1.0 × 10−11 J/m, Ms = 6.0 × 105 A/m, Ku = 5.0 ×
105 J/m3, D = 1.5 × 10−3 J/m2 with applied periodic boundary
conditions. (a) Binary stripe pattern (10 μm × 3 μm) which was
selected after comparing the total energies of the simulated states
with various number of stripes and finding the one that results in the
smallest total energy (after the relaxation procedure), with the cell size
of 1 nm × 1 nm × 100 nm. The true domain width at the absolute
energy minimum can be found after fitting the parabolic discrete
curve Etot = Etot(Nstripes) and locating the minimum of the resulting
curve. (b) Labyrinthine (maze) pattern (10 μm × 10 μm) that was
found after the relaxation procedure of a randomly magnetized state;
the cell size is 2 nm × 2 nm × 100 nm. (c) FFT of the respective state
(magnified 10×) used for measuring domain width W at equilibrium.
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×
{

2 sinh
(

πnT
λ

)
sinh

(
πn(P−T )

λ

)
sinh

(
πnP

λ

)
+ sinh2

(
πnT

λ

)
N sinh2

(
πnP

λ

)(
1 − e− 2πPNn

λ

)}
, (28)

E∞,N
d,v = 2πμ0M

2
s �2 sin2(ψ)

λPN

∞∑
n=1

sin2
(

πnW
λ

)
n cosh2

(
π2n�

λ

)
×

{
N

(
e− 2πnT

λ + 2πnT
λ

− 1

)

+ e− 2πn(PN+T )
λ

(
e

2πnT
λ − 1

)2

(e
2πnP

λ − 1)2

× (
e

2πnP
λ + e

2πnP(N+1)
λ (N − 1) − N e

2πnNP
λ

)}
. (29)

However, at this point the explicit energy expressions
become too involved. Instead, we prove and test a single
layer effective medium model [5,8,13]. In accordance with this
model, the multilayers can be effectively treated as a single
layer film with thickness d = NP with magnetic constants
scaled by a factor f = T

P [8,13]. Such a model has been intro-
duced previously, but neither a rigorous proof nor the limits
of validity have been discussed. The error of the equilibrium
domain width, extracted from the effective medium model,
is plotted in Fig. 8. As we find in Appendixes B 3 and C 2,
the effective medium model is accurate if W � P , W � �

(imposed by the surface stray field energy) and P � 2π�

(imposed by the volume stray field energy). The conditions
are met in most experimentally relevant cases. At these limits,
the surface stray field energy not only scales Ms by a factor f ,
but also generates an additional anisotropylike offset term Ka

[see Eq. (B38)] defined as

Ka = μ0M
2
s

2

(
f − f 2

)(
1 − 4�

λ

)
at 2�/λ → 0, (30)

which results in modifying the magnetocrystalline energy term
as well as in making a constant energy offset. The volume
stray field energy density, as we demonstrate in Appendix C 2,
should be scaled by a factor f 2, which is equivalent to the
scaling of Ms by the factor f . Overall, we can express the
energy of the mutidomain multilayers in the effective medium
model as follows:

E∞,N
tot, eff = 2

λ

[
2A′

�
+ 2K ′

u� + πD′ sin(ψ)

]

+ E∞,1
d,s (Ms = M ′

s ,d = PN )

+ E∞,1
d,v (Ms = M ′

s ,d = PN )

+ C − M ′
s

(
1 − 2W

λ

)
Bz, (31)

where the effective constants are defined as

A′ = f A, D′ = f D, M ′
s = f Ms, (32)

K ′
u = Kuf − μ0M

2
s

2
(f − f 2), C = μ0M

2
s

2
(f − f 2).

(33)

(a)

(b)

FIG. 8. Equilibrium domain width as a function of scaling factor
f and the number of multilayer repeats N for a multilayer film
with magnetic layer of thickness T = 1 nm, and magnetic parameters
Ms = 1.4 × 106 A/m, Ku = 2.7 × 106 J/m3, A = 1.0 × 10−11 J/m,
D = 1.5 × 10−3 J/m2. Solid lines represent the explicit multilayer
theory solution, dashed lines are the effective medium approximation.
The minimum domain width is reached at the number of multilayer
repeats N ≈ 15. The equilibrium domain wall width (not shown)
ranges from � ∼ 2.5 nm for small f to � ∼ 1.7 nm for films with
large f .

