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Topological phases of matter are one of the hallmarks of quantum condensed matter physics. One of their
striking features is a bulk-boundary correspondence wherein the topological nature of the bulk manifests itself
on boundaries via exotic massless phases. In classical wave phenomena, analogous effects may arise; however,
these cannot be viewed as equilibrium phases of matter. Here, we identify a set of rules under which robust
equilibrium classical topological phenomena exist. We write simple and analytically tractable classical lattice
models of spins and rotors in two and three dimensions which, at suitable parameter ranges, are paramagnetic
in the bulk but nonetheless exhibit some unusual long-range or critical order on their boundaries. We point out
the role of simplicial cohomology as a means of classifying, writing, and analyzing such models. This opens an
experimental route for studying strongly interacting topological phases of spins.
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I. INTRODUCTION

Symmetry-protected topological (SPT) phases are exotic
quantum states of matter that are featureless in the bulk but still
support unusual low-energy phenomena on their boundaries.
Their distinguishing properties remain sharp and robust as long
as the appropriate symmetries are maintained. An important
example is the quantum spin Hall insulator [1], protected by
time-reversal symmetry, whose edge physics may be used
in spintronics [2–4] and in the creation of topologically
protected qubits in the form of Majorana fermions [5].
Partially motivated by the search for other exotic boundary
phenomena, the field has developed rapidly: The classification
table of weakly interacting topological phases of electrons
given various symmetries has been established [6] in what
can be seen as a modern revival of band structure theory.
Furthermore, various topological electronic phases have been
realized [1,7]. Turning to bosons, a difficulty arises since
without interactions their ground state is always a superfluid
regardless of the band structure. Nonetheless, such phases do
exist at strong interactions and are known as bosonic SPTs
[8–10]. Unfortunately, experimental realizations of bosonic
SPTs are scarce and, to the best of our knowledge, limited to
one-dimensional (1D) spin chains [11].

Recently, there has been both theoretical [12–14] and
experimental [15–20] interest in the notion of classical
topological phases mimicking the phenomenology of their
quantum counterparts. A typical strategy there is to consider
systems of springs and masses or optical devices which have
an underlying topological band structure. Their edges can be
seen as robust waveguides which have potential engineering
applications, such as delay lines for light and sound [21].
Notwithstanding, it is difficult to view such phenomena as
a distinct phase of matter since the topological nature of
the band structure does not induce any sharp measurable
features in equilibrium. Further, at present the effect of
nonlinearities on these systems is unclear. (See, however, [20].)
Both these issues can be seen as a classical reflection of the
aforementioned difficulty of finding topological equilibrium
phases of noninteracting bosons. As in the quantum case, an
alternative route may thus be to consider strongly interacting
systems.

One approach to obtain such models is to start from known
quantum SPT models and attempt to write their discretized
Euclidean time partition function in a sign-problem-free and
local manner. When possible, the resulting partition function
can then be viewed as a classical statistical mechanical system.
Nonetheless, the models thus obtained have several drawbacks.
First, the notion of symmetry protection does not generally
carry through to the classical problem, in the following sense:
We define classical symmetries as those one-to-one maps
on configuration space which leave the Boltzmann weight
invariant. For instance, in a spin-1 antiferromagnetic chain
which supports a 1D SPT known as the Haldane phase [22],
the associated classical configuration space is one discrete
variable (mz = −1,0,1) per site. When viewed as an SPT phase
protected by SO(3) or its Z2 × Z2 subgroup of π rotations
[23], the action of the symmetry involves superpositions
and cannot be considered classical. A related issue is that
the microscopic mechanism stabilizing topological phases,
based on matrix product states and projective symmetries
[10], becomes obfuscated in the classical setting. Lastly, the
Boltzmann weights resulting from the prescription outlined
above, are complicated and anisotropic, making these models
less experimentally relevant.

Interestingly, for some models based on coupled superflu-
ids, the lattice Euclidean time partition function, following
a series of transformations, can be written in a sign-free
manner [24]. The advantage here is that the resulting models
are isotropic. However, in the process of making the action
local, additional degrees of freedom are introduced and, from
a classical perspective, it is thus unclear what are the essential
ingredients which render this a well-defined classical phase
of matter rather than a particular model. Furthermore, it will
be useful to generalize this approach to the discrete symmetry
case which is more experimentally relevant.

In this work, we address the question of what restrictions,
analogous to symmetry protection, should be imposed on
a classical system under which it supports robust classical
topological phases (CTPs). The first requirement is to consider
systems invariant under a group G and a local constraint whose
defects carry elements of another group G′. (More details about
defects can be found in the Appendix.) One example would
be a gauge theory with gauge group G′ and defects being
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monopoles. The second requirement is that these phases must
be short-range correlated in the bulk and in particular must not
break the symmetry spontaneously. The third is that they must
confine defects of the constraints into neutral pairs (see the
Appendix for a precise definition). We refer to phases which
obey the above restrictions as “admissible phases.”

Interestingly, we find that given a dimension d, and the
groups G, and G′ as above, there are many inequivalent
admissible phases. As standard, two phases are deemed
equivalent if a continuous deformation from one to another
is possible without crossing a critical point. By continuous we
mean that one deforms the energy functional gradually and
maintains the local constraint. We establish the existence of
inequivalent phases by providing concrete examples of models
between which any continuous deformation must involve a
phase transition. Notably, given that such distinct phases exist,
by definition their distinction does not involve a local order
parameter or confinement-deconfinement transitions. Their
difference is of topological origin. This is manifested on
interfaces between distinct phases, where either long-range
correlated or quasi-long-range correlated phases emerge.

In the next sections, we will explore these ideas for
the choice G = G′ = ZN , considering models in both two
and three dimensions [(2D) and (3D)] where we find many
distinct topological phases with the accompanying exotic
boundary phenomena. The latter include a “forbidden” [25]
symmetry-breaking order along 1D boundary and an unusual
2D critical phase corresponding to a theory of a compact
boson in which the basic ±2π vortices are linearly confined.
Just as group cohomology was shown to be the basis for
quantum SPT phases, we will show that tools from cellular
cohomology [26] give a powerful mathematical framework
for writing models of CTPs and analyzing them. The models
thus produced are compact, isotropic, and, to a large extent,
analytically tractable, thereby increasing both their theoretical
and experimental relevance. The G = G′ = Z2 models in 2D
and 3D are further shown to be in the same universality class
as the imaginary time partition function of certain 1D and
2D models (the group cohomology models [8]) of bosonic
SPTs. From a numerical perspective, our models thus provide
an efficient way for performing Monte Carlo simulations of
bosonic SPTs with discrete symmetries (see also Ref. [24] for
the continuous case). They also open a promising experimental
route for studying these fascinating strongly interacting phases
of matter.

II. TWO DIMENSIONS

As a first illustrative example of a 2D CTP with G = Z2

we consider the following model on the square lattice:

Z =
∑
σ,U

e−βH
∏
p

δ(UijUjkUklUli − 1), (1)

−βH =
∑
〈i,j〉

{K1σiUijσj + K2Uij }. (2)

Here, σi = ±1 and Uij = ±1 are site and link variables, and
the product is over plaquettes p, having the sites i,j,k,l on
their boundary. The model has a Z2 symmetry σi → −σi , and

it has a Z2 constraint forcing zero flux for the U field through
each plaquette.

Conveniently, a nonlocal transformation (Uij = μiμj )
maps this model to two decoupled Ising models, and has thus
Z2 × Z2 symmetry:

Z =
∑
σ,μ

exp
∑
〈i,j〉

{K1ρiρj + K2μiμj }, ρi = σiμi. (3)

Denoting Kc = − 1
2 ln tanh Kc the critical coupling of the

Ising model on a square lattice, there are two regimes which
are of interest to us: the trivial phase (K2 > Kc > K1 �
0) where 〈μi〉 �= 0, and the nontrivial phase (K1 > Kc >

K2 � 0) where 〈ρi〉 �= 0. The other variables ρ and σ for
the trivial case and μ and σ for the nontrivial are disor-
dered. Notably, in both cases Uij ’s are uncorrelated, namely
〈(Uij − 〈Uij 〉)(Ukl − 〈Ukl〉)〉 is exponentially decaying.1 We
remark that the partition function of Eq. (2) with constraint
violations at two plaquettes equals that of Eq. (3) where
the sign of both couplings K1,K2 is reversed along a path
connecting the two plaquettes [27]. Thus, for both regimes,
the presence of order parameters with long-range order implies
linear confinement of the defects.

