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Magnetic structure of the MnGe helimagnet and representation analysis
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In light of recent results obtained for the prototype helimagnet MnSi, we examine the possible magnetic
structures of compounds of the same family, consistent with the crystal symmetries when the magnetic propagation
vector is parallel to the [001] axis. The analysis of a published muon spin rotation spectrum recorded in MnGe
[N. Martin et al., Phys. Rev. B 93, 174405 (2016)] shows no deviation from the canonical helimagnetic structure,
unlike in MnSi. This qualitative difference calls for further theoretical works on chiral magnets.
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I. INTRODUCTION

Noncollinear magnets are nowadays of special interest. On
the one hand, they give the possibility of coupling electric
and magnetic degrees of freedom as in so-called type-II
multiferroic materials. The coupling may arise from the inverse
Dzyaloshinskii-Moriya (DM) interaction [1]. On the other
hand, under a moderate applied magnetic field, a peculiar spin
texture might appear in a small pocket of the temperature-field
phase diagram, namely a skyrmion lattice [2]. A skyrmion is
a magnetic topological knot.

In cubic B20 compounds (space group P 213) such as
MnSi, a zero-field helical spin order is expected due to the
competition of ferromagnetic and DM exchange interactions,
while weaker interactions determine the characteristics of
the helical structure such as the direction of the magnetic
propagation wave vector k [3,4]. For example, k is found
parallel to the diagonal of the cubic crystal structure for MnSi
and to run along the cube edge for MnGe [5] or Cu2OSeO3

[6,7]. Until recently, the magnetic structure of these magnets
was described in the following way: considering an atomic
plane perpendicular to k, the magnetic moments are confined
to some direction of that plane and ferromagnetically coupled.
In subsequent atomic planes, the direction of the moments is
rotated around k so that the magnetic moments describe a helix
of pitch 2π/k. This situation prevails in zero and small external
fields. By application of a magnetic field Bext of sufficient
strength, the magnetic structure becomes conical (except in
the aforementioned skyrmion phase): the propagation vector
aligns along Bext and the magnetic moments in the conical
structure have two components. The first is perpendicular to
Bext and corresponds to the helical component already de-
scribed. The second is a uniform component aligned along Bext.

Deviations from these regular helical and conical magnetic
structures have been recently evidenced for MnSi. These
results have been obtained from a detailed analysis of muon
spin rotation (μSR) data, while constraining the symmetries of
the magnetic phases to be consistent with the crystal symmetry.
In zero field, for which k ‖ 〈111〉, it is found that the phase
of a given magnetic moment at vector position r in the crystal
is not solely given by the scalar product k · r. An additional
phase shift differentiates the Mn positions for which the local
threefold axis is parallel to k and the others [8]. This phase

shift is even larger in the conical phase when Bext ‖ [111].
In the case where Bext ‖ [001], not only may a phase shift
be present between certain magnetic moments, but also the
helical component lies in a plane which is not perpendicular
to Bext [9].

At this stage, a question arises: Is MnSi the only of its kind
to exhibit deviations from the regular helimagnetic structure?
As mentioned elsewhere [8], these deviations are difficult
to unravel in traditional neutron-scattering experiments since
they imply very small variations of the magnetic structure
factor. On the other hand, a local probe sitting at an interstitial
crystallographic site like the muon is more adapted to detect
them. A relevant answer to the raised question is therefore to
consider the results of μSR experiments in the ordered phase
of helimagnets.

While Cu2OSeO3 belongs to this family [10,11], its struc-
ture is complicated by the presence of two Cu crystallographic
sites. This is not so for MnGe, which is isostructural to
MnSi. Recently, this B20 metal has caught the attention of
experimentalists because of its giant topological Hall effect
[12]. It has been argued [5] to order magnetically at low
temperature in a helical structure with k parallel to [001] and
to exhibit a cubic lattice of skyrmions [13]. An important
specificity of MnGe is its short helix pitch, which could
emphasize the deviations from the regular helix already found
in MnSi. In this paper, using representation analysis [14],
we derive the possible magnetic structure of a B20 magnet
approaching the regular helimagnetic structure for k ‖ 〈001〉
and compatible with the crystal symmetry. Then the analysis of
a zero-field (ZF) muon spin rotation (μSR) spectrum recorded
at 10 K by Martin and co-workers [15] allows us to conclude on
the absence of deviation within the accuracy of the parameters.