The form of the scaling of magnetocrystalline anisotropy
term Ku obtained in the Eq. (33) is equivalent to the claim by

Woo et al. [8] that the effective anisotropy Keff = Ku − μ0M
2
s

2
should be scaled by a factor f . Also, the derived constant term
C is equivalent to an extra surface stray field energy term found
by Suna [13] in a multilayer binary domain pattern.

III. CONCLUSIONS

We have developed a theory to calculate the equilibrium
domain size W , domain wall width �, and domain wall
angle ψ in multilayers possessing a multidomain state with
an accurate profile of domain walls. This theory can be
used inversely to find material parameters such as DMI or
exchange stiffness from the known domain width. We have
also verified the validity of the effective medium model, which
allows treating multilayers effectively as a single layer film,
and have found the limitations of the model for multidomain
multilayers. Using micromagnetic simulations, we have found
that the labyrinthine and stripe phases result in very close
values of the equilibrium domain width.
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APPENDIX A: LOCAL ENERGY TERMS

To express the local energy terms of the isolated wall state
per domain wall area, we need to integrate the well-known
expressions of micromagnetic energy densities using the one-
dimensional magnetization profiles (1)–(3). Thus, the energy
of magnetocrystalline anisotropy, exchange interaction, and
DMI [11,21] per domain wall area can be found as follows:

σk = Ku

∫ +∞

−∞
dx[(mx)2 + (my)2] = 2�Ku, (A1)

σexch = A

∫ +∞

−∞
dx

[(mx

∂x

)2
+

(my

∂x

)2
+

(mz

∂x

)2
]

= 2A

�
,

(A2)

σDMI = D

∫ +∞

−∞
dx

[
mx

∂mz

∂x
− mz

∂mx

∂x

]
= πD sin(ψ).

(A3)

APPENDIX B: SURFACE STRAY FIELD
ENERGY CALCULATIONS

1. Single-domain case

A single stripe domain is an area of width W separated
by domain walls. The profile of the normalized out-of-plane
component of the local magnetization mz(r) = mz(x) can be
written as

mz(x) = 1 − tanh

(
W + 2x

2�

)
− tanh

(
W − 2x

2�

)
(B1)

= (f1 ∗ g)(x) (B2)

with

g(x,W ) =
{−1 |x| < W/2,

1 else, (B3)

f1(x,�) = 1

2�

1

cosh2 (x/�)
. (B4)

The unit box function g(x,W ) is a model for a domain of
width W with zero domain wall width and the convolution
with the f1(x,�) yields a finite domain wall width �. The
function for mz(x) is not an exact model for a 360◦ domain
wall [26], but it is a very accurate approximation for W > 8�.
The out-of-plane component of the magnetization determines
the surface charge density via

ρs(r) = [δ(z − d) − δ(z)]Msmz(r), (B5)

where d is the film thickness, Ms is the saturation magneti-
zation. The in-plane components mx and my do not generate
surface charges and the interaction of surface charges and

volume charges is zero in the average over z.5 In general, the
stray field energy Ed,s related to surface charges of density
ρs(r) can be calculated via the integral

Ed,s = μ0

8π

∫∫
d3r d3r ′ρs(r)ρs(r′)

1

|r − r′| . (B6)

In the following, we express our results in terms of the
energy per unit area of the domain wall

σd,s = Ed,s − E0

2Ld
, (B7)

where L is the length of the domain, measured in the y

direction, and E0 is the energy of a homogeneously magnetized
film. The factor 2 in the denominator comes from the fact that
the domain has two domain walls. With the tools provided
in Ref. [17], the integration along y and z can be performed
analytically. In the limit L → ∞, the integration kernel reads
as

h(x,d) = lim
L→∞

1

2L

∫∫ L/2

−L/2
dy dy ′

∫∫ d

0
dz dz′

× [δ(z − d) − δ(z)][δ(z′ − d) − δ(z′)]√
x2 + (y − y ′)2 + (z − z′)2

(B8)

= ln(x2 + d2) − ln(x2). (B9)

With the help of h(x), we can write σd,s as

σd,s = μ0M
2
s

8πd

∫∫
dx dx ′

× [(f1 ∗ g)(x)(f1 ∗ g)(x ′) − 1]h(x − x ′,d). (B10)

The −1 represents the subtraction of the stray field energy of
a homogeneously magnetized film. Because of the −1 term, it
is difficult to write the integral in Fourier space. However, by
further subtracting the known stray field energy [2] of a stripe
domain with zero domain wall width

σ 0
d,s = μ0M

2
s

8πd

∫∫
dx dx ′[g(x)g(x ′) − 1]h(x − x ′,d)