In terms of ρ and μ, the model is simply two decoupled
ferromagnets that exhibit symmetry-broken phases. However,
in the original degrees of freedom U,σ , the physical properties
of the two phases change. Considering bulk physics, long-
range order in ρ implies the following nonlocal (string) order
parameter in the nontrivial phase:

〈ρiρj 〉 =
〈
σi

∏
�∈�ij

U�σj

〉
→ const (4)

as dist(i,j ) → ∞ and �ij is a path from i to j . Alterna-
tively stated, performing the nonlocal transformation σi →
ρi = ∏

�∈�0i
U�σi , with 0 a reference site, unveils a hidden

ferromagnetic phase for the nontrivial order, whereas for the
trivial phase, this results in a simple paramagnet.

As we now argue, the hidden ferromagnetic order is a
distinguishing property of the topological phase and therefore
one cannot continuously deform the models onto one another.
This implies that there are at least two distinct admissible
phases in our classification for d = 2, G = G′ = Z2. Notably,
local and symmetric perturbations in the original U and σ

variables would be transformed into local and symmetric
perturbations in μ and σ . As this transformation has no
effect on the free energy, one finds that hidden order is
thermodynamically equivalent to conventional order. This
means that hidden order is not just a feature of the model
but rather a robust property which can only vanish through a
phase transition or by leaving the space of admissible phases.

Perhaps the most interesting distinction between these two
phases comes about when considering a 1D interface between
them. In general, near an interface between a ferromagnet and

1We remark that one can consider more general couplings, such as
those of the Ashkin-Teller model [33], as long as the set of order
parameters in a phase is unchanged. Our choice of two decoupled
Ising models is made for pedagogical purposes.
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FIG. 1. Pictorial representation of low-energy configurations of
the 2D classical topological paramagnet. Red lines are domain walls
of the spins, while the blue ones are those where the link variable
U = −1. In the bulk, both of these lines must form closed paths and
energetically they are also encouraged to pair up, and at a boundary
(bottom) σ has long-range order.

a paramagnet, the order parameter leaks into the paramagnetic
phase up to some penetration length. Similarly, close to an
interface between the above two phases, both order parameters
(ρ and μ) will be ordered and as a result σ = ρ · μ would also
be ordered, despite being disordered in the bulk on both sides.
For instance, setting K1 = 0, K2 → ∞ on the trivial side is
equivalent to placing the nontrivial phase in an open geometry
with boundary conditions Uij = 1 or equivalently μi = μj ,
implying long-range order for σ .

More physically, one can view the configurations of U

in (1) as polygons on the dual lattice by assigning a line of
the polygon to links across which U = −1. The K1 coupling
then encourages domain walls of the spins to attach to these
polygons. Kinks of σ along the interface are necessarily ends
of domain walls in the bulk. However, these domain walls
cannot have an accompanying polygon as the latter is confined
from entering the trivial phase (vacuum in the picture).
Consequently, the bulk, despite being locally disordered,
linearly confines kinks of σ at the boundary into neutral pairs
(see Fig. 1).

A. Relation with the AKLT Hamiltonian

We now establish a precise connection between the 2D
CTP presented and the Affleck-Kennedy-Lieb-Tasaki (AKLT)
model, the paradigmatic example of a quantum SPT phase of
spins in (1 + 1)D [22]. (See also [28] for a picture of AKLT that
is close to our construction.) We consider the transfer matrix
of the 2D CTP in the limit of anisotropic coupling Kx

i =
ελi, e−2K

y

i = ελ′
i , i = 1,2, along the horizontal (x) or vertical

direction (y). It is then a standard exercise (see, e.g., [29])
to derive the quantum Hamiltonian in the limit ε → 0 starting
from Eq. (3) in the main paper, and to pass from the μ variables
to their duals τ . This results in the Z2 × Z2 symmetric
Hamiltonian H = H0 + ∑

λ2τ
x
i+1/2 + λ′

1σ
x
i , where

H0 =
∑

λ1σ
z
i τ x

i+1/2σ
z
i+1 + λ′

2τ
z
i−1/2σ

x
i τ z

i+1/2, (5)

and which coincides with the AKLT Hamiltonian in the
form considered in [30] for λ1 = λ′

2. Having equivalent
phenomenology and a very similar algebraic structure strongly
suggests that these two models describe the same phase.
Interestingly, when expressing our model in terms of the dual
variables τ , the Boltzmann weights are not positive anymore.
The Z2 constraint thus appears as a natural way to reflect the

additionalZ2 symmetry while maintaining positive Boltzmann
weights and locality.

B. Generalizations to G = G′ = ZN

Let us generalize the above model to the case G = G′ =
ZN . Accordingly, we consider a directed square lattice and
take σi ∈ ZN and Uij = U−1

ji ∈ ZN for the orientation being
from vertex i to j . We represent elements in ZN by e2πiα/N ,
α = 0,1, . . . ,N − 1. For a given p = 0,1, . . . ,N − 1, let us
define the minimal coupling:

Hp =
∑

i

∑
j∼i

σ
p

i Uijσ
−p

j , (6)

where j ∼ i means j a neighbor of i, so that each edge is
counted twice, once with its positive and once with its negative
orientation ensuring a real energy. Given nonzero p �= p′ the
generalized model is defined by (1) with

−βHp,p′ = K1Hp + K2Hp′ . (7)

As we will show, for large K1 (K2), p (p′) controls the
topological index. Let us note that σp is a ZN variable only
when p and N are coprime. Otherwise, it has a reduced order,
given by N/p. In order to keep the physical message of this
section clear and concise, we do not delve here in these number
theoretic considerations, and assume N to be prime.

To analyze the model we first expose the hidden order. To
this end, we resolve the constraint using

Uij = μiμ
−1
j (8)

yielding

Hp =
∑

i

∑
j∼i

σ
p

i μiμ
−1
j σ

−p

j (9)

and

Z = 1

N

∑
σ,μ

e−βH , (10)

where the factor of 1
N

comes from the 1 to N mapping between
Uij which respect the constraint and μi .

Next, we wish to go to the composite variables

σ̃i;p = μiσ
p

i , μ̃i;p′ = μiσ
p′
i . (11)

The assumption of N prime guarantees that they are in ZN ,
and the assumption of p �= p′ and a nonzero p guarantees the
mapping to be invertible. The indices p,p′ make explicit the
dependence on p and p′ in the definition of σ̃ and μ̃.

We thus find two decoupled ZN clock models

−βHp,p′ =
∑

i

∑
j∼i

(
K1σ̃i;pσ̃−1

j ;p + K2μ̃i;p′μ̃−1
j ;p′

)
, (12)

one in the composite variable σ̃p and the other in the composite
variable μ̃p′ . Now, we suppose that the couplings are such that
one of the two variables, say σ̃p, is ordered (recall that if N

is prime, ZN models can have only a single symmetry-broken
phase), and that μ is disordered. Notably, since μ̃p′ = μσp′

this also implies that μ̃p′ is disordered for all p′ �= p. We then
claim that under these conditions the model is in a “topological
phase of type p.” Three questions need to be answered to justify
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this statement: (i) Why is this a phase? (ii) Why do different p’s
correspond to distinct phases? (iii) Why are they topological?

Considering the first point, note that the hidden order of
the σ variables manifested by order in σ̃p is a robust property.
Indeed, as argued in the previous case of an Ising symmetry,
any local symmetric and defect-free perturbation in original
model would map to a local term in the σ̃p and μ̃p′ degrees of
freedom. Thus, robustness of the topological phase is implied
by the usual robustness of broken-symmetry states. Turning to
the second point, and the role of p, we can simply note that
two different values of p correspond to two different order
parameters and thus two different phases. Indeed, if σ̃i;p is
long-range ordered, then σ̃i;p′ must be disordered as it is equal
to a power of σ̃i;p times a nontrivial power of the disordered
variable μi .

Lastly, we justify the nomenclature topological. By this we
mean that an interface between two distinct admissible phases
would contain some form of long-range or quasi-long-range
order. Consider such an interface between a p topological
phase and a p′ topological phase. This scenario can be
engineered by setting K2 = 0 and σ̃p ordered on one side
of the interface, and K1 = 0 and μ̃p′ ordered on the other.
On the interface, these two order parameters will leak and
so (μiσ

p

i )(μiσ
p′
i )−1 = σ

p−p′
i would be ordered. Notably the

latter, and only the latter, is a local order parameter and thus
we have shown the existence of 1D long-range order on such
interfaces.