The organization of this paper is as follows. Section II
gives a survey of the physical properties of MnGe of interest
for our work. In Sec. III, we summarize the predictions of
representation analysis as applied to the determination of
the possible magnetic structures of MnGe. In Sec. IV, the
analysis of a published ZF μSR spectrum is described. We
finally present our conclusions in Sec. V. Representation
analysis for MnGe is exposed thoroughly in Appendix A.
The expression of the polarization function used for the
maximum-entropy–reverse-Monte-Carlo computation is given
in Appendix B.
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TABLE I. Coordinates of the 4a equivalent positions for Mn in
the crystal unit cell of MnGe at low temperature where the crystallo-
graphic space group is P 212121. The positions are labeled by γ . For
reference, the last column gives the three-digit numerical coordinates
of these positions in the origin cell, i.e., the dγ vector coordinates. The
numerical data have been determined from measurements performed
at 6 K [5]. The values refer to a right handedness. The coordinates
for Mn in a crystal of the left handedness are obtained by taking their
complement to 1. As an example, they are (0.858, 0.869, 0.864) for
γ = I.

Corresponding
coordinates in

Position γ Coordinates origin cell

4a I (xMn,yMn,zMn) (0.142, 0.131, 0.136)

II (xMn + 1
2 ,ȳMn + 1

2 ,z̄Mn) (0.642, 0.369, 0.864)

III (x̄Mn,yMn + 1
2 ,z̄Mn + 1

2 ) (0.858, 0.631, 0.364)

IV (x̄Mn + 1
2 ,ȳMn,zMn + 1

2 ) (0.358, 0.869, 0.636)

II. BASIC PHYSICAL PROPERTIES OF MnGe

In its paramagnetic phase, the metallic compound MnGe
crystallizes with the cubic space group P 213. It magnetically
orders at Tc = 170 (5) K [12]. Neutron powder diffraction
indicates the compound to be orthorhombic in its ordered state
with space group P 212121 [5]. The three measured lattice
parameters—alat = 4.7806 (30), blat = 4.7805 (29), and clat =
4.7939 (10) Å, which are values obtained at 6 K [5]—are
nearly equal. The Mn ions occupy a 4a position in Wyckoff’s
notation. Their coordinates depend on three parameters, i.e.,
xMn = 0.142 (12), yMn = 0.131 (16), and zMn = 0.136 (11) at
6 K. Since the three lattice parameters and the three position
parameters listed above are almost equal, MnGe is close
to the cubic P 213 space group below Tc. For reference,
Table I lists the positions of the four Mn atoms in the unit
cell. The magnetic propagation wave vector k is directed
along the c axis of the orthorhombic structure. Its modulus
saturates to k = 2.19 (5) nm−1 below Tcom = 30 K [5]. This
corresponds to a helix period of 2π/k � 2.9 nm. Like in
MnSi [16], the handedness of the MnGe crystalline structure
determines the chirality of the magnetic structure [17]. The Mn
magnetic moment m at low temperature in MnGe is relatively
large. From neutron diffraction, m = 2.3 (5) μB [5], latterly
refined to m = 1.83 (15) μB [18]. On the other hand, bulk
magnetic measurements performed at 2.5 K under 14 T for a
powder sample lead to only m ≈ 1.65 μB [19]. Remarkably,
the measured moment does not saturate even under this large
field.

III. SYMMETRY ANALYSIS OF THE MAGNETIC
STRUCTURES AT THE Mn SITES

Magnetic structures compatible with a crystal symmetry
can be inferred with the help of representation analysis, i.e.,
Bertaut’s theory; see Ref. [14] and references therein. We
point out that we are dealing with a geometrical rather than a
thermodynamical problem. So the order of the magnetic phase
transition does not interfere with our search of the possible
magnetic structures.

TABLE II. Phases for the Mn magnetic moments in MnGe as
inferred from representation analysis.

γ I II III IV

βdγ
0 φ φ 0

While a single K domain exists in the orthorhombic
structure for k parallel to the c axis, two spin domains are
present. However, as explained elsewhere [8], they have no
influence on a μSR field distribution when the magnetic
structure is incommensurate.