= −μ0M
2
s dv

{
1 − (2π )−1

[
4 arctan(v) − 2v ln(v)

+
(

v − 1

v

)
ln(v2 + 1)

]}
, (B11)

where v = W/d, we can write the difference

σ�
d,s = σd,s − σ 0

d,s

= μ0M
2
s

8πd

√
2π

∫
dk

[
2πf̂1

2
(k) − 1

]
ĝ2(k)ĥ(k,d)

(B12)

as a single integral in Fourier space [17]. Here, the hat above
the functions denotes a Fourier transform

f̂1(k) = 1√
2π

∫
dx f1(x)eikx . (B13)

5If we assume the spin structure to be uniform along the z direction.
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To derive Eq. (B12), we made use of the fact that

F(f1 ∗ g)(k) =
√

2πf̂1(k)ĝ(k) (B14)

and that both f̂1 and ĝ are real valued. The Fourier space
functions are

2πf̂1
2
(k) = π2

4
�2k2 1

sinh2
(

π�k
2

) , (B15)

ĝ2(k) = 8

π

1

k2
sin2

(
kW

2

)
, (B16)

ĥ(k,d) =
√

2π
1 − exp(−|k|d)

|k| . (B17)

Actually, the Fourier transform of g contains more terms
proportional to δ(k), but those terms integrate to zero because
the remaining integrand is zero at k = 0. All together, the
equation for σ�

d,s reads as

σ�
d,s = 4

μ0M
2
s

πd
�2

∫ ∞

0
dq

(
π2

4
q2 1

sinh2
(

πq

2

) − 1

)

× sin2

(
qw

2

)
1 − exp(−qt)

q3
, (B18)

where we substituted q = k�, reduced the symmetric integral
to positive values of q, and introduced the new variables t =
d/� and w = W/�. The integral can be solved analytically
by noting that 1 − e−qt = ∫ t

0 qe−qx dx, changing the order of
the q and x integration, and using the fact that∫ ∞

0
dq π2 sin2

(
qw

2

)
sinh2

(
πq

2

) exp(−qx)

= i(w + ix)�

(
x − iw

π

)

+ (−x − iw)�

(
iw + x

π

)
+ 2x�

( x

π

)
. (B19)

The result is

σ�
d,s = μ0M

2
s �

2π
(a − 2πb − 2π2t−1c), (B20)

a = 4π log 

(
t

π

)
+ t[2v2 log(v)

− (v2 − 1) log(v2 + 1) − 4v arctan(v)], (B21)

b = −iv log 

(
itv

π

)
+ (1 + iv) log 

(
ivt + t

π

)

+ (1 − iv) log 

(
t − itv

π

)
+ iv log 

(
− itv

π

)
,

(B22)

c = �(−2)

(
itv

π

)
− �(−2)

(
ivt + t

π

)

− �(−2)

(
t − itv

π

)
+ �(−2)

(
− itv

π

)
+ 2�(−2)

(
t

π

)
,

(B23)

FIG. 9. Relative error for using the zero wall width model of Cape
and Lehman (CL) and for using the thin film limit effective anisotropy
model (K).

where i is the imaginary unit,  is the gamma function,
and �−2(z) = ∫ z

0 dt ln (t) is the second antiderivative of the
digamma function.

The error made by using the binary approximation σ 0
d,s

instead of the correct σ 0
d,s + σ�

d,s is

�σ 0
d,s = σ�

d,s

σ�
d,s + σ 0

d,s

. (B24)

The error made by using the thin film effective anisotropy
model

σK
d,s = −μ0M

2
s � (B25)

is

�σK
d,s = 1 − σK

d,s

σ�
d,s + σ 0

d,s

. (B26)

Both errors are plotted in Fig. 9 as a function of reduced
thickness t for various values of w. For a given thickness, �σ 0

d,s

vanishes when W becomes large, but logarithmically slow. For
typical domain widths, i.e., for 10 < w < 1000, we show that
there is a significant error �σ 0

d,s of 10% and more for t < 3.
The thin film approximation, on the contrary, is reasonably
accurate only for small t < 0.1. For the important intermediate

FIG. 10. The error of the asymptotic approximation of F ( �

W
) for

various values of minority domain size.
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regime 0.1 < t < 3, the full term σd,s = σ�
d,s + σ 0

d,s needs to
be considered. Note that both approximations underestimate
the correct result.