III. THREE DIMENSIONS

Next, we wish to generalize the above construction to 3D. In
2D we attached closed polygons to domain walls of the spins.
Turning to 3D, polygons on the dual lattice appear naturally in
Z2 gauge theories, where they correspond to discrete flux lines.
However, domains walls become 2D objects, and we instead
look for a property of the spins that can also be described in
terms of polygons.

Such a spin quantity has been studied recently in [30,31] and
can be thought of as an algebraic generalization of the usual
continuum notion of vorticity. Consider a cubic lattice and
orient links and plaquettes. Next, place a spin variable σ = ±1
at each vertex. The discrete vorticity ωp on a plaquette p is
defined as

ωp = 1

2

∑
(ij )∈∂p

ε
p

ij

1 − σiσj

2
, (13)

where the sum is over links on the boundary of p and ε
p

ij = 1
if the link is oriented as the plaquette, and −1 otherwise.
We remark that ωp = 0, ± 1 and the choice of plaquette
orientation has no effect on the Z2 quantity (−1)ωp that we
consider below. For definiteness, we choose orientations as in
Fig. 3.

An intuitive view on discrete vorticity comes form thinking
of the spins σi = +1, − 1 as the elements 0,1 in Z2. Then,
ωp appears as the discrete integral (i.e., a sum) around
a plaquette over the discrete derivatives 1

2 (1 − σiσj ) ∈ Z2.
Here, it is important to interpret the discrete derivative as a
variable in Z rather than in Z2, and hence this sum can be
nonzero multiple of |Z2| = 2. This is analogous to what one

does when calculating vorticity of a U(1) variable (φ) where
derivatives (iφ−1∂lφ) are taken in U(1) but then integrated over
as elements in R whose sum can now be a nonzero multiple
of 2π .

In analogy with usual vorticity, the discrete vorticity obeys
a discrete version of the zero divergence constraint: given
any box on the square lattice,

∑
p∈box ωp = 0 mod 2. This

can be shown by noting that for each box we can choose
a clockwise orientation (when looking from inside the box)
on each plaquette. Consequently, each link on the box would
appear exactly twice with opposite values of ε

p

ij . Therefore,
discrete vorticity lines form polygons on the dual lattice which
obey the exact same branching rules as fluxes in a Z2 gauge
theory.

Tools from lattice gauge theory, specifically cellular and
simplicial cohomology, shed further light on this quantity. A
thorough discussion of these aspects is relegated below in
Sec. III C 1 where they will be used to define discrete vorticity
for other Abelian groups.

Armed with the notion of discrete vorticity and its proper-
ties, we can now introduce the 3D model. Consider spins σi

on the vertices of a cubic lattice and Z2 gauge variables Aij

on the links, and choose the following energy:

−βH = J1

∑
p

(AAAA)p + J2

∑
p

(−)ωp (AAAA)p, (14)

with (AAAA)p being the product of the four Aij surrounding
the plaquette p.

In analogy with our 2D analysis, we would now want
to perform some nonlocal transformation to decouple the
gauge variables from the spins. Even though both flux and
vorticity lines form closed polygons, the number of distinct
flux configurations, which spans all such polygons, is bigger
than that of vorticity configurations which only span a subset.
Therefore, for any vorticity there exists a matching flux
although the converse is not true. It follows that there exists
Aσ such that (AσAσAσAσ )p = (−)ωp . Defining Ã = AAσ , we
obtain

−βH = J1

∑
p

(−)ωp (ÃÃÃÃ)p + J2

∑
p

(ÃÃÃÃ)p. (15)

There are two points in phase space where the gauge and
spin degrees of freedom decouple. The trivial case is J2 = 0
which implies free σ ’s and a standard Z2 gauge theory for
the A’s. For J1 > Jc, where Jc = 0.762(2) is the critical
temperature of the dual Ising model on the cubic lattice,
the gauge theory has a perimeter law for Wilson loops and
linearly confines monopoles (open flux lines), but deconfines
static charges of the gauge field [27]. The nontrivial case
is J2 > Jc and J1 = 0 and has the same confining bulk
physics only in the composite gauge variable Ã. Notably,
the transformation Ã = AAσ can be viewed as acting on the
flux degrees of freedom by multiplying them with vorticity
lines. Since vorticity lines consist of closed polygons, this
transformation leaves the monopole configuration unchanged.
Consequently, the nontrivial phase also confines monopoles.
See Fig. 2 for a representation of the nontrivial phase.

The above CTP is a robust phase of matter. As in the
2D model, the nonlocal transformation Ã = AAσ maps local
symmetric and gauge symmetry respecting operators, into
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boundary

p

: (−)ωp = −1

p

: (AAAA)p = −1

FIG. 2. Pictorial representation of low-energy configurations of
the 3D classical topological paramagnet. Along red (blue) lines the
discrete vorticity of the spins (the gauge flux) is nonzero. In the bulk,
both of these lines must form closed paths. Energetically, they are
also encouraged to pair up (middle shape). At a boundary (bottom,
orange) the flux is zero but vorticity lines may end. Since a closed flux
loop cannot follow an open vorticity line, frustration occurs implying
linear confinement of surface vortices. The opposite effect occurs
for monopoles of the gauge field (crosses), leading again to linear
confinement.

local ones, and leaves the free energy invariant. Respecting
these symmetries, both the monopole confining phases of Ã

and A are well-defined phases [32]. In addition, we found
that breaking the gauge symmetry on an interface or boundary
does not destroy the surface physics (see below), suggesting
that gauge symmetry is not crucial here.

A. Surface theory

To establish the distinction between trivial and nontrivial
phases and to support this nomenclature, we now discuss an
interface. For concreteness, we take coordinates (x,y,z) ∈ Z3

for the vertices of the lattice and identify the interface as the
x = 0 plane. We also denote PL (PR) the plaquettes in the
region x � 0 (x > 0). In the limit J2,J1 → ∞, (AAAA)p̃ = 1
for p̃ ∈ PR . By conservation of flux, we find that for all
boundary plaquettes p ∈ ∂P , (AAAA)p = 1. Consequently,
since J2 forces (−)ωp (AAAA)p = 1, ωp = 0 on the 2D
boundary. The surface partition function in this limit is thus
given by

Zsurf,0 =
∑

σ

∏
p∈∂P

δ(ωp) =
∑
σ,τ

∏
p∈∂P

(τ )ωp . (16)

The possible domain-wall configurations for σ ’s in 2D
are depicted in Fig. 3 where a second mapping to arrow
configurations of the eight-vertex model is also discussed.

34

1 2

ωp = − 1−σ1σ2
4

− 1−σ2σ3
4

+ 1−σ3σ4
4

+ 1−σ4σ1
4

0
+ +

++

0
− +

−+

0
+ +

+−

0
+ −

++

1
− +

++

−1
+ +

−+

0
− +

+−

0
+ +

−−

FIG. 3. (Top) Choice of orientations of links and the formula
for ωp for the front face. (Bottom) σ domain-wall configurations
together with their ωp values. Domain-wall configurations are in
bijection with arrow configurations of the eight-vertex model by
associating up/down (right/left) arrows on vertical (horizontal) links
with presence/absence of thick lines.

The constraint ωp = 0 implies a two-in–two-out ice rule,
supporting the vorticity interpretation and mapping the surface
theory to the critical six-vertex model with an anisotropy
parameter � = 1

2 [33].
The latter model is critical and described by a compact

free boson φ. This fact can be established with the Coulomb
gas method [34], which we now briefly recall. Denoted by
S� = ±1 the arrow at link �, note that S is conserved around
a vertex, and one can introduce a height field h(i) on the
same sites where σ lives, such that h increases by π in
crossing an arrow pointing up from the right. This discrete
height renormalizes at long distances to a Gaussian free
field, a conformal field theory with central charge c = 1, and
via this mapping one can compute dimensions of operators.
Noting that σiσj = ∏

�∈�ij
−ieiπS�/2 ∝ eih(i)/2e−ih(j )/2, σ is

found to have scaling dimension 3
8 . Similarly, noting that the

two-point function of τ in Eq. (16) corresponds to inserting
two vortices where the height field has discontinuity of ±4π ,
τ has dimension 2

3 . Identifying φ ≡ h/2, one has the effective
theory

L = g

4π
(∇φ)2, g = 4

3
. (17)

The appearance of half-integer electric charges follows also
naturally by considering the torus partition function. Indeed,
on 4L × 4L′ lattices, periodic boundary conditions for the σ ’s
select only even frustrations for the height field as it winds
around a cycle, resulting in half-integer electric charges and
even magnetic charges. Microscopically, σ is a Hermitian
linear combination of e±iφ and τ of e±iθ , θ being the dual
field. Therefore, the symmetry is realized as anticipated in the
main text: φ → φ + π and θ → θ + π , as it does in quantum
SPTs [35,36]. We also note that even though the local weight
(16) has no such symmetry, the global weight still has it, due
to the global constraint

∏
p(−1)ωp = 1 for a closed manifold.