The spin structures compatible in general with the crystal
structure are determined in Appendix A. Since the ground state
is believed to have a helical magnetic state, here we search for
a state closely related to it. Magnetic moments are assumed
to have an equal modulus and to rotate in planes normal to
k. Denoting mi+dγ

the magnetic moment at lattice position
i + dγ , the following generic formula is found to hold:

mi+dγ
= m

[
cos (k · i)ãdγ

− sin (k · i)b̃dγ

]
. (1)

The sign “−” in front of the sine function stands for the left-
handed magnetic chirality observed for the right handedness
of the structure [17]. For a right-handed magnetic chirality,
this is a “+” sign. In Eq. (1), γ ∈ {I,II,III,IV} labels the four
Mn positions, i denotes the position of a unit cell in the crystal
and dγ specifies the position of atom γ in the unit cell. Finally,
(ãdγ

,b̃dγ
,k/k) denotes a right-handed orthonormal reference

frame. Equation (A6) enforces a certain relationship between
the orientations of vectors ãdγ

and b̃dγ
for different γ ’s. In the

following, we find it convenient to express Eq. (1) in terms
of the absolute position i + dγ in the crystal. Setting αi,dγ

≡
k · (i + dγ ) and introducing a phase βdγ

independent of i, we
arrive at

mi+dγ
= m

[
cos

(
αi,dγ

+ βdγ

)
adγ

− sin
(
αi,dγ

+ βdγ

)
bdγ

]
, (2)

with

adγ
= (1,0,0) and bdγ

= (0,1,0). (3)

Note that adγ
and bdγ

are actually independent of γ . Table II
lists the values for βdγ

consistent with representation analysis
and Fig. 1 provides an illustration of the relation between
the different phases. With the magnetic structure being
incommensurate and the field distribution at the muon site
depending only on the difference between the phases at sites
I and IV, on the one hand, and II and III, on the other hand,
we arbitrarily fix βdγ

to 0 for γ = I and IV. In Eq. (2), we
have two free parameters: the phase φ defined in Table II and
the magnetic moment modulus m. The regular helical structure
corresponds to a vanishing phase φ.

IV. ANALYSIS OF A ZF μSR SPECTRUM OF MnGe AT 10 K
BASED ON SYMMETRY

A. The polarization function

The computation of the μSR polarization function PZ(t)
follows the method introduced recently [8]. Basically, the
polarization function associated with muons stopped at po-
sition sη and for an orientation o of the crystal relative to the
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FIG. 1. Schematic illustration of the magnetic structure of MnGe.
The magnetic moments at each of the four Mn sites in the unit cell
lie in planes perpendicular to k = [0,0,k]. The relative phase of the
moments at sites I and IV is given by the variation of the scalar product
k · r between these two sites. The same result holds for sites II and
III. However, representation analysis does not enforce any relation
between the phases at sites I or IV, on the one hand, and sites II or
III, on the other hand.

laboratory reference frame, i.e., PZ,sη,o(t), is first evaluated.
For this purpose, the spontaneous field at the muon site is
computed. It is comprised of the dipole field arising from the
localized magnetic moments in the crystal and the contact
field associated with the electron density at the muon position.
The fields are conveniently computed using Fourier transforms
and therefore we use the Fourier transform of mi+dγ

. The
finite coherence length ξ of the magnetic structure is explicitly
taken into account through an integral over the wave vectors
in the vicinity of ±k [8]. The spin-lattice relaxation channel
is characterized by the relaxation rate λZ and the damping of
the muon precession arising from the 55Mn nuclear dipoles is
described by the parameter 
N, which is the root mean square
of the nuclear field distribution. Notice that the contribution
of the Ge nuclei is negligible. The effect of the spin-spin
relaxation channel, which, in simple models, scales with
the spin-lattice relaxation, has been discarded. The model
polarization function PZ(t) is obtained from an average of
PZ,sη,o(t) over the muon positions and the orientations since
the available data concern a polycrystal.