2. Extension to stripe arrays

Consider a periodic stripe domain pattern with periodicity
λ and a width W of one of the domains. To start with, consider
a finite number of domains N and a finite total width of the
sample of Nλ. The effective domain wall energy associated
with the surface stray fields is then given by

σd,s = Ed,s

2NLd
. (B27)

With the help of the identities derived in Appendix D, σd,s can
be written as

σd,s =
√

2π
μ0M

2
s λ

8πd

∑
k

|ĝk|2ĥ(k). (B28)

For a square wave domain pattern with zero domain wall width,
the Fourier coefficients of g are [3]

|ĝk|2 = 32

λ2k2
sin2

(
kW

2

)
= 4π |ĝ(k)|2 (B29)

with k = 2πn/λ and n ∈ N\0 and

|ĝ0|2 =
(

2W

λ
− 1

)2

. (B30)

All together,

σd,s = λ

4
μ0M

2
s

(
2W

λ
− 1

)2

+ μ0M
2
s λ2

π3d

∞∑
n=1

sin2

(
πnW

λ

)
1 − exp(−2πnd/λ)

n3
(B31)

which is consistent with the result derived by Kooy and Enz [3] for μ = 1 considering that 2W
λ

− 1 = 〈Mz〉/Ms is the average
relative out-of-plane magnetization and that the volume density of the energy is Ed,s/V = 2σd,s/λ. As noted by Johansen et al.
[6], the sum can be written in terms of polylog functions:

4
∞∑

n=1

sin2

(
πnW

λ

)
1 − exp(−2πnd/λ)

n3
= −2 Li3

(
e− 2dπ

λ

) + Li3
(
e

2iπW
λ

− 2dπ
λ

)

+ Li3
(
e− 2πd

λ
− 2iπW

λ

) − Li3
(
e

2iπW
λ

) − Li3
(
e− 2iπW

λ

) + 2ζ (3). (B32)

A finite domain wall width � can be included in the model in exact analogy to the single stripe domain case by multiplication

by 2πf̂1
2
(k) in Fourier space. The convolution theorem holds also for discrete Fourier series. Hence, we obtain

σ
Ndw=∞,Nl=1
d,s = λ

4
μ0M

2
s

(
2W

λ
− 1

)2

+ πμ0M
2
s �2

d

∞∑
n=1

sin2
(

πnW
λ

)
sinh2

(
π2n�

λ

) 1 − exp(−2πnd/λ)

n
. (B33)

3. Extension to multilayers

Consider a multilayer film with a multidomain stripe state containing walls of finite size. To find its surface stray field energy,
we can use exactly the same approach as for the single layer film (B33). Multiplication of the explicit multilayer energy of a

binary pattern given by Suna [13] and Draaisma [14] by a factor of 2πf̂1
2
(k) in Fourier space results in

σ
Ndw=∞,Nl=N
d,s = λ

4
μ0M

2
s

(
2W

λ
− 1

)2 T
P + πμ0M

2
s �2

P

∞∑
n=1

sin2(πnW
λ

)

n sinh2
(

π2n�
λ

)
×

{
2 sinh

(
πnT

λ

)
sinh

(
πn(P−T )

λ

)
sinh

(
πnP

λ

) + sinh2
(

πnT
λ

)
N sinh2

(
πnP

λ

)[
1 − exp

(
−2πPNn

λ

)]}
. (B34)

The resulting expression for σ
∞,N
d,s can be simplified under the condition λ � πP , which is most often the case. By expanding

the terms inside of the curly brackets of Eq. (B34) in Maclaurin series up to the first order in πnT /λ and πnP/λ, we obtain

σ
∞,N
d,s

∣∣
λ�πP = λ

4
μ0M

2
s

(
1 − 2W

λ

)2 T
P +

[
πμ0(MsT /P)2�2

(PN )

∞∑
n=1

sin2
(

πnW
λ

)
sinh2

(
π2n�

λ

) 1 − exp(−2πnPN /λ)

n

]

+ 2π2μ0M
2
s �2

λ

[
T
P −

(T
P

)2
] ∞∑

n=1

sin2
(

πnW
λ

)
sinh2

(
π2n�

λ

) . (B35)
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FIG. 11. The error of the effective medium model for the surface
stray field energy of a demagnetized multilayer film with a multilayer
period of P = 5 nm and N = 10 multilayer repetitions.

FIG. 12. Distribution of volume charges in single layer films
with multidomain stripe state (with domain periodicity λ = 45� and
minority domain size of W = 15�) possessing Néel domain walls of
fixed chirality.

