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Manipulation of magnetic and electronic structures of graphene nanoflakes is of great technological importance.
Here, we systematically study the magnetic and electronic phases of graphene nanoflakes within first-principles
calculations. We illustrate the intricate shape and size dependence on the magnetic and electronic properties and
further investigate the effects of carrier doping, which could be tuned by gate voltage. A crossover from the
nonmagnetic to magnetic phase is observed at a critical flake size for the flakes without sublattice imbalance.
We identify this as originating from the armchair defects at the junctions of two sublattices on the edge. Electron
or hole doping simultaneously influences the magnetic and electronic structures and triggers phase crossover.
Beyond a critical doping, antiferromagnetic to ferromagnetic phase crossover is observed for the flakes without
sublattice imbalance. In contrast, suppression of magnetism and a possible crossover from the magnetic to
nonmagnetic phase is observed for flakes with sublattice imbalance. Simultaneous with magnetic phase changes,
a semiconductor to (half) metal transition is observed upon carrier doping. Our findings should have important
implications in graphene-based spintronics.
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I. INTRODUCTION

Plausible applications in spin-based electronics and in-
formation processing [1–5] have made unconventional mag-
netism in an sp2-bonded two-dimensional (2D) hexagonal
network of C atoms in graphene a topic of recent discussion.
Carbon-based materials have unique advantages in this regard
due to very weak spin-orbit and hyperfine coupling [6–8] and
high spin-wave stiffness [9]. Thus, magnetic carbon structures
are expected to exhibit higher Curie temperature and spin
correlation length compared to conventional magnets [10].
Further, the spin transport in graphene could be manipulated
easily by external perturbations such as electric fields [11].

Magnetism in otherwise nonmagnetic graphene can be
induced by the presence of point/extended defects [12–16]
or through adatom adsorption [17,18]. Alternatively, the
nontrivial π -electron-driven magnetism can be induced at the
edges in a finite graphene nanoflake (GNF) due to the localized
edge states [19–23]. While the π electron of C atoms on zigzag
edges has localized character, no such localization is expected
for the armchair edge type. Although graphene nanostructures
have been fabricated with success [24–26], precise control
over the edge type has been limited until recently. Using a
nanofabrication technique and scanning tunneling microscopy,
nanoribbons with precise zigzag edges have been fabricated,
and a robust long-range magnetic order has been observed
at room temperature [27]. Further, a semiconductor to metal
transition accompanied by switching in the magnetic ordering
between the edges has been predicted as a function of ribbon
width [27].

Graphene is a bipartite hexagonal lattice formed by two
interpenetrating triangular sublattices A and B. According to
the predictions of single-band Hubbard model, spins localized
at the zigzag edge align in parallel if they belong to the
same sublattice and become antiparallel if they belong to
different sublattices [28]. Thus, the total spin of the ground

state follows Lieb’s theorem, 2S = NA − NB, with NA and
NB being the number of C atoms belonging to the A and
B sublattices, respectively [29]. This picture has been con-
firmed through density-functional-theory-based calculations
in passivated flakes [28,30]. Further, a magnetic phase change
has been predicted in hexagonal flakes due to carrier doping
[30]. As the intrinsic magnetic ordering and corresponding
ground-state magnetization are related to the sublattice identity
of the edge atoms and total sublattice imbalance, a unified
picture of the size and shape dependence of magnetism in
nanoflakes is necessary, which has not yet been fully explored.