B. Results

The ZF μSR asymmetry spectrum a0P
exp
z (t) published in

Ref. [15] is reproduced in Fig. 2.
It is analyzed with a two-component model,

a0P
exp
Z (t) = a0

[
(1 − fbg)P main

Z (t) + fbg
]
, (4)

where a0 is the initial μSR asymmetry and fbg is the fraction
of muons stopped outside of the sample, for which the
relaxation is negligible. We shall find that a description of
the spectrum requires one to take into account a secondary
phase contribution,

P main
Z (t) = (1 − fimp)P MnGe

Z (t) + fimpP
imp
Z (t), (5)

where P MnGe
Z (t) is the polarization function discussed in

Sec. IV A, i.e., P MnGe
Z (t) = PZ(t), and

P
imp
Z (t) = 1

3 + 2
3 [(1 − γμ
Lt) exp(−γμ
Lt)] (6)

0 0.02 0.04 0.06 0.08
0

0.05

0.1

0.15

0.2

0.25

time t (µs)

as
ym

m
et

ry
a

0P
ex

p
Z

(t
)

(-
) 10 K, ZF

MnGe

FIG. 2. ZF μSR asymmetry spectrum recorded for a polycrystal
of MnGe at 10 K. The data are reproduced from Ref. [15]. The
solid line represents the fit discussed in the main text. Notice the
short-time range over which the spectrum is displayed. This is due to
the relatively large frequencies detected and their associated strong
damping.

models an impurity phase. P
imp
Z (t) as given here is typical for

a diluted disordered magnetic system [20]. It corresponds to
a squared-Lorentzian distribution for the modulus of the field
at the muon site with a half width at half maximum equal to


L

√√
2 − 1 = 0.644 
L.

While only a0P
exp
z (t) is fitted, it is useful to consider the

field distribution associated with the oscillating part of the
spectrum, namely, Dosc(B); see Appendix B for its definition.
This quantity is computed from the asymmetry spectrum of
Fig. 2 using the maximum entropy (ME) principle combined
with the reverse Monte Carlo (RMC) algorithm; see Ref. [21]
and the appendix of Ref. [22] for an exposition of the ME-
RMC method. Its main advantages over an inverse Fourier
transform are twofold. (i) Original data uncertainties are taken
into account, leading to the reduced noise relative to the output
of the conventional Fourier transform. (ii) Error bars on the
field distribution are estimated. Figure 3 displays the result. We
observe a relatively sharp peak at ≈ 0.5 T and a second wider
skewed peak at ≈ 1.1 T. In addition, a third weak maximum
is present at low field. The distribution is relatively sharp cut
at high field.

Before discussing the result of the fit, a few comments
on the computation are in order. Since 
N is expected to
be approximately the same for MnGe and MnSi, we set

N = 1.11 mT as found for MnSi [8]. Because of the strong
damping of the spontaneous oscillations (see Fig. 2), the
precise 
N value does not really influence our result. As to the
determination of ξ ≡ 1/κ , an integration over the reciprocal
lattice has to be performed. Here we ensured the (adγ

,bdγ
)

plane to remain perpendicular to the wave vector at each step
of the integration. While forgetting this fact has a negligible
effect on the final result for a compound with a large ξ such
as MnSi, this leads to a flawed estimate of ξ if it is relatively
short as for MnGe. Concerning the wave-vector integration
range, we found spheres of radius 10 κ centered around ±k to
be sufficient for the evaluation of κ . As mentioned above, in
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FIG. 3. Field distribution associated with the spectrum displayed
in Fig. 2. For each data point, we have computed the experimental
uncertainty (one standard deviation). The red solid line results from
the fit to the asymmetry spectrum (Fig. 2), i.e., it is not a fit to Dosc(B),
as explained in the main text. The dash-dotted blue line displays
the contribution of MnGe to the field distribution and the lower
dashed black line accounts for a magnetically disordered secondary
phase contained in the sample. The relatively large error bars on
the distribution are explained by the correlations existing between
neighbor points.

principle, an orientation average has to be performed since the
sample is polycrystalline. However, we found numerically that
the polarization function is independent of the orientation of
the crystal in the muon beam and therefore no average over the
orientations is needed. This makes it possible to significantly
reduce the numerical effort. Unlike in Ref. [8] and because of
the large mean magnetic field at the muon site and its important
standard deviation (see Fig. 3), we took the time resolution of
the spectrometer into account [23]. Finally, since simulated
spectra for the orthorhombic crystal structure are virtually
identical to those computed in a cubic crystal structure, the
final fit was performed assuming the cubic crystal structure.
The unique parameter describing the muon site in space group
P 213 is defined as xμ.