Consider the function

F

(
�

λ
,
W

λ

)
= 8π2 �2

λ2

∞∑
n=1

sin2
(

πnW
λ

)
sinh2

(
π2n�

λ

) . (B36)

By performing the asymptotic analysis of F in the vicinity of �/λ = 0, we obtain the following strict asymptotic relation:
(See Fig. 10 for the error of such an approximation)

F ∼ Fapprox =
(

1 − 4�

λ

)
−

(
1 − 2W

λ

)2

at �/λ → 0. (B37)

Here, the second and all the higher-order terms converge to zero as �/λ → 0.6 Therefore, the surface stray field energy of a
multilayer film finally becomes

σ
∞,N
d,s

∣∣
λ�πP = λ

4
μ0M

2
s

(
1 − 2W

λ

)2(T
P

)2

+
[

πμ0(MsT /P)2�2

(PN )

∞∑
n=1

sin2
(

πnW
λ

)
sinh2

(
π2n�

λ

) 1 − exp(−2πnPN /λ)

n

]

+ μ0M
2
s W

2

(
1 − 4�

W

)[
T
P −

(T
P

)2
]
. (B38)

The error of the effective model of the demagnetized state is
plotted on Fig. 11. As we can see, this model works very well
even for intermediate and small domains as long as W � 10P .

APPENDIX C: VOLUME STRAY FIELD
ENERGY CALCULATIONS

1. Stripe array and isolated wall states in single layer films

Consider a magnetized single layer film, in which 2M − 1
domain walls of fixed chirality with transient wall angle ψ

separate stripe domains of periodicity λ and width W of one of
the domains. The calculation of the volume stray field energy
of this state is accomplished by calculating the integral

σd,v = μ0

8πLd(2M − 1)

∫∫
d3r d3r′ρ(r)

1

|r − r′|ρ(r′)

(C1)

6The approximation (B37) is particularly accurate for the relevant
case W > 8� as discussed in the main paper (see Fig. 11).

with the following volume charge distribution: (see Fig. 12)

ρ(r) =
M−1∑

j=−M+1

[ρ1(x − jλ,y,z) − ρ1(x − jλ + W,y,z)],

(C2)

ρ1(r) = ρ1(x)θ (L/2 − |y − L/2|)θ (d/2 − |z − d/2|),
(C3)

ρ1(x) = −∇ · M = Ms

�
sin(ψ)

tanh(x/�)

cosh(x/�)
, (C4)

where θ (x) is the Heaviside function, L is the width in the y

direction, d is the film thickness, and � is the domain wall
width.

By following the approach of Büttner et al. [17],
we find in the limit L → ∞ (compare with Eq. (24)
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from [17])

σ
1,1
d,v = μ0

8πd(2M − 1)

2M−2∑
m=−2M+2

(2M − 1 − |m|)

×
∫ d

0
dz

∫ d

0
dz′

∫ +∞

−∞
dx dx ′ρ1(x)ρ1(x ′)

× [h1(x − x ′ + mλ,z − z′)

− h1(x − x ′ + mλ − W,z − z′)], (C5)

where

h1(x,z) = lim
L→∞

1

L

∫ L

0
dy

∫ L

0
dy ′ 1√

(y − y ′)2 + x2 + z2

= − ln(x2 + z2). (C6)

To facilitate the calculations, we can use the following property
of convolution:∫∫

dx dx ′f (x)g(x ′)h(x − x ′ + c)

=
√

2π

∫
dk ĝ(k)ĥ(k)[f̂ (k)]∗e−ikc, (C7)

which can be derived by following the logic from [17].
Introducing

ζ (x) = 1

�

tanh(x/�)

cosh(x/�)
, (C8)

we have the following result for 2M − 1 domain walls
(compare with Eq. (29) from [17]):

σ
Ndw=2M−1,Nl=1
d,v

= μ0M
2
s

√
2π sin2(ψ)

8π (2M − 1)d

2M−2∑
m=−2M+2

(2M − 1 − |m|) (C9)

∫∫ d

0
dz dz′

∫ +∞

−∞
dk|ζ̂ (k)|2ĥ(k,z − z′)e−ikλm(1 − eikW )

= μ0M
2
s � sin2(ψ)

4t/2π

2M−2∑
m=−2M+2

{
2M − 1 − |m|

2M − 1

×
∫ +∞

0
dq

e−qt/2π + qt/2π − 1

q cosh2(q/4)

×
[

cos

(
qλm

2π�

)
− cos

(
q(λm − W )

2π�

)]}
, (C10)

where we introduced q = 2πk� and a reduced thickness
t = d/�. To simplify the expression (C10) we can swap the
integral and sum symbols. By recognizing that the following
sum can be expressed analytically as