From this analysis it follows that the latticeZ2 × Z2 symmetry
is realized in the field theory in an anomalous chiral way:
φ → φ + π and θ → θ + π , where θ is the dual field.

Let us consider perturbations to this surface model. Adding
a σσ term to the boundary action corresponds to the six-vertex
model in an external field. Denoted by H/2 and V/2 the
horizontal and vertical couplings, the theory remains critical
within the region (e2|H | − 1)(e2|V | − 1) � 1 [37], the only
effect of H,V �= 0 being renormalizing the stiffness of φ [38].
A ferromagnetic coupling between the τ ’s would generically
induce the RG-irrelevant term cos(2θ ). Interestingly, the
relevant cos(θ ) term is forbidden without requiring any fine
tuning of the couplings. Formally, it is because of the emergent
Z2 × Z2 symmetry. Physically, it is because ±2π vortices are
linearly confined by the bulk (see Fig. 2). Further, a gauge
symmetry-breaking term (K

∑
�∈∂E A�) can also be studied

using duality [39] and has no effect on the σ ’s in the limit
J2,J1 → ∞.

B. SPT perspective

As discussed in Sec. II A, the Z2 × Z2 two-dimensional
classical topological paramagnet can be related to the
imaginary-time partition function of a (1 + 1)D quantum SPT
phase. In this section we provide support for the analogous
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statement in 3D, proving that all of the above models are in
the same universality class as the Euclidean time partition
function of certain (2 + 1)D quantum SPTs. We will show this
by analyzing the responses to gauge fluxes or, equivalently, the
statistical phases obtained by braiding flux excitations.

As starting point we perform a gauge-to-Ising duality
transformation on the bulk [39] trading A’s for spins τ ’s on
the vertices of the dual lattice, resulting in an equivalent bulk
theory with weights:∏

p∈PL

(tanh J2)
1−τk τl

2

∏
p∈PR

(tanh J1)
1−τk τl

2 (τkτl)
ωp , (18)

where kl is the link dual to p. The term
∏

p∈PR
(τkτl)ωp is in fact

topological. It is always one in a geometry without interfaces
since then vorticity lines where ωp = ±1 form polygons, and
in the product of τkτl along each such polygon, each τ appears
an even number of times, and hence the product is always one.
Focusing on the analytically tractable case of J1 = 0 leaves us
with the partition function

Z =
∑
τ,σ

∏
p

eJ̃2τkτl (τkτl)
ωp , (19)

where J̃2 = 1
2 ln[tanh(J2)], and here and below (kl) is the link

dual to the plaquette p. Since this model now has a Z2 × Z2

symmetry, it is natural to seek a quantum counterpart which
utilizes such a symmetry, and these are known as type ii SPT
phases [8,40,41]. These SPTs are characterized by a quantized
bulk response to static gauge fluxes. For a Z2 × Z2 symmetry,
a π Ising flux for one symmetry would attract a fractional
symmetry charge of the other symmetry. This is the discrete
analog of flux attachment in the integer quantum Hall effect,
where a π flux would attract half an electron charge [42]. If
our model belongs to the same phase as that described by
the imaginary-time partition function of one of such (2 + 1)D
SPTs, it should exhibit the same flux responses.

We therefore introduce two additional static gauge fields
(Bσ ,Bτ ) which are coupled to matter in the usual manner: we
trade each τkτl with τkB

τ
klτl and each σiσj with σiB

σ
ijσj . The

adjective static refers to the fact that they are not summed over
in the partition function, which is then

Z({Bτ },{Bσ }) = 1

Z

∑
τ,σ

∏
p

eJ̃2τkB
τ
klτl

(
τkB

τ
klτl

)ωp(Bσ )
, (20)

where Z ≡ Z({1},{1}) as above. If we require that both fluxes
are zero everywhere, namely

∏
(ij )∈∂p Bσ

ij = ∏
(kl)∈∂p∗ Bτ

ij =
1, where p∗ is a dual plaquette, we can rewrite Bσ

ij = σ̃i σ̃j ,
Bτ

kl = τ̃k τ̃l , and reabsorb the B’s in the definition of σ,τ . Thus,
introducing gauge fields with zero flux is equivalent to set them
to 1. When coupling to gauge fields, from formula (5) of the
main paper the vorticity becomes

(−)ωp(Bσ ) =
∏

(ij )∈∂p

exp

(
iπ

1 − σiB
σ
ijσj

4
ε

p

ij

)
. (21)

If we now violate the zero-flux constraint, then (−)ωp(Bσ )

can assume the additional values ±i on top of ±1 which it
had before. A related issue to be discussed is the definition
of plaquette orientations which enter the sign ε

p

ij . Changing
plaquette orientations corresponds to change the exponent

of (21) by an overall sign. For zero Bσ flux, this choice is
immaterial; however, in the case of π flux it does matter. For
definiteness, we choose to orient both links and their dual as
the positive direction of the axis of three-dimensional space
they are parallel to, and adopt a left-hand rule for defining
clockwise/anticlockwise plaquette orientations.

The topological quantity we wish to calculate concerns the
flux responses in type ii SPT phases with aZ2 × Z2 symmetry
and we now recall its definition. Consider then a quantum
SPT model with Z2 × Z2 symmetry on a two-dimensional
lattice, and denote by σx,z,τ x,z the elementary spin operators,
and by |gs〉 its ground state. It can be shown [40] that the
insertion of a π flux associated with one of the symmetries
draws in a fractional symmetry charge associated with the
other symmetry. To probe this, we introduce two Bτ π fluxes
into the system by creating them and taking them apart at
positions a,b. Note that these excitations are stringlike and a
string will be attached to these two fluxes. Their world lines
draw a surface S1 in space-time whose interior is swiped by the
string. The system is then let to evolve until it reaches its new
ground state, and we denote the operator that performs this
operation by πab. Further, we denote by S2 the set of vertices
on a region surrounding only one of the fluxes and choose this
region to be larger than the correlation length.

The operator ρS2 = ∏
i∈S2

σx
i can be interpreted in two

ways. First, as creating, evolving, and annihilating two Bσ π

fluxes along the boundary of S2. Second, as a measure-
ment of the local Ising charge around just one flux. In a
nontrivial type ii SPT with a Z2 × Z2 symmetry, the ratio
〈gs|π †

abρS2πab|gs〉/〈gs|ρS2π
†
abπab|gs〉 should be equal to ±i

[40], the sign depending on which of the two Bτ fluxes is
encircled by S2. According to the previous discussion, one can
view this as the phase associated with braiding the two flux
excitations (in similar spirit to Ref. [43]) or alternatively as
a generalization of Laughlin’s pumping argument to discrete
symmetry as the π flux draws in half an Ising symmetry charge
(recall that in this multiplicative notation, an Ising charge is
−1 and so half a charge is ±i).