Here, we systematically address this issue within first-
principles calculations by considering graphene nanoflakes
with varied shapes and sizes. Nanoflakes with arbitrary
shapes can be classified by sublattice imbalance; for flakes
with sublattice imbalance NA �= NB, and for those without
imbalance NA = NB. We consider flakes with rhombohedral
(R), hexagonal (H), triangular (T), and pentagonal (P) shapes.
While R and H flakes have NA = NB, T and P flakes have
NA �= NB. In order to investigate only the π electrons, the
in-plane dangling bonds are passivated with a single hydrogen
atom. For the nanoflakes without any sublattice imbalance,
the prediction of Lieb’s theorem, S = 0, may be satisfied
either with a nonmagnetic solution or with a fully compensated
intrinsic magnetic ordering. This may lead to a quantum phase
transition with flake size [28]. Indeed, for both R and H shapes,
we find that carbon atoms at the edge develop local moments
beyond a critical size, and a crossover from the nonmagnetic to
compensated ferrimagnetic phase takes place. We characterize
this critical size with the armchair defect density at the edge,
which is defined as the ratio of the number of armchair bonds
at the junction of the A and B sublattices and the number of
zigzag bonds. In contrast, the flakes with sublattice imbalance,
T and P flakes, are always found to be magnetic, independent
of their sizes.

2469-9950/2017/95(17)/174419(9) 174419-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.174419


GANGULY, KABIR, AND SAHA-DASGUPTA PHYSICAL REVIEW B 95, 174419 (2017)

Further, manipulation of the intrinsic magnetic and cor-
responding electronic properties by external perturbations is
key to spintronics applications. Thus, in addition to undoped
flakes, we investigate the carrier-doped flakes. Doping could
be experimentally achieved with applied gate voltage. In this
context, the single-hole doping in the half-filled Hubbard
model in the Nagaoka limit [31] of an infinite bipartite
lattice with essentially infinite Coulomb interaction predicts a
magnetic phase transition. In the present cases of nanoflakes,
neither of the Nagaoka limits are satisfied. Nonetheless, we
observe a change in the magnetic structure upon carrier doping,
and a shape-dependent complex evolution of magnetic phase
is predicted. Together with the changes in magnetic phases,
a semiconductor to (half) metal transition is observed. With
the current state of advancement in controlled experimental
techniques, we hope that our theoretical predictions will
stimulate further experimental activity.

II. COMPUTATIONAL DETAILS

Calculations were carried out within density-functional
theory (DFT) in the plane-wave basis, as implemented in
the Vienna Ab initio Simulation Package (VASP) [32,33]. The
projector augmented-wave pseudopotential was used with a
plane-wave cutoff of 800 eV [34]. For the exchange-correlation
functional, we used the Perdew-Burke-Ernzerhof (PBE) form
of the generalized gradient approximation (GGA) [35]. The
reciprocal space integrations were carried out at the � point.
Within the periodic setup of the calculations, flakes were
placed in simple cubic supercells such that the periodic
images were separated by at least 12 Å of vacuum space,
which makes the interaction between the images negligible.
Nanoflakes were optimized until the forces on each atom
were less than 5 × 10−3 eV/Å. Further, to understand the
effect of electron-electron correlation beyond GGA, some
of the calculations were repeated considering a Hubbard-like
on-site Coulomb interaction, DFT + U , within the rotationally
invariant approach [36].

The atom-projected local magnetic moment μloc is calcu-
lated by integrating the difference between the spin-up [ρ↑(r)]
and spin-down [ρ↓(r)] charge densities over a Wigner-Seitz
(WS) sphere centered around a specific atom, defined as
μloc = ∫

RWS
[ρ↑(r) − ρ↓(r)]dr. Similarly, the total moment μtot

of the nanoflake is calculated by integrating the difference
between the spin-up and spin-down charge densities over the
entire cell.

Within the present supercell approach, for the charged
flakes, the Coulomb divergence is circumvented by a uniform
and neutralizing jellium background [37]. Although such
a strategy has limitations [38], it works quite well for
homogeneous systems [39,40]. As the leading-order correction
depends on the size of the supercell, some of the calculations
have been repeated by doubling the supercell size. However,
we did not find any significant difference between the magnetic
structures given by the two sets of calculations.