2M−2∑
m=−2M+2

(2M − 1 − |m|){cos(kλm) − cos[k(λm − W )]}

= 2 sin2

(
kλ

2
(2M − 1)

)
csc2

(
kλ

2

)
sin2

(
kW

2

)
,

(C11)

we can express the volume stray field energy of the multido-
main state with 2M − 1 domain walls as follows:

σ
2M−1,1
d,v

= μ0M
2
s � sin2(ψ)

4t/2π

∫ +∞

0
dq

× 2
(
e− qt

2π + qt

2π
−1

)
sin2

(
qW

4π�

)
sin2

(
qλ

4π�
(2M−1)

)
q cosh2(q/4)(2M−1) sin2

(
qλ

4π�

) .

(C12)

In the limit of a regular stripe domain array 2M − 1 → ∞,

σ
∞,1
d,v = lim

M→∞
σ

2M−1,1
d,v

= μ0M
2
s � sin2(ψ)

2t/2π
lim

M→∞

∫ +∞

0
dq

{
e− qt

2π + qt

2π
− 1

q cosh2(q/4)

× sin2
(

qW

4π�

)
sin2

(
qλ

4π�
(2M − 1)

)
(2M − 1) sin2

(
qλ

4π�

)
}

. (C13)

Swapping the limit and integral symbols should be carefully
performed, as the function under the integral lacks the property
of uniform convergence, which would erroneously lead to the
conclusion that σ

∞,1
d,v = 0. Instead, we substitute the function

under the integral with the Dirac comb function

lim
M→∞

sin2
(

qλ

4π�
(2M − 1)

)
(2M − 1) sin2

(
qλ

4π�

) = 4π2�

λ

∞∑
n=0

δ

(
q − 4π2�

λ
n

)
.

(C14)

The equivalence of both functions in the limit M → ∞ is
proved in Appendix E. Thus, we have

σ
∞,1
d,v = μ0M

2
s � sin2(ψ)

2t/2π

4π2�

λ

∞∑
n=0

∫ +∞

0
dq

× sin2

(
qW

4π�

)
e− qt

2π + qt

2π
− 1

q cosh2(q/4)
δ

(
q − 4π2�

λ
n

)
.

(C15)

By using the property of the delta function
∫

δ(x −
x0)f (x)dx = f (x0), we finally obtain

σ
∞,1
d,v =πμ0M

2
s �2 sin2(ψ)

d

×
∞∑

n=1

sin2
(

πnW
λ

)
cosh2

(
π2n�

λ

) exp
(− 2πnd

λ

) + 2πnd
λ

− 1

n
.

(C16)

As a side note, the derived expression for the volume stray
field energy of the multidomain state intrinsically contains both
the self-interaction contribution σ

1,1
d,v as well as the interaction

term �σ
∞,1
d,v = σ

∞,1
d,v − σ

1,1
d,v , responsible for the interaction

between different domain walls. The self-interaction term σ
1,1
d,v

can be found by plugging M = 1 into Eq. (C10) and looks as
follows [17]:

σ
1,1
d,v = πμ0M

2
s �2 sin2(ψ)

2d
G

(
d

2π�

)
. (C17)
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(a)

(b)

FIG. 13. The interaction term �σ
∞,1
d,v = σ

∞,1
d,v − σ

1,1
d,v for the

single layer film with a demagnetized state Wmin = Wmaj = λ/2,
which characterizes the difference between the volume stray field
energy of the multidomain state with finite walls and the energy of
the isolated Néel wall state. (a) The absolute magnitude and (b) the
relative value. The tipping point in (b) corresponds to the change
from a repelling behavior of domain walls (at large and intermediate
domain width) to an attractive behavior (at small domain width).

The interaction term �σ
∞,1
d,v results in a positive value

for large domains, and in negative values for very small
domains. The latter is caused by the overlapping tails from the
neighboring domain walls, which creates finite volume charges
of the opposite signs inside of the neighboring domains. The
interaction term is negligible when W ≫ 2π�, so a fair
approximation for σ

∞,1
d,v would be a single self-interaction

term σ
1,1
d,v from Eq. (C17). However, the same treatment for

domains of intermediate and small size (when W < 50�)

FIG. 14. The error of various approximations to the exact
multilayer multidomain volume stray field energy as a function
of multilayer period P and domain width W for a system with
single magnetic layer thickness T = 0.2� and N = 10 multilayer
repetitions.

would result in significant energy underestimations, so the
explicit Eq. (C16) must be used there (see Fig. 13).