Upon switching to imaginary time, the quantum mechanical
overlaps making up this ratio can be reformulated as parti-
tion functions. The factor 〈gs|π †

abρS2πab|gs〉 is illustrated in
Fig. 4(a), where across the S1 surface (blue) the interaction
between the τ ’s is reversed and across the S2 surface (green)

τ

(a)

S1

S2

(b)

S1

S2

FIG. 4. Partition function formulation of the generalized Laugh-
lin’s argument or equivalently the braiding of two π fluxes. Across
the square blue surface S1 the sign of the interaction between two
τ ’s is reversed. Similarly, across the oval green surface S2 the sign of
the interaction between two σ ’s is reversed. The ratio between these
two partition function equals ±i for the nontrivial type ii SPT with a
Z2 × Z2 symmetry.
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the interaction between the σ ’s is reversed. As in the main
text, links where the interaction is reversed are referred to
as frustrated. The factor 〈gs|ρS2σ

x
i π

†
abπab|gs〉 illustrated in

Fig. 4(b) contains the same two elements, however, now these
are separated in imaginary time. More specifically, let us
denote by G and G∗ the lattice and its dual, where σ and
τ , respectively, live. As defined, S1 and S2 will be a connected
region of G and G∗ (note the order of G and G∗) across which
the τ and σ couplings, respectively, are reversed. By a region
here we mean a set of neighboring plaquettes and links around
them on both the interior and the boundary of the region. Since
it will be clear from the context, we we will write (kl) ∈ S2

for links in the region S2. Further, ∂Si will denote the set of
links on the boundary of Si . We remark that frustrated links
intersecting S1 (S2) correspond to introducing a Bτ (Bσ ) π

flux on the plaquettes intersecting ∂S1 (∂S2), consistently with
the above discussion.

Before delving into the details of calculating the relevant
ratio, let us give a physical picture supporting why it would
come out purely imaginary. In the presence of nontrivial fluxes,
the relation

∑
p∈box ωp(Bσ ) = 0 mod 2 does not hold in

general. Instead, one has an altered Z4 zero-divergence relation
given by 2[

∑
p∈box ωp(Bσ )Obox

p ] = 0 mod 4, where Obox
p =

1 (−1) if the plaquette’s orientation appears as clockwise
(anticlockwise) when viewed from within the box. Using this
new relation, one may show that the vorticity line configuration
in the presence of the Bσ flux loop contains a single fractional
vorticity line encircling S2 as well as other fluctuating integer
vorticity lines. Given the form of the topological term, the
integer vorticity lines cannot contribute imaginary factors and
so we may put them aside for now. Considering the fractional
vorticity line, if it does not cross S1 [case (b)], the term
�(kl)∈∂S1 (τkτl) is equal to 1. Consequently, the topological
term, which involves a fractional power of this product, cannot
give an imaginary contribution. On the other hand, if this
fractional vorticity line crosses S1 [case (a)], this product
would be −1, and the topological term would be purely
imaginary.

We now substantiate the above argument with some simple
and exact computations. First, notice that there are four cases
to consider for the weight w(kl) per dual link (kl), in case
frustrations for both τ and σ are present:

w(kl) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

eJ̃2τkτl (τkτl)ω̃p , (1) : kl ∈ S2, � ∩S1

e−J̃2τkτl (−τkτl)ω̃p , (2) : kl ∈ S2, ∩ S1

e−J̃2τkτl (−τkτl)ωp , (3) : kl �∈ S2, ∩ S1

eJ̃2τkτl (τkτl)ωp , (4) : kl �∈ S2, � ∩S1

(22)

where ω̃P corresponds to ωp(Bσ ) with frustrated links where
Bσ = −1. Defining the set of couplings

B̂τ
� =

{−1 � ∩ S1

1 � � ∩S1
, B̂σ

� =
{−1 � ∩ S2

1 � � ∩S2
, (23)

the observable of interest is

Z({B̂τ },{B̂σ }) = 1

Z

∑ ∏
kl∈S2,�∩S1

eJ̃2τkτl (τkτl)
ω̃p

×
∏

kl∈S2,∩S1

e−J̃2τkτl (−τkτl)
ω̃p

×
∏

kl �∈S2,∩S1

e−J̃2τkτl (−τkτl)
ωp

×
∏

kl �∈S2,�∩S1

eJ̃2τkτl (τkτl)
ωp (24)

= 1

Z

∑ ∏
kl∩S1

e−J̃2τkτl (−τkτl)
ωp

×
∏
kl �∩S1

eJ̃2τkτl (τkτl)
ωp

∏
kl∈S2

(τkτl)
ω̃p−ωp

×
∏

kl∈S2,∩S1

(−1)ω̃p−ωp . (25)

At this point, we use the following identity:∏
kl∈S2

(τkτl)
ω̃p−ωp = 1. (26)

To prove it, first notice that given the choice of orientation
described in the text above, ω̃p − ωp gives a factor ε

p

ijσiσj /2
per frustrated link ij . Then, group together all τ ’s having
a given exponent σσ ′/2. τ ’s appear in pairs for any choice
of bond σσ ′, and cancel either because τ 2 = 1 or because
ττ−1 = 1.

We now rewrite the partition function in terms of the
original A gauge degrees of freedom to take advantage of the
change of variables A → Ã as in Eq. (15), which decouples
gauge and spin degrees of freedom. Reversing the couplings
along S1 for the τ ’s corresponds in the A language to
computing the Wilson loop along the perimeter of S1 (see,
e.g., [29]), so that one has

Z({B̂τ },{B̂σ })
= Z−1

∑ ∏
p∈S1

(AAAA)p

×
∏
p

eJ2(AAAA)p(−)ωp
∏

p∈S1,∩S2

(−1)ω̃p−ωp (27)

=
〈 ∏

�∈∂S1

Ã�

〉
Ã

〈∏
p∈S1

eiπωp

∏
p∈S1,∩S2

eiπ(ω̃p−ωp)

〉
σ

, (28)

where the average 〈. . . 〉Ã is taken with the partition function
of Ã’s alone, and the average 〈. . .〉σ is taken with the trivial
partition function for the σ ’s that gives a weight of 1 to each
σ configuration. The last term in the σ expectation values
involves the links illustrated in Fig. 5.

1

1′

2

2′

3

3′

4

4′

FIG. 5. The surface S1. Red bonds are those which intersect S2

and are frustrated in the σ variables.
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Due to cancellations on the internal edges, now we have
the following identities [recall also the discussion around (26),
and use the notation of sites along the frustrations as in Fig. 5]:∏

p∈S1

eiπωp =
∏

(ij )∈∂S1

iε(ij )p
1−σi σj

2 , (29)

∏
p∈S1,∩S2

eiπ(ω̃p−ωp) = 1 if (b) : S1 ∩ S2 = ∅, (30)

∏
p∈S1,∩S2

eiπ(ω̃p−ωp)

= ei π
2 (−σ1σ

′
1+σ1σ

′
1−σ2σ

′
2+σ3σ

′
3−σ3σ

′
3+σ4σ

′
4) (31)

= ei π
2 σ4σ

′
4 if (a) : S1 ∩ S2 �= ∅. (32)

Therefore, in both (a) and (b) cases, the σ expectation value
reduces to a one-dimensional classical spin chain along ∂S1

which can be easily solved via transfer matrix. The presence
of frustration in case (a) corresponds to introducing a twist
by the matrix ei π

2 σσ ′
. Under the assumption of a rectangular

perimeter ∂S1 of length 2N , with the branching structure as
in Fig. 5, the σ expectation value in the (a) case is (setting
σ2N+1 ≡ σ1)〈∏

p∈S1

eiπωp

∏
p∈S1,∩S2

eiπ(ω̃p−ωp)

〉
σ

= 2−|∂S1| Tr

[(
i −i

−i i

)(
1 i

i 1

)N(
1 −i

−i 1

)N
]

(33)

= i21−N . (34)

Let us remark that the problem has a chirality given by the
branching structure. If S2 crossed S1 on the left boundary
instead of on the right, the twist matrix would have been
e−i π

2 σσ ′
, and it would have produced an extra minus sign.

If the flux arrangement is as in Fig. 4(b), the only difference
in the result is the absence of the twist matrix appearing first
in the above trace. The sole net effect of this is to remove the
i factor and therefore the desired ratio is

Z(a)/Z(b) = ±i, (35)

depending if S2 crosses S1 on its right (+) or left (−). We have
thus shown that our model has the same response to π fluxes
as the related quantum SPT phase.

C. Generalizations

As done in Sec. II B for the 2D case, we now sketch
generalizations of the 3D model beyond the case of a Z2

symmetry.

1. Discrete vorticity and cellular cohomology

We first address the mathematical description of the discrete
vorticity in terms of cellular cohomology which allows for its
generalization. We will then outline a classification of CTPs
within this framework and analyze some specific models.