We considered regular T and H flakes with sizes m = 3,
5, 6, 8 and m = 3, 6, 7, 8, 9, 10, respectively, where m

is the number of hexagonal rings along their regular edge
[Figs. 1(a) and 1(b)]. The sizes of the R and P flakes are
denoted by m × n and m ⊗ n, respectively, where m and n

FIG. 1. Hydrogenated graphene nanoflakes, considered in the
present study: (a) rhombohedral (R), (b) hexagonal (H), (c) triangular
(T), and (d) pentagonal (P) flakes. Carbon atoms belonging to two
sublattices are marked with black and white balls. The H atoms are
shown with small blue balls. The size of the flakes is characterized
by the number of hexagonal rings along the edge. While sizes of
regular T and H flakes are represented by edge lengths m, the R and P
flakes are represented as m × n and m ⊗ n, respectively. The armchair
defects at the junctions of the A and B sublattices are highlighted by
arrowheads. The number of such defects is 2 for R flakes, 6 for H
flakes, 4 for P flakes, and 0 for T flakes.

are lengths of dissimilar edges [Figs. 1(c) and 1(d)]. Flakes
with sizes 3 × 3, 3 × 5, 3 × 7, 4 × 4, 5 × 5, and 7 × 7 were
considered for the R flake, and flakes with sizes 4 ⊗ 7, 5 ⊗ 9,
7 ⊗ 13, and 8 ⊗ 15 were considered for the P flake.

III. RESULTS AND DISCUSSION

We start our discussion with undoped GNFs to illustrate
the intricate shape and size dependence of the intrinsic edge
magnetism. We also investigate the effect of strong electron
correlation on the magnetism. With the understanding of the
intricate size-, shape-, and correlation-dependent magnetism
in undoped GNFs, we proceed to discuss the effect of carrier
doping on the magnetic and electronic structures.

A. Shape and size dependence of edge magnetism

We find that the intrinsic magnetic structures of the GNFs
are strongly dependent on both nanoflake shape and their size.
The magnetic behavior of undoped flakes of four different
shapes, H, R, T, and P, is summarized in Fig. 2.
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FIG. 2. Size- and shape-dependent magnetism in graphene nanoflakes. The magnetic behavior of H and R flakes is summarized in (a),
while that of P and T flakes is summarized in (b). For NA = NB flakes (H or R flakes), a nonmagnetic (zero value of μloc) to compensated
ferrimagnetic transition (nonzero value of μloc) is observed for the critical value of the armchair defect concentration at the edge. The latter
is given by δAB = Narm/Ntot, with Narm and Ntot being the number of armchair defects and total number of zigzag bonds along the edge,
respectively. In contrast, the NA �= NB flakes (P or T flakes) are always magnetic, and the plot of the total moment of the flakes μtot with the
sublattice imbalance NA − NB shows a linear behavior. Representative ground-state magnetization densities, with up (down) spin densities
marked in red (blue), for the magnetic R and H flakes are shown in the top and bottom insets in (a), respectively, while those for T and P flakes
are shown in the top and bottom insets of (b), respectively.

The scenario for the flakes without any sublattice im-
balance, i.e., R and H flakes, is particularly nontrivial, and
a size-dependent quantum phase transition is observed in
the nonmagnetic to compensated ferrimagnetic transition.
The compensated ferrimagnetic state is characterized by
zero total moment but nonzero local moment. Plotting the
maximum value of the local moment of the edge C atoms
as a function of size [Fig. 2(a)], we find that only beyond a
critical size do the carbon atoms at the edge develop a local
moment. As seen from the plots of magnetization density,
shown in the insets of Fig. 2(a), for the magnetic R and H
flakes, edge moments belonging to any particular sublattice
(A or B) are ferromagnetically coupled among themselves (the
magnetization being either all pointed up or all pointed down),
while the edge moments belonging to different sublattices
are coupled antiferromagnetically (the magnetizations being
directed oppositely), thereby giving rise to a compensated fer-
rimagnetic state. This picture is consistent with the predictions
from the Hubbard model and agrees well with the previous
DFT calculations for H flakes [28,30]. However, the origin
of this size dependence has not been addressed previously.
To characterize the observed magnetic phase transition with
flake size, we define a unitless quantity δAB, which relates
to the armchair defects along the entire edge of the flake.
There exists an armchair bond at the junctions of the A and
B sublattices (Fig. 1), where electrons are delocalized, that
is thus detrimental for magnetism. Therefore, in the context
of magnetism on a zigzag edge, such armchair bonds act
as defects. We define the defect density as δAB = Narm/Ntot,
where Narm (Ntot) is the number of armchair defects (total
number of zigzag bonds) along the edge. Thus, δAB decreases
with increasing flake size. We find that beyond a critical flake
size with corresponding δAB < 0.07, the edge atoms develop a
moment, and the flakes become compensated ferrimagnetic
[Fig. 2(a)]. Note the quantum phase transitions for both
R and H flakes occur at similar δAB values. Although the