2. Extension to multilayers

The multilayer volume stray field energy for an isolated
domain wall σ

1,N
d,v has already been calculated in Ref. [17]:

σ
Ndw=1,Nl=N
d,v = μ0M

2
s � sin2(ψ)

8p/2π

N−1∑
i=−N+1

N − |i|
N

×
[
G

(∣∣∣∣ ip + t

2π

∣∣∣∣
)

+ G

(∣∣∣∣ ip − t

2π

∣∣∣∣
)

− 2G

(∣∣∣∣ ip

2π

∣∣∣∣
)]

, (C18)

where t = T /� is the reduced single magnetic layer thickness,
p = P/� is the reduced multilayer periodicity. Incorporating
the results of the previous subsection, we can modify Eq. (C18)
to characterize a magnetized multidomain state with N layer
repeats and 2M − 1 domain walls:

σ
2M−1,N
d,v = μ0M

2
s � sin2(ψ)

8p/2π

N−1∑
i=−N+1

N − |i|
N

2M−2∑
m=−2M+2

2M − 1 − |m|
2M − 1

[
G̃

(∣∣∣∣ ip + t

2π

∣∣∣∣,ml

2π
,

w

2π

)

+ G̃

(∣∣∣∣ ip − t

2π

∣∣∣∣,ml

2π
,

w

2π

)
− 2G̃

(∣∣∣∣ ip

2π

∣∣∣∣,ml

2π
,

w

2π

)]
, (C19)

G̃(α,β,γ ) =
∫ +∞

0
dq

e−qα + qα − 1

q cosh2(q/4)
{cos(βq) − cos[(β − γ )q]}, (C20)

where l = λ/� is the reduced domain periodicity, w = W/� is the reduced domain size. The integral (C20) has an analytical
solution, though a lengthy one. However, we can instead incorporate the derived solution (C16) for single layer films with an
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infinite number of domain walls into Eq. (C19) and thus eliminate the sum over m:

σ
∞,N
d,v = πμ0M

2
s �2 sin2(ψ)

2P

N−1∑
i=−N+1

N − |i|
N

∞∑
n=1

sin2
(

πnW
λ

)
n cosh2(π2n�

λ
)

×
[
e− 2πn|iP+T |

λ + e− 2πn|iP−T |
λ − 2e− 2πn|iP|

λ + 2πn|iP + T |
λ

+ 2πn|iP − T |
λ

− 2
2πn|iP|

λ

]
. (C21)

After using the symmetry i → −i to remove the modulus symbol and swapping the sums in Eq. (C21) we obtain

σ
∞,N
d,v = πμ0M

2
s �2 sin2(ψ)

2PN

∞∑
n=1

sin2
(

πnW
λ

)
n cosh2

(
π2n�

λ

)
{

2N
(

e− 2πnT
λ + 2πnT

λ
− 1

)

+ 2
N−1∑
i=1

(N − i)
[
e− 2πn(iP+T )

λ + e− 2πn(iP−T )
λ − 2e− 2πniP

λ

]}
. (C22)

Finally, using the property of sums

N−1∑
i=1

(N − i)e−iβ = e−βN [eβ + eβ(N+1)(N − 1) − N eβN ]

(eβ − 1)2
, (C23)

we can simplify the expression even further with the following final result:

σ
∞,N
d,v = πμ0M

2
s �2 sin2(ψ)

NP

∞∑
n=1

sin2
(

πnW
λ

)
n cosh2

(
π2n�

λ

)
{
N

(
e− 2πnT

λ + 2πnT
λ

− 1

)

+ e− 2πn(PN+T )
λ

(
e

2πnT
λ − 1

)2(
e

2πnP
λ − 1

)2

(
e

2πnP
λ + e

2πnP(N+1)
λ (N − 1) − N e

2πnNP
λ

)}
. (C24)

The expression (C24) is the exact volume stray field energy of multilayers with a magnetized multidomain state and finite
transient walls with a fixed angle ψ . However, it can be simplified in many experimentally relevant cases as follows:

σ
∞,N
d,v =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ
1,N
d,v , if λ � �

σ
1,1
d,v , if λ,P/2π � �( T
P

)2
σ

1,1
d,v (d = NP), if P � 2π� � 2πλ( T

P
)2

σ
∞,1
d,v (d = NP), if P � 2π�,λ/2π

(C25)

where σ
1,N
d,v is the energy of the isolated wall in a multilayer structure (C18). The last two cases represent an effective medium

approach, in which the saturation magnetization scales with scaling factor T /P . Very often real multilayer structures operate in
this regime. All the mentioned cases are depicted in Fig. 14.