Simplicial and cellular cohomology are toolboxes used in
lattice gauge theories (see, e.g., [26].). The first requires us to

work strictly with simplexes while the second permits more
general types of cells, in particular the cubic lattice. Let us
quickly describe the necessary mathematical details. A reader
interested in only the generalized definition of the discrete
vorticity for G = ZN may skip directly to Eq. (38).

We denote the sets of sites, edges, plaquettes, and boxes
of the cubic lattice by V,E,P,B, respectively, and call their
elements alternatively 0, 1, 2, and 3 cells. In the obvious
manner, each of these sets describes the boundary of the latter
one. The relations between cells and their boundaries can be
captured in several ways: one is using incidence numbers,
where [a : b], with a a d cell and b a d + 1 cell. These
take three possible integer values, −1,0,1, which satisfy sum
rules, such as

∑
e∈E[v : e][e : p] = 0,

∑
p∈P [e : p][p : b] =

0. Alternatively, one can simply orient the edges and plaquettes
and then [v : e] will be 0, 1, or −1 if v is not a boundary of
e, v is at the end of e, or v is at the beginning of e. Similarly,
[e : p] is 0 if e is not an edge of p, 1 if e is aligned along the
orientation of p, or −1 if it is opposite. One can easily verify
that these definitions satisfy the sum rules.

Below we use i,j,k, . . . for vertex indices, εij = 1 (−1) if
the edge ij is oriented from i to j (j to i) and ε

p

ij = 1 (−1)
if the edge ij is oriented along the orientation of the plaquette
(against it).

To define a cellular cohomology structure (or physically
a gauge theory coupled to matter), the following steps are
needed: First, we pick an Abelian group (the gauge group)
G and call an assignment g : V → G a 0-cochain (matter
field), A : E → G a 1-cochain (gauge field), and F : E → G

a 2-cochain (curvature/flux field). We denote the set of
d-cochains by Cd . The coboundary operator δ (see Ref. [26])
maps Cd to Cd+1, and is nilpotent, δ2 = 0. In particular,
(δg)ij∈E = gig

−1
j , where the order of ij is chosen according

to the orientation of the edge, is the trivial 1-cocycle. [If
G is a generic Abelian group, we will use the notation
(δg)ij = gi − gj , and if G = Z2, gi = (1 − σi)/2, where
σi = ±1 is the variable used in the main text.] In general,
given α ∈ Cd , β = δα is a trivial (d + 1)-cochain, and if
β = 0, then α is called a d-cocycle. Next, one can define
an equivalence relation where two d-cocycles are equivalent
if they differ by a trivial d-cochain: α1 − α2 = δγ , with
γ ∈ Cd−1. The equivalence classes of d-cocycles then obey a
group structure known as the d cohomology group Hd (G).

We consider now an exact sequence of Abelian groups of
the type

0 → G
f→ G̃

h→ G → 0, (36)

and construct the map B = f −1δh−1, which is applied to a
trivial 1-cocycle δg to produce a 2-cocycle. The map B is called
a Bockstein homomorphism [44,45] and is well defined given
h−1,f −1. Further, it maps d-cocycles to (d + 1)-cocycles and
introduces a homomorphism between Hd (G) and Hd+1(G).
In physical terms, it maps a matter configuration to gauge flux
configurations with no monopoles.

In general, there are a variety of exact sequences one can
consider and hence a variety of Bockstein homomorphisms.
These can be classified by classifying the exact sequences
upon which they are based. Short exact sequences of the
form (36) involving Abelian groups are equivalent to central
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extension of G by G (s.t. G = G̃/G). The trivial extension
is defined by G̃ = G × G,f (a) = (a,0) and h[(a,b)] = b.
Nontrivial extensions are classified by the second group
cohomology H 2(G,G). For G = ZN with N prime, one finds
that H 2(ZN,ZN ) = ZN and so N distinct choices of discrete
vorticity exist.

If we specify to G = Z2, G̃ = Z4, and f (a) = 2a, h(a) =
a mod 2, the Bockstein homomorphism B produces precisely
ωp mod 2 and the 2-cocycle condition implies zero diver-
gence. Moreover, since B is a homomorphism and δg is a
trivial 1-cocycle, the 2-cocycle must be trivial as well and
hence there exists a 1-cochain (a gauge field A) such that
δA = ωp.

We can now use B to define discrete vorticities for other
Abelian groups. Consider, for instance, the case G = ZN , N

prime, G̃ = ZN2 , and

f (a)=Na, h�(a) = �a mod N, �=0,1, . . . ,N−1. (37)

Each choice of � realizes one of the N nonequivalent central
extensions of ZN by ZN , and leads to a different Bockstein
homomorphism with � = 0 being the trivial case. Setting B� =
f −1δh−1

� yields a discrete vorticity generalizing Eq. (13):

ω(�)
p = 1

N

∑
(ij )∈∂p

ε
p

ij �(gi − gj ) mod N2, (38)

where i and j in the above are chosen such that i (j ) is at
the start (end) of the edge ( �ij ) and ε

p

ij = 1 (−1) if the edge
is oriented with (against) the plaquette p. {Equivalently, ε

p

ij is

the incidence number [( �ij ) : p] in the notation of Ref. [26].}
Explicitly, referring to Fig. 3, it reads as

ω(�)
p = 1

N
(�(−(g1 − g2) − (g2 − g3)

+ (g4 − g3) + (g1 − g4)) mod N2). (39)

The nontriviality of this expression is due to the fact that the
terms (gi − gj ) are understood in ZN .

Lastly, we comment on the connection between the above
cellular-cohomology approach and the group-cohomology
approach to SPTs [8]. Quantum SPTs at d + 1 spatial
dimensions with a symmetry Q are classified by the group-
cohomology group Hd+1(Q,U (1)). In our classical context,
d + 1 is actually the overall dimension, and so one may
expect that our phase is contained in H 3(Q,U (1)). If our
matter fields possess a ZN symmetry and the gauge sym-
metry is ZN , the relevant symmetry group in our context
is Q = ZN × ZN . (This is shown explicitly in the next
section for N = 2.) Considering Q = ZN × ZN , the Kunneth
formula [28] tells us that H 3(ZN × ZN,U (1)) = Z3

N contains
H 2(ZN,H 1(ZN,U (1))) = H 2(ZN,ZN ) which is also the quan-
tity which classifies central extensions, as discussed above. It
would be interesting to find the exact correspondence between
H 3(G × G′,U (1)) and possible CTPs. In particular, find out
whether every element in H 3(G × G′,U (1)) corresponds to a
classical (or local sign-free) partition function.

2. Discrete vorticity models of 3D CTPs with G = G′ = ZN

Using the above definition of a discrete vorticity for
G = ZN one can readily define more general models of 3D

CTPs. To this end, we consider a cubic lattice with vertices
indexed by i, oriented edges pointing from i to j by (ij ), and
oriented plaquettes indexed by p. The model has σi ∈ ZN

degrees of freedom on vertices and Aij ∈ ZN degrees of
freedom on edges of the lattice. As in the two-dimensional
case, ZN degrees of freedom take values in the roots of
unity (e2πiα/N ). (However, we still represent ω(�)

p as a number
between 0, . . . ,N − 1.) In this notation, the generalized model
is given by

−βH =
∑

p

J�′e
2πiω

(�′ )
p

N (AAAA)p + c.c.

+
∑

p

J�e
2πiω

(�)
p

N (AAAA)p + c.c., (40)

with ω(�)
p being the discrete vorticity from Eq. (38), which

depends on gi defined by σi = e2πigi/N and (AAAA)p ∈ ZN

is the product of A
ε

p

ij

ij ’s along the plaquette p.
First, let us analyze the case when only J� is nonzero. The

previous discussion on ω(�)
p shows that for every σ configu-

ration there is a Aσ configuration such that (AσAσAσAσ )p =
ω(�)

p . Thus, going to the composite gauge variable Ã = AAσ

one obtains −βH = J�(ÃÃÃÃ)p, a pure ZN lattice gauge
theory.

Performing a generalized Kramers-Wannier duality [39], a
ZN lattice gauge theory becomes a 3D clock model with rotor
variables taking values in ZN . For prime N , so that ZN does
not have any subgroups, the model will exhibit two distinct
thermodynamic phases: a disordered phase where the rotors
are disordered and an ordered phase of the rotors separated by
a second-order phase transition at Jc. In gauge theory terms,
these correspond, respectively, to a phase with short flux loops
(J� > Jc) and one with large flux loops (J� < Jc). Following
the exact same reasoning as done for the Z2 case, we find that
the former phase confines defects of the constraint and since
σ can fluctuate freely, it clearly does not break any symmetry.
Consequently, it is an admissible phase in our classification.