local moment distributions [see the insets in Fig. 2(a)] in
these two types of flakes apparently look different, a closer
look reveals their microscopic similarity. First, for both types
of flakes, the magnetic interaction between intrasublattice
edge moments is ferromagnetic, while it is antiferromagnetic
between intersublattice edge moments, as discussed earlier.
In both cases, the armchair defect separates two sublattice
at the edge [Figs. 1(a), 1(b), and 2(a)]. Second, at the
edge, the local moment distribution as a function of distance
from the armchair defect behaves in a qualitatively similar
fashion. For both flakes, the local moment at the edge
increases with increasing distance from the armchair defect
and becomes maximum for the farthest edge atom from
the defect. These microscopic similarities in turn drive the
quantum phase transitions for these two types of flakes at
similar δAB. It is important to note that with increasing flake
size (δAB < 0.07) the maximum local moment at the edge
μloc increases but keeps the net moment fixed at zero and
thus obeys Lieb’s theorem. It should be noted here that in
the absence of any armchair defect (δAB = 0), the flake may
be viewed as an infinite zigzag nanoribbon, and the edge
moment will approach that of the intrinsic graphene zigzag
edge [10,20,41]. Further, it has been reported that vacancies
and nonmagnetic substitutional impurities such as boron at
the zigzag nanoribbon edge have a detrimental effect on the
edge magnetism, and the nanoribbons become nonmagnetic
beyond critical vacancy/impurity concentrations [41]. Similar
behavior is anticipated for the graphene nanoflakes.

In comparison, the size-dependent magnetism in T and P
flakes with sublattice imbalance is less complex. Independent
of size, such NA �= NB flakes are found to be magnetic with
the total ground-state magnetization given by μtot = 2S =
NA − NB, following Lieb’s theorem [Fig. 2(b)]. Thus, with
an increase in size, the sublattice imbalance increases, leading
to a linear increase in μtot. For T flakes, all the edge atoms
belong to a particular sublattice [Fig. 1(c)], and thus, the
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FIG. 3. Effect of on-site Coulomb interaction U on the edge mag-
netism. The maximum μloc calculated within DFT + U formalism are
shown with varied U for (a) a 3 × 3 R flake, (b) an m = 3 H flake,
(c) an m = 3 T flake, and (d) a 4 ⊗ 7 P flake. At a critical U , the
R and H flakes become magnetic, and μloc increases further with U .
In contrast, T and P flakes are always magnetic, and the calculated
μloc increases with increasing U . Total moment, however, remains
invariant, as an increase in local moments of atoms belonging to the
A sublattice is compensated by the negative increase in local moments
of atoms belonging to the B sublattice. The armchair defect density
δAB (as defined in the caption of Fig. 2) for the various flakes has
been quoted for reference.

interedge coupling is ferromagnetic [Fig. 2(b)]. The P flakes,
on the other hand, can be viewed as a fusion of T and H
structures. While the edge atoms in the triangular region belong
to the same sublattice, the rest of the edges alternate between
two sublattices [Fig. 1(d)]. The corresponding magnetic
structure is thus commensurate with the ferromagnetic and
antiferromagnetic interedge coupling between the same and
different sublattices [insets in Fig. 2(b)].