In a first instance, fits were performed with the model previ-
ously described excluding the integration over the wave vector,
which requires more intensive calculations. Satisfactory results
were found with m and xμ in the expected range. The angle
φ was found consistent with 0, within error bars. However, a
relatively strong correlation was found in the values for these
parameters. Therefore, in the final fit including the effect of
the finite value for ξ , m was set to the value obtained from
neutron diffraction (m = 1.83 μB) and φ to 0. The result is
shown as a solid line in Fig. 2. It is excellent. The solid line in
Fig. 3 is a byproduct of the asymmetry spectrum fit.

The fit parameters are as follows: ξ = 9 (1) nm, xμ =
0.54 (1), and the parameter describing the contact interaction
between the Mn moments and the muon [8,20] is rμH/4π =
−1.47 (1). The resulting contact field is Bcon = μ0

v0

rμH

4π
m,

where μ0 is the permeability of free space, v0 is the volume
per Mn ion, and m is the vector average of the Mn magnetic

moments in interaction with the muon. It is antiparallel to
the local magnetization and its magnitude is 1.10 (1) T,
in agreement with Ref. [15]. The initial asymmetry a0 =
0.245 and the spin-lattice relaxation rate λZ = 0.05 μs−1

were taken from Ref. [15]. In addition, fbg = 0.0011 (3). So
the background is negligibly small. For the impurity phase, we
get fimp = 0.13 (2) and 
L = 88 (14) mT.

C. Discussion

Another fit to the data was performed assuming the
magnetic structure to be of the other chirality [see below
Eq. (1)], and therefore a crystal with the alternate handedness.
An equivalent agreement with the data is found with the
same value for all the parameters except the muon position
parameters xμ. Still, the two xμ parameters are found linked
by the correspondence xμ ←→ 1 − xμ, as expected from the
difference in the structure handednesses. Therefore, we cannot
conclude on the handedness of the sample, as was already the
case for MnSi. Considering the left-handed magnetic chirality
results, we note that the position parameter xμ = 0.54 (1) for
the muon in MnGe is close to that of MnSi (xμ = 0.532;
Refs. [8,24]). This is in accord with the ab initio computations,
which predict a value for xμ slightly larger in MnGe than in
MnSi, namely, 0.554 vs 0.542 [15,25].

The free phase φ allowed by representation analysis is
found to be 0. This is unlike MnSi for which deviations from
the regular helimagnetic structure were found both in zero
field and in applied field as far as the helical component
is concerned [8,9]. The magnetic disorder appears quite
strong as reflected by the relatively small ξ value. This is
in line with the small number of visible oscillations in the
experimental spectrum (Fig. 2) and at variance to the MnSi
case. No such small coherence length was signaled in the
MnGe neutron-diffraction work [5], but the strong damping
of the μSR oscillations was associated with the disorder
inherent to the magnetic structure [15]. Note that with our
model, the parameter ξ accounts in fact for the effects of both
magnetic disorder and spin-spin relaxation. If this relaxation
is not negligible, our ξ value is underestimated. The hyperfine
coupling parameter rμH/4π is negative as usual. It is even
higher in absolute value than for MnSi for which the coupling
was already higher than for other metals.

The spectral weight in the interval 300–1200 mT of the field
distribution (Fig. 3) is ascribed to the MnGe magnetic phase.
The remaining part, i.e., essentially in the field range below
300 mT, is attributed to an impurity phase of approximately
13% volume fraction. Since it is not observed in diffraction
techniques [5] and because of the P

imp
Z (t) functional shape, we

suggest the phase to be amorphous. MnGe being synthesized
at high pressure, it may not be surprising to find such a phase.
Besides, two foreign phases amounting to a total of less than
5 % and assigned to Mn11Ge8 and Mn2O3 were identified by
x-ray diffraction [5]. Since both phases are magnetic at 10 K,
they could contribute to the peak found around 0.5 T in the
field distribution (Fig. 3), which is not fully accounted for by
our model.