We argue that the phase obtained for J� > Jc is a classical
topological phase of type �. As discussed previously, it is a
phase since local symmetry and gauge respecting perturbation
in the σ,A degrees of freedom map to local symmetry and
gauge respecting perturbation in the σ,Ã notation and vice
versa. Knowing that the latter is a well-defined thermodynamic
phase then implies that the former one is well defined as
well. To see why different � correspond to distinct phases,
let us consider an interface between a phase with large
J� → ∞,J�′ = 0 on the left and J�′ → ∞,J� = 0 on the right.
At the interface, ω(�)

p = ω(�′)
p . Now, since ω(�)

p = �ω(1)
p mod N

and N is prime, consistency implies either � = �′ or ω(1)
p = 0.

Supposing � �= �′, this shows that just as in the Z2 case, the
boundary is described by a 2D statistical mechanical model
where a zero vorticity constraint is imposed on every square.
Taking J� > Jc but finite on the left and J�′ > Jc on the
right will result in a physically similar scenario where flux
lines crossing the interface are confined to neutral pairs by
the bulks. We will argue momentarily that the model with
zero vorticity is gapless. This, together with the relations to
the group-cohomology classification of the previous section,
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strongly suggests that different � correspond to different
phases. One way of proving this would be to generalize the
arguments of Sec. III B to ZN , and is left for future work.

Let us analyze the resulting theory on the two-dimensional
interface. We first count the number of zero-vorticity con-
straints at a plaquette. We change variables from site to link
variables sij = gi − gj , where as before σi = e2πigi/N . The
four link variables around a plaquette can assume only N3

since a global shift of gi leaves the link variables unchanged.
(In the following, we will ignore the multiplicative factor
N in the weight produced by this change of variables.) For
the purpose of counting the zero-vorticity configurations, we
can ignore this constraint and consider the link variables
independent since the missing N configurations have nonzero
vorticity. We are thus left with a vertex model, where each
link has N states and zero vorticity becomes an interaction at
vertices of dual lattice. Further, the zero-vorticity constraint is
the same for any � in (38) and w.r.t. the labelings of vertices
and orientations as in Fig. 3, it reads as

−s12 − s23 + s43 + s14 = 0. (41)

If the N states are labeled −S, . . . ,S, with S = N−1
2 , this

coincides with U(1) invariant configurations of spin-S vertex
models, and the resulting number of nonzero configurations is

N

3
(2N2 + 1) = 6,19,44,85, . . . . (42)

Apart from the already discussed N = 2 case, other values
of N may not correspond to integrable weights for the vertex
model, as we will discuss now for the case N = 3, where the
number of vertices is 19. In such case, there are two classes
of integrable 19 vertex models, both of which can be related
to a loop model (see, e.g., [46]). In particular, our model gives
uniform weight one to each vertex and cannot be related to a
loop model, at least not in the standard fashion where states
of labels ±1 are associated to oriented strands of loops and
states of labels 0 to vacancies. Nonetheless, this model belongs
to a class of models studied numerically in relation with
Berezinskii-Kosterlitz-Thouless transition in [47], suggesting
that the model is critical and with c = 1.

IV. CONCLUSION

In this work, we have introduced a topological classification
scheme of classical statistical mechanical systems. This
involved defining the objects of the classification (admissible
phases), the equivalence relations between them (continuous
deformation without phase transitions), and lastly showing that
the classification is not trivial by giving concrete examples of
admissible phases which are inequivalent. We have found N

distinct models for CTPs in 2D and 3D for systems with a ZN

symmetry and defects carrying a ZN charge. An important
question concerning the ability to identify the topological
index or equivalence class given the bulk behavior of a
particular model is left for future work.

The CTPs introduced in this work, together with the ones
discussed in [24,48], describe, to the best of our knowledge,
types of topological classical phases of matter. The models
given here are, arguably, the simplest and most minimal ones
having just a spin degree of freedom per site and per link.

Another salient feature is that they can be simulated using
classical Monte Carlo. They may thus serve as a test bed
for studying various open questions concerning both classical
topological paramagnets and their quantum counterparts [8].
These concern the nature of phase transition between trivial
and nontrivial phases [48], the effect of disorder on the surfaces
and on phase transitions, and the precise implications of the
bulk-boundary correspondence [31].

It would be highly desirable to find possible experimental
realizations of such CTPs. In the field of quantum bosonic
SPTs [8], experimental realizations are so far limited to
(1 + 1)D [11]. Being free from the stringent requirement
of quantum coherence, and based on simple microscopic
ingredients, the classical counterparts introduced here may
prove easier to realize. Indeed, similar classical systems, such
as artificial spin-ice systems, have been successfully realized
[49–51] using ferromagnetic wires as well as tiling molecules
[52]. The 2D model we discussed could potentially be realized
from the same microscopic ingredients.

Finally, it would be interesting to further explore the
classification question we propose in this work, for instance,
by considering other types of symmetries and constraints.
Certainly there should be some relation with the group-
cohomology classification of bosonic SPTs with a trivial
bulk [8], however, it may not be one to one. Indeed, some
SPTs may suffer from sign problems in Monte Carlo while
others do not. Conversely, it may be that enforcing hard
constraints or gauge symmetries allows for new types of
quantum phases. Indeed, hard constraints in classical systems
may result in a genus-dependent ergodicity breaking [53,54]
whereas genus-dependent ground-state degeneracy is not part
of the cohomology classification of Ref. [8].
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APPENDIX: GENERAL DEFINITION OF A LOCAL
CONSTRAINT, CONFINEMENT, AND DECONFINEMENT

Here, we address the issue of how one generally defines a
lattice constraint as well as confined and deconfined phases. A
local constraint on a lattice can be abstracted as follows: First,
one requires a local mapping from the degrees of freedom to
group elements in G′. For the sake of simplicity, we take G′
Abelian. This mapping should be local such that the value
gx obtained at point x involves degrees of freedom near x.
Furthermore, it must be neutral such the product of gx over a
closed manifold yields the identity. The constraint is then the
requirement that gx = I (I being the identity) at all positions
x. A defect fx is a local violation of this rule in which gx =
fx �= I . In the familiar context of 3D lattice gauge theories
on a cubic lattice, this mapping would be a mapping between
boxes and magnetic charges within them. A local defect would

174418-10



CLASSICAL TOPOLOGICAL PARAMAGNETISM PHYSICAL REVIEW B 95, 174418 (2017)

thus be a particular box where the magnetic charge is f instead
of the identity.

Confined and deconfined phases are defined, as usual, by
the free-energy cost �Fl of taking two static opposite defects
(f,f −1) apart. Confinement is defined by a free-energy cost
which increases as a positive power of the distance (l) and a
deconfined phase is defined by a saturating free-energy cost.
Just like in the case of broken symmetries, these define two
distinct phases of matter which can only be connected through
a phase transition. The simplest way to show this is to remove
the constraint and instead introduce Lagrange multipliers at
every point where the constraint is imposed as

δf,I = 1

|G′|
∑

λ

χλ(f ), (A1)

where λ goes through |G′| values labeling the irreducible one-
dimensional representations of G′ and χλ(f ) is the character. If
G′ = ZN , we simply have χλ(f = ak) = e2πiλk/N , where a is
the generator of ZN . By the neutrality condition, the resulting
partition function obeys a global symmetry G′ shifting all the
{λx} by the same amount. Finally, �Fl is given by

e−�Fl = 〈χλ0 (f )χλl
(f −1)〉, (A2)

and the confined phase translates into the phase with exponen-
tially decaying λx correlations (i.e., no spontaneous symmetry
breaking) and the deconfined phase becomes the spontaneous
broken-symmetry phase.
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Soljačić, Phys. Rev. Lett. 115, 253901 (2015).
[17] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.

Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[18] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Phys. Rev. Lett. 109, 106402 (2012).

[19] J. Paulose, A. S. Meeussen, and V. Vitelli, Proc. Natl. Acad. Sci.
USA 112, 7639 (2015).

[20] B. G.-g. Chen, N. Upadhyaya, and V. Vitelli, Proc. Natl. Acad.
Sci. USA 111, 13004 (2014).

[21] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Nat.
Phys. 7, 907 (2011).