Next, we study the effect of strong electron-electron
correlation on the edge magnetism, which has been argued
for graphene nanostructures [42–45]. For 2D graphene, local
Coulomb interaction is proposed to be as large as ∼9 eV,
which is in between the values that predict a spin-liquid phase
[43] and a compensated antiferromagnetic phase [44,45].
Keeping this in mind, we have repeated our calculation
by supplementing the conventional PBE exchange correla-
tion with a Hubbard-like on-site Coulomb interaction U

(0–10 eV). Only one representative size has been considered
for each shape (Fig. 3).

The flakes without any lattice imbalance in the size range
δAB > 0.07 are nonmagnetic for U = 0. With the increase in
on-site Coulomb interaction beyond a critical value Uc, the
flakes become magnetic, with the edge atoms developing a
local moment [Figs. 3(a) and 3(b)]. For U � Uc, μloc increases
with U , although the complete magnetic structure remains
a fully compensated ferrimagnet. This scenario is similar to
the nonmagnetic to magnetic phase transition obtained upon
increasing flake size, which was discussed in the previous
section. Thus, we conclude that both an increase in size and
electron-electron correlation help in enhancing the localized

character of the edge states, thereby stabilizing magnetism.
In contrast, in the presence of a lattice imbalance, the flakes
are always magnetic, and the increase in U monotonically
increases the local moment at the edge. However, the ground-
state magnetization is maintained at μtot = NA − NB by a
compensated increase in the A and B sublattice moments. This
in turn confirms the validity of Lieb’s theorem irrespective
of the level of theoretical approximation toward electron
correlation. Due to the absence of an accurate estimate of U for
finite-size nanoflakes and due to the fact that the flake size and
U affect the intrinsic magnetic structure in a similar fashion,
we ignore explicit incorporation of Coulomb interaction for the
rest of the paper. Rather, we will consider the larger flakes with
δAB < 0.07, which are magnetic even in the absence on-site
Coulomb interaction.

B. Effects of carrier doping on edge magnetism

Next, we investigate the effect of carrier doping on the
edge magnetism for nanoflakes with different shapes. We
consider both electron and hole doping with concentrations
ρc in the range 1013–1014 cm−2. Such a high ρc has been
experimentally achieved [15,46,47]. Like for the undoped
flakes, the effect of carrier doping is found to be strongly
shape dependent with a sharp distinction between flakes with
and without sublattice imbalance. Concomitant with magnetic
phase crossover, an electronic phase change is also observed
due to carrier doping, which is fundamentally interesting and
could be of technological importance.

We first discuss the undoped flakes with NA �= NB, which,
independent of size, is magnetic [Fig. 2(b)]. As discussed, the
interedge coupling in T flakes is ferromagnetic with ground-
state magnetization μtot = NA − NB. Thus, the undoped T
flakes with m = 3 and 8 have net magnetic moments of
2μB and 7μB , respectively [Fig. 4(a)]. Electron (hole) doping
in these flakes decreases the value of μtot to NA − NB −
ne(h), where ne(h) is the number of doped electrons (holes).
Thus, μtot monotonically decreases with increasing carrier
doping [Fig. 4(a)], and the m = 3 flake becomes nonmagnetic
beyond doping of one hole or one electron. For the larger
m = 8 T flake, μtot decreases to 4 μB due to three-electron
(-hole) doping, which corresponds to a carrier doping of
1.79 × 1014 cm−2. The P-flake magnetism with carrier doping
is found to be qualitatively similar to that of the T flakes.