Because of the strong damping of the oscillations, the
amount of information which can be extracted from the μSR
spectrum is rather restricted. Hence, we have not attempted
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TABLE III. The irreducible corepresentations of the magnetic little group for
k = [0,0,k]. Here, ε is a phase factor defined in Eq. (A1) and θ is the time-reversal
operator.

{1|(0,0,0)} {200z|(0.5,0,0.5)} θ{20y0|(0,0.5,0.5)} θ{2x00|(−0.5,0.5,0)}
�+

1 1 ε−1 1 ε

�−
1 1 ε−1 −1 −ε

�+
2 1 −ε−1 1 −ε

�−
2 1 −ε−1 −1 ε

to test the possibility—allowed by representation analysis—
for the moments to rotate in planes not normal to k. It
would require introduction of at least two additional free
angles. Using the magnetic structure information contained in
Eq. (A5), it would be worthwhile to do it through a combined fit
of the μSR spectrum and a high-statistics neutron-diffraction
pattern.

Finally, we note that the magnetic fluctuations detected far
below Tc in MnGe [15] follow the same trend as in MnSi; see,
e.g., Refs. [26,27].

V. CONCLUSIONS

In this work, we have examined the magnetic structures
compatible with the symmetry for systems crystallizing in the
B20 phase and with a magnetic propagation vector k parallel to
an edge of the cubic crystal structure. Beyond the well-known
helimagnetic phase, a more complex structure is possible
and characterized by a dephasing between certain magnetic
moments in the unit cell. The moments affected by the
dephasing differ from those found when k is along a diagonal
of the cube. The result derived from representation analysis
applies not only for the cubic crystal structure but also for
the orthorhombic structure proposed from a neutron-scattering
study of MnGe in its magnetic phase.

The present study uses the framework developed in Ref. [8]
for a detailed refinement of subtle spin textures from μSR
data. A recently published MnGe ZF-μSR spectrum is found
consistent with a regular helimagnetic structure. The deviation
from this structure found for MnSi is therefore not a generic
feature of the B20 phase magnets. This illustrates the subtleties
in the interaction interplay in these systems, which were so far
believed to be qualitatively similar. It is therefore worthwhile to
revisit the assumed magnetic structures of other helimagnets.
For this purpose, a combined analysis of neutron-diffraction
patterns and μSR spectra would be most powerful. We expect a
deeper insight into the interactions in this series of compounds
which is considered as the playground for systems with
potential applications in information storage.
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APPENDIX A: DETERMINATION OF THE POSSIBLE
MAGNETIC STRUCTURES FROM REPRESENTATION

ANALYSIS

We recall that k = [0,0,k]. The following results are
derived for Wyckoff position 4a in space group P 212121.

Interestingly, the same results are obtained for position 4a in
space group P 213 for which the three coordinates of position
γ = I are equal.

The little group of the propagation vector contains the
symmetry elements Lk = {1|(0,0,0),2x00|(0.5,0.5,0)}, as ex-
pressed with Seitz’ notation. However, there is a symmetry
element in the space group that transforms k → −k. The
structures lacking the inversion symmetry, k and −k, are
not equivalent. Therefore, the magnetic little group is Mk =
Lk + θgLk, where θ is the time-reversal operator and g is
one of the symmetry elements that reverses k. Here, for the
calculations of the irreducible corepresentations (IC) of Mk,
we chose g = {20y0|(0,0.5,0.5)}. The IC of Mk are tabulated
in Table III, where we have defined

ε = exp(iϕt) with ϕt = k clat/2. (A1)

The structure of MnGe contains one crystallographic site
for the Mn atoms, as seen from Table I. Applying the symmetry
elements of Mk to the Mn-atomic positions of MnGe, we
find the four Mn atoms to belong to a single crystallographic
orbit. The decomposition of the magnetic representation is as
follows:

�mag = 6�+
1 ⊕ 6�−

1 ⊕ 6�+
2 ⊕ 6�−

2 . (A2)

From Eq. (A2), we expect six symmetry-allowed basis vectors
for each corepresentation that we will denote Fj , with 1 �
j � 6, for the four IC. The Fj are linear combinations of
the Fourier components Sdγ ,α and S∗

dγ ,α . Here, α denotes a
Cartesian component of, for example, Sdγ

, and dγ stands for
a sublattice. Finally, the components of the magnetic moment
at each crystallographic position are given by

mi+dγ ,α = Sdγ ,α exp(−ik · i) + c.c. (A3)