Let us prove the effective medium treatment for volume charge interactions. Assuming P � λ
2π

and, hence, T � λ
2π

, we can
expand the expression in curly brackets of Eq. (C24) in Maclaurin series around 2πnT /λ = 0 and 2πnP/λ = 0. The expansion
results in

σ
Ndw=∞,Nl=N
d,v → πμ0M

2
s �2 sin2(ψ)

NP

∞∑
n=1

sin2
(

πnW
λ

)
n cosh2

(
π2n�

λ

) T 2

P2

[
1

2

(
2πnP

λ

)2

− 1

6

(
2πnP

λ

)3

+ 1

24

(
2πnP

λ

)4

− 1

120

(
2πnP

λ

)5

+ . . .

]
+ T 2

P2

[
4

3

π3P3n

λ3
+ O

(P4n2

λ4

)]
. (C26)

Recognizing that the expression inside the first brackets represents the expansion of an exponent around zero without its first
two terms, we can reduce the expression to a single layer-like form7

σ
∞,N
d,v → πμ0M

2
s �2 sin2(ψ)

NP

(T
P

)2 ∞∑
n=1

{
sin2

(
πnW

λ

)
cosh2

(
π2n�

λ

) e− 2πnPN
λ + 2πnPN

λ
− 1

n
+ O

(P3n

λ3

)}
. (C27)

7For large n, the denominator in the sum increases ∼exp(αn), which makes the sum converge quickly.
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APPENDIX D: DISCRETE FOURIER SPACE IDENTITIES

Let g(x) be a real-valued function with a discrete represen-
tation in Fourier space:

g(x) =
∑

k

ĝke
ikx =

∑
k

ĝ∗
k e

−ikx (D1)

with ĝk being the Fourier coefficients of g. Now, assume we
wish to calculate the following integral:

I =
∫∫

dx dx ′g(x)g(x ′)h(x − x ′) (D2)

with some function h. We can write the integral as

I =
∫∫

dx dx ′ ∑
k

ĝkĝ
∗
k e

ik(x−x ′)h(x − x ′) (D3)

=
∑

k

|ĝk|2
∫∫

dx dx ′eik(x−x ′)h(x − x ′) (D4)

=
∑

k

|ĝk|2
∫∫

dx dy eikyh(y) (D5)

=
∑

k

|ĝk|2
∫

dx
√

2πĥ(k) (D6)

=
√

2π
∑

k

|ĝk|2ĥ(k)
∫

dx (D7)

=
√

2πNλ
∑

k

|ĝk|2ĥ(k), (D8)

where N is the number of periods in along the x dimension
(which we will set to infinity at a later stage) and λ is the period
length, so Nλ is the total length of the sample. Note that there
are no restrictions on which values of k we are summing over.
ĥ is the regular, continuous Fourier transform of h, which
is evaluated at the discrete values of k. For the particular
case of g(x) = 1 and h as in Eq. (B9), we get I = −2πdNλ,

which is consistent with the volume energy density E
V

= 2σ
Nλ

=
2μ0M

2
s I (g=1)

8πdNλ
= 1

2μ0M
2
s of a homogeneously magnetized film.

APPENDIX E: DIRAC COMB

Consider a function Z(q):

Z(q) = lim
N→∞

1

N
sin2(qaN )

sin2(qa)
, (E1)

where N = 2M − 1 is an odd number. Such a function
contains critical points at q = πn

a
. Note that at the critical

points the following holds true:

lim
q→ πn

a

1

N
sin2(qaN )

sin2(qa)
= N , (E2)

where we have applied the L’Hospital’s rule twice for Eq. (E2).
Thus, evaluating Z(q) we obtain the following:

Z(q) = lim
N→∞

1

N
sin2(qaN )

sin2(qa)
=

{∞, if q = πn
a

0, q ∈ (
πn
a

− ε,πn
a

+ ε
)
.

(E3)

Note that Z(q) can also be integrated around critical points,
resulting in ∫ πn

a
+ε

πn
a

−ε

Z(q)dq = π

a
. (E4)

Therefore, a normalized function Z(q)/π
a

, when evaluated
around its critical points, repeats the properties of the delta
function. Hence, Z(q) in the entire range q ∈ [0,∞) can be
expressed as the Dirac comb function:

Z(q) = π

a

∞∑
n=0

δ
(
q − πn

a

)
. (E5)
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