To understand the microscopic origin of such behavior in
the flakes, we calculated μloc for the edge atoms [Fig. 4(b)] and
investigated the partial charge density of the doped electron
(hole), shown for the m = 8 T flake and 4 ⊗ 7 P flakes
[Figs. 5(a)–5(d)]. For both flakes, we find that the doped
electron is distributed mainly on the edge atoms and distributed
entirely on a particular (say, A) sublattice [Figs. 5(a)–5(c)].
Further, the doped electrons occupy the minority pz channel,
which leads to a decrease in calculated μtot with carrier
doping [Fig. 4(b)]. Concurrently, μtot decreases by ne(h)μB

from the neutral ground state. However, for P flakes, such
a picture breaks down at higher doping concentrations, and
the corresponding ground-state magnetic moment is found
to be higher than expected, NA − NB − ne(h). At the higher
doping limit beyond 9.62 × 1013 cm−2, although the carrier
is predominantly distributed over the A sublattice, a fraction
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FIG. 4. Effect of carrier (electron and hole) doping on the
magnetism for NA �= NB flakes. Calculated (a) total moment μtot

and (b) maximum local moment on the edge μloc with varied carrier
doping for T flakes with m = 3 and 8 and a 4 ⊗ 7 P flake. Positive
(negative) doping indicates electron (hole) doping.

populates the minority pz channel of the B sublattice, as
seen in Fig. 5(d). Thus, the decrease in μtot becomes slower
than expected [Fig. 4(a)]. Interestingly, for all NA �= NB

flakes, although the calculated μloc and μtot decrease upon
carrier doping, the intrinsic intraedge and interedge magnetic
couplings remain the same as for the undoped flakes.

In contrast, carrier doping affects the magnetism in NA =
NB flakes in a nontrivial fashion. As discussed earlier, a
nonmagnetic to compensated ferrimagnetic phase change
occurs at a critical size characterized by δAB < 0.07 [Fig. 2(a)].
Here, we consider R and H flakes with δAB < 0.07, which are
magnetic in their neutral state, and investigate the effect of
carrier doping. Interestingly, we find a magnetic phase change
beyond a critical carrier density [Figs. 6(a) and 6(b)]. The
interedge coupling becomes ferromagnetic with nonzero μtot

[Figs. 6(c) and 6(d)]. It would be interesting to investigate
the variation of μloc with doping, especially around the critical
density at which the magnetic phase change occurs. The overall
variation of μloc in these flakes is found to be qualitatively
similar to those for the T and P flakes [Fig. 4(b)]. The maximum
values of μloc for the neutral 7 × 7 R flake and m = 10 H
flakes are found to be 0.16 μB and 0.14 μB , respectively.

FIG. 5. The partial charge-density distribution for the doped
electron, calculated for an m = 8 T flake (NA − NB = 7) and a
4 ⊗ 7 P flake (NA − NB = 3). For the T flake, the doped electron is
distributed mainly over the edge and only on a particular sublattice,
independent of doped carrier density, as is evident from a comparison
of (a) and (b). In contrast, for the P flake, the distribution of the doped
carrier depends on the carrier density. While at a lower density it is
distributed over the edge and only on a particular sublattice as in the
case of the T flake [see (c)], the doped carrier is distributed over both
the sublattices at higher concentration [shown in (d)]. The overall
picture for hole doping is found to be similar, which is not shown.

Around the critical doping density, which is 4.05 × 1013

for both electron doping and hole doping in the case of R
flakes, the maximum μloc is calculated to be 0.14 μB and
0.13 μB for electron doping and hole doping, respectively.
In comparison, the maximum μloc in H flakes is found to
be 0.09 μB and 0.12 μB for critical electron doping and hole
doping of 1.56 × 1013 and 2.33 × 1013, respectively. Thus,
although the local moments show some variation upon doping,
the systems remain magnetic, unlike in the case of NA �= NB

flakes.
The overall impact of carrier doping is therefore qualita-

tively different in these flakes compared to the flakes with a
sublattice imbalance. While carrier doping affects μloc and
thus μtot in NA �= NB flakes without affecting the nature of
long-range order, a magnetic phase transition is observed
for NA = NB flakes. Further, the electron-hole asymmetry is
observed in terms of stabilization of a particular magnetic
phase [Figs. 6(a) and 6(b)], although the phase transition is
induced by both electron doping and hole doping. In the case
of R flakes, we notice a possible reentrance to the compensated
ferrimagnetic phase as the energy difference EAFM − EFM

decreases at large ρc.