Real solutions for the magnetic moments are found after
taking a linear combination of the basis functions of �+

1 and
�−

1 , on the one hand, or �+
2 and �−

2 , on the other hand. For �1,
resulting from the sum of �+

1 and �−
1 , the basis functions are

F1 = SdI,x − εSdIV,x,

F2 = SdI,y − εSdIV,y,

F3 = SdI,z + εSdIV,z,
(A4)

F4 = SdII,x − ε−1SdIII,x,

F5 = SdII,y − ε−1SdIII,y,

F6 = SdII,z + ε−1SdIII,z.
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The modes for �2, resulting from the combination of �+
2 and

�−
2 , are deduced by substituting SdIV and SdIII with −SdIV and

−SdIII , respectively, in Eq. (A4).
The Fj functions describe the magnetic modes compatible

with space-group symmetry, for the given orientation of k.
Therefore, if the four spins magnetically order according to,
for example, �1, then the Fj functions for �2 vanish [14]. As
a result, we get the following relations:

SdI,x = −εSdIV,x and SdII,x = −ε−1SdIII,x,

SdI,y = −εSdIV,y and SdII,y = −ε−1SdIII,y, (A5)

SdI,z = εSdIV,z and SdII,z = ε−1SdIII,z,

for �1. For �2, the substitutional rule enounced above applies.
It is believed that the spins rotate in planes perpendicular to

k. We take this result for granted and therefore set Sdγ ,z = 0.
Without loss of generality, we can write, for each irre-
ducible representation (irrep), SdI,x = ax1 exp(iφx1 ), SdII,x =
ax2 exp(iφx2 ), SdI,y = ay1 exp(iφy1 ), and SdII,y = ay2 exp(iφy2 ),
where ax1 , ax2 , ay1 , ay2 , φx1 , φx2 , φy1 , and φy2 are real numbers.
Setting u1 = 2ax1 cos φx1 , v1 = 2ax1 sin φx1 , u2 = 2ay1 cos φy1 ,
v2 = 2ay1 sin φy1 , ũ1 = 2ax2 cos φx2 , ṽ1 = 2ax2 sin φx2 , ũ2 =
2ay2 cos φy2 , and ṽ2 = 2ay2 sin φy2 , and using the constraints
imposed by Eq. (A5), we arrive at

mi+dI,x = u1 cos(k · i) + v1 sin(k · i),

mi+dI,y = u2 cos(k · i) + v2 sin(k · i),

mi+dII,x = ũ1 cos(k · i) + ṽ1 sin(k · i),

mi+dII,y = ũ2 cos(k · i) + ṽ2 sin(k · i),

mi+dIII,x = ũ1 cos(k · i − ϕt) + ṽ1 sin(k · i − ϕt),

mi+dIII,y = ũ2 cos(k · i − ϕt) + ṽ2 sin(k · i − ϕt),

mi+dIV,x = u1 cos(k · i + ϕt) + v1 sin(k · i + ϕt),

mi+dIV,y = u2 cos(k · i + ϕt) + v2 sin(k · i + ϕt), (A6)

for �2.
The magnetic structure depends on eight free parameters

for the eight magnetic moment components. From Eq. (A6),
recalling the definition of ϕt [Eq. (A1)], we derive the solution
given in Eq. (2) of the main text, with parameters defined
in Eq. (3) and Table II. The case of the regular helimagnet
corresponds to φ = 0. We have not retained the �1 irrep
because it leads to a magnetic structure even more distant
from the regular helical structure.

APPENDIX B: EXPRESSION OF THE POLARIZATION
FUNCTION IN TERMS OF Dosc

The field distribution Dosc(B) associated with the oscillat-
ing part of the spectrum was computed using the ME-RMC
method, with P main

Z (t) in Eq. (4) given by the following
expression:

P main
Z (t) = 1

3
exp (−λZt)

+ 2

3

∫
(1 − T B)Dosc(B) cos(γμBt)dB. (B1)

The parameter T accounts for the spectrometer finite resolu-
tion; see also main text and Ref. [23].
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