C. Effects of carried doping on electronic structure

Although bulk graphene is a semimetal with zero density
of states at the Dirac points, the electronic structure of
graphene quantum dots and ribbons depends sensitively on the
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FIG. 6. Effect of carrier doping on magnetic NA = NB flakes.
Calculated energy differences between the compensated ferrimag-
netic (AFM) and ferromagnetic (FM) solutions for (a) a 7 × 7 R
flake and (b) an m = 10 H flake. The insets show representative
magnetization densities. The corresponding total moments μtot are
shown in (c) and (d).

crystallographic orientation of their edges [11,25,26,48–52].
Although conventional DFT is known to underestimate the
band gap, here, we are mainly interested in the qualitative
dependence of band gaps with flake size. The neutral flakes,
considered in the present study, are found to be semiconducting
regardless of their shape and size, and the calculated gaps are
found to decrease with increasing flake size, characterized by
the total number of atoms N in the flake (Fig. 7). Although
the gap should go to zero at infinite size, the asymptotic
interpolation might be complex [51,52] due to the intricate
dependence on the flake shape and corresponding magnetism.
Given the semiconducting nature of neutral flakes under study,
it would be worthwhile to investigate the effect of carrier
doping. We observe an electronic phase transition in these

FIG. 7. Calculated band gap for the flakes with different shapes
and sizes, where N is the number of carbon atoms in the respective
nanoflake. The solid line is a linear fit indicating that the band gap
decreases with increasing flake size.

FIG. 8. Evolution of the electronic structure with carrier doping
for (a) an m = 8 T flake and (b) a 4 ⊗ 7 P flake. While a
semiconductor–half-metal transition is observed for the T flake,
a semiconductor–half-metal–metal transition is observed for the P
flake.

flakes. In particular, a semiconductor to (half) metal transition
is observed due to carrier doping.

We first investigate the NA �= NB flakes in detail, for which
we particularly consider the m = 8 T and 4 ⊗ 7 P flakes. The
neutral m = 8 T flake is a semiconductor with a 1.29 (1.27) eV
gap in the majority (minority) channel. Single-electron (-hole)
doping with corresponding ρc = 5.95 × 1013 cm−2 alters the
electronic structure and transforms the flake into half metallic
[Fig. 8(a)]. The flake remains half metallic upon further
doping. The otherwise unoccupied minority pz channel gets
populated by electron doping [Fig. 8(a)], and thus, the minority
channel becomes conducting. In contrast, for hole doping,
electrons are removed from the majority pz channel, and thus,
the Fermi level EF moves lower in energy. This shifting of
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the Fermi Level upon carrier doping leads to a gap closing in
the majority (minority) channel under hole (electron) doping
[Fig. 8(a)]. The solution remains half metallic [Fig. 8(a)] at all
carrier doping studied in the present work. Thus, the T flake is
expected to manifest completely spin polarized transport under
applied gate voltage. Further, it would be possible to control
conduction in a particular channel (majority or minority) by
controlling the polarity of the gate voltage (electron or hole
doping). This control would have significant importance in the
context of spin-based electronics.

The carrier-induced evolution of electronic structure in P
flakes is qualitatively different. A semiconductor to half-metal
to metal transition is observed with increasing carrier density.
The neutral 4 ⊗ 7 P flake is semiconducting with a 0.55
(0.51) eV gap in the majority (minority) channel. For electron

FIG. 9. Carrier-induced electronic structure evolution for
(a) a 7 × 7 R flake and (b) an m = 10 H flake. For both flakes
a semiconductor-metal transition is observed due to electron/hole
doping.

doping with ρc � 9.62 × 1013 cm−2, the doped electron
populates only the minority channel, and the flake becomes
half metallic [Fig. 8(b)]. A further increase in electron density
populates both majority and minority channels simultaneously,
and a metallic solution emerges for ρc � 1.44 × 1014 cm−2.
In contrast, for hole doping, electrons are removed only
from the majority channel for ρc � 9.62 × 1013 cm−2. As
EF moves lower in energy, a half-metallic solution emerges.
A further increase in hole doping depletes electrons from
both the channels, and the ground state becomes metallic.
This picture also explains the emergence of noninteger μtot

for the corresponding ground state [Fig. 4(a)] and the slow
decrease in μtot for the metallic P flakes at high carrier
doping.

We next discuss the carrier-dependent electronic structure
for the flakes without sublattice imbalance, NA = NB. Here,
we consider the 7 × 7 R flake and the m = 10 H flake, which
show a fully compensated ferrimagnetic structure under the
undoped condition. These flakes have 240 and 200 meV
semiconducting gaps, respectively, in their neutral states. A
semiconductor to metal transition is observed [Figs. 9(a)
and 9(b)] for both R and H flakes, without any appearance
of a half-metallic solution. As the interedge coupling is
antiferromagnetic in the neutral flakes, the doped electron
populates both the majority and minority channels. Thus, gaps
in both channels disappear, and the flakes become metallic.
Similarly, the electrons are depleted from both channels due to
hole doping. Thus, EF continuously shifts to a lower energy,
and the solutions become metallic. A similar semiconductor to
metal transition has been experimentally observed in graphene
nanoribbons [27].

IV. SUMMARY

Using first-principles calculations, we performed a sys-
tematic study of the magnetic and electronic structures of
graphene nanoflakes with different shapes and sizes. Further,
the effect of carrier doping was investigated, which can
be accessed experimentally by applying gate voltage. The
presence or absence of sublattice imbalance plays a crucial role
in magnetism. For flakes without any sublattice imbalance,
a nonmagnetic to magnetic phase transition was observed
with increasing flake size, which is characterized by the
armchair defect concentration δAB along the edge. We found
that beyond a critical flake size δAB < 0.07, the carbon
atoms at the edge develop local moments and the flake
becomes magnetic. In contrast, the flakes with sublattice
imbalance were always found to be magnetic. Further, for
the neutral flakes with any shape, the edge moments from
the same sublattice coupled ferromagnetically, while anti-
ferromagnetic coupling was observed between the moments
from a different sublattice. This is in agreement with the
mean-field solution of the Hubbard model, and in all cases
the ground-state magnetization followed Lieb’s prediction,
μtot = (NA − NB).

We found that the magnetic phase transition is induced by
carrier doping. For NA = NB flakes, beyond a critical doping
an antiferromagnetic to ferromagnetic phase transition was
observed. In contrast, carrier doping suppresses the magnetism
in NA �= NB flakes. In these flakes, the local moments at the
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edge and thus μtot monotonically decrease with increasing
doping. This indicates that at very high doping density the
flakes may become nonmagnetic. Further, a simultaneous
electronic phase transition was observed in response to carrier
doping. In this regard, the cases with sublattice imbalance
were found to be more interesting. A semiconductor to
half-metal transition and a semiconductor to half-metal to
metal transition were observed in T and P flakes, respectively.
In particular, the half-metallic solution is interesting and
may lead to fully polarized transport. In contrast, for the
NA = NB flakes, a semiconductor to metal transition takes
place without an appearance of half-metallic solution. Such
concurrent magnetic and electronic phase transitions have
been experimentally observed in zigzag graphene nanoribbons
[27]. Finally, we propose that a nanolithographic technique
coupled with scanning tunneling microscopy will be able
to verify our theoretical prediction of complex size- and

shape-dependent magnetic and electronic phase transitions in
graphene flakes, which may lead to electronic and spintronics
applications.
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