[22] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Commun.
Math. Phys. 115, 477 (1988).

[23] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Phys.
Rev. B 85, 075125 (2012).

[24] S. D. Geraedts and O. I. Motrunich, Ann. Phys. 334, 288
(2013).

[25] L. van Hove, Physica (Amsterdam) 16, 137 (1950).
[26] C. Itzykson and J. Drouffe, Statistical Field Theory: Volume 1,

From Brownian Motion to Renormalization and Lattice Gauge
Theory (Cambridge University Press, Cambridge, 1991).

[27] R. Savit, Rev. Mod. Phys. 52, 453 (1980).
[28] X. Chen, Y.-M. Lu, and A. Vishwanath, Nat. Commun. 5, 3507

(2014).
[29] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
[30] Z. Ringel and S. H. Simon, Phys. Rev. B 91, 195117 (2015).
[31] T. Scaffidi and Z. Ringel, Phys. Rev. B 93, 115105 (2016).
[32] E. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682

(1979).
[33] R. Baxter, Exactly Solved Models in Statistical Mechanics,

Dover Books on Physics (Dover, New York, 2007).
[34] B. Nienhuis, J. Stat. Phys. 34, 731 (1984).
[35] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119 (2012).
[36] D. V. Else and C. Nayak, Phys. Rev. B 90, 235137 (2014).
[37] N. Reshetikhin, arXiv:1010.5031.
[38] J. D. Noh and D. Kim, Phys. Rev. E 53, 3225 (1996).
[39] R. Balian, J. M. Drouffe, and C. Itzykson, Phys. Rev. D 11, 2098

(1975).
[40] J. C. Wang, L. H. Santos, and X.-G. Wen, Phys. Rev. B 91,

195134 (2015).
[41] A. Coste, T. Gannon, and P. Ruelle, Nucl. Phys. B 581, 679

(2000).
[42] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[43] M. Levin and Z.-C. Gu, Phys. Rev. B 86, 115109 (2012).
[44] A. Hatcher, Algebraic Topology (Cambridge University Press,

Cambridge, 2002).
[45] A. Kapustin, arXiv:1403.1467.
[46] C. Yung and M. Batchelor, Nucl. Phys. B 435, 430 (1995).
[47] Y. Honda and T. Horiguchi, Phys. Rev. E 56, 3920 (1997).
[48] Y.-Z. You, Z. Bi, D. Mao, and C. Xu, Phys. Rev. B 93, 125101

(2016).

174418-11

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.115.096802
https://doi.org/10.1103/PhysRevLett.115.096802
https://doi.org/10.1103/PhysRevLett.115.096802
https://doi.org/10.1103/PhysRevLett.115.096802
https://doi.org/10.1063/1.3581887
https://doi.org/10.1063/1.3581887
https://doi.org/10.1063/1.3581887
https://doi.org/10.1063/1.3581887
https://doi.org/10.1063/1.4733388
https://doi.org/10.1063/1.4733388
https://doi.org/10.1063/1.4733388
https://doi.org/10.1063/1.4733388
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevLett.107.126803
https://doi.org/10.1103/PhysRevLett.107.126803
https://doi.org/10.1103/PhysRevLett.107.126803
https://doi.org/10.1103/PhysRevLett.107.126803
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.235128
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevB.84.165139
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1103/PhysRevLett.56.371
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nmat3520
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1038/nphys2835
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1103/PhysRevLett.116.135503
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1126/science.aab0239
https://doi.org/10.1103/PhysRevLett.115.253901
https://doi.org/10.1103/PhysRevLett.115.253901
https://doi.org/10.1103/PhysRevLett.115.253901
https://doi.org/10.1103/PhysRevLett.115.253901
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1038/nature12066
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1502939112
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1073/pnas.1405969111
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1038/nphys2063
https://doi.org/10.1007/BF01218021
https://doi.org/10.1007/BF01218021
https://doi.org/10.1007/BF01218021
https://doi.org/10.1007/BF01218021
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1103/PhysRevB.85.075125
https://doi.org/10.1016/j.aop.2013.03.017
https://doi.org/10.1016/j.aop.2013.03.017
https://doi.org/10.1016/j.aop.2013.03.017
https://doi.org/10.1016/j.aop.2013.03.017
https://doi.org/10.1016/0031-8914(50)90072-3
https://doi.org/10.1016/0031-8914(50)90072-3
https://doi.org/10.1016/0031-8914(50)90072-3
https://doi.org/10.1016/0031-8914(50)90072-3
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1103/RevModPhys.52.453
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1038/ncomms4507
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/PhysRevB.91.195117
https://doi.org/10.1103/PhysRevB.91.195117
https://doi.org/10.1103/PhysRevB.91.195117
https://doi.org/10.1103/PhysRevB.91.195117
https://doi.org/10.1103/PhysRevB.93.115105
https://doi.org/10.1103/PhysRevB.93.115105
https://doi.org/10.1103/PhysRevB.93.115105
https://doi.org/10.1103/PhysRevB.93.115105
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1007/BF01009437
https://doi.org/10.1007/BF01009437
https://doi.org/10.1007/BF01009437
https://doi.org/10.1007/BF01009437
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.90.235137
https://doi.org/10.1103/PhysRevB.90.235137
https://doi.org/10.1103/PhysRevB.90.235137
https://doi.org/10.1103/PhysRevB.90.235137
http://arxiv.org/abs/arXiv:1010.5031
https://doi.org/10.1103/PhysRevE.53.3225
https://doi.org/10.1103/PhysRevE.53.3225
https://doi.org/10.1103/PhysRevE.53.3225
https://doi.org/10.1103/PhysRevE.53.3225
https://doi.org/10.1103/PhysRevD.11.2098
https://doi.org/10.1103/PhysRevD.11.2098
https://doi.org/10.1103/PhysRevD.11.2098
https://doi.org/10.1103/PhysRevD.11.2098
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1103/PhysRevB.91.195134
https://doi.org/10.1016/S0550-3213(00)00285-6
https://doi.org/10.1016/S0550-3213(00)00285-6
https://doi.org/10.1016/S0550-3213(00)00285-6
https://doi.org/10.1016/S0550-3213(00)00285-6
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.86.115109
https://doi.org/10.1103/PhysRevB.86.115109
http://arxiv.org/abs/arXiv:1403.1467
https://doi.org/10.1016/0550-3213(94)00448-N
https://doi.org/10.1016/0550-3213(94)00448-N
https://doi.org/10.1016/0550-3213(94)00448-N
https://doi.org/10.1016/0550-3213(94)00448-N
https://doi.org/10.1103/PhysRevE.56.3920
https://doi.org/10.1103/PhysRevE.56.3920
https://doi.org/10.1103/PhysRevE.56.3920
https://doi.org/10.1103/PhysRevE.56.3920
https://doi.org/10.1103/PhysRevB.93.125101
https://doi.org/10.1103/PhysRevB.93.125101
https://doi.org/10.1103/PhysRevB.93.125101
https://doi.org/10.1103/PhysRevB.93.125101


R. BONDESAN AND Z. RINGEL PHYSICAL REVIEW B 95, 174418 (2017)

[49] R. F. Wang, C. Nisoli, R. S. Freitas, J. Li, W. McConville, B. J.
Cooley, M. S. Lund, N. Samarth, C. Leighton, V. H. Crespi, and
P. Schiffer, Nature (London) 439, 303 (2006).

[50] Y. Qi, T. Brintlinger, and J. Cumings, Phys. Rev. B 77, 094418
(2008).

[51] C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85,
1473 (2013).

[52] M. O. Blunt, J. C. Russell, M. d. C. Giménez-López, J. P.
Garrahan, X. Lin, M. Schröder, N. R. Champness, and P. H.
Beton, Science 322, 1077 (2008).

[53] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881
(2001).

[54] M.-S. Vaezi, G. Ortiz, and Z. Nussinov, Phys. Rev. B 93, 205112
(2016).

174418-12

https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1038/nature04447
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1103/PhysRevB.77.094418
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1103/RevModPhys.85.1473
https://doi.org/10.1126/science.1163338
https://doi.org/10.1126/science.1163338
https://doi.org/10.1126/science.1163338
https://doi.org/10.1126/science.1163338
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevLett.86.1881
https://doi.org/10.1103/PhysRevB.93.205112
https://doi.org/10.1103/PhysRevB.93.205112
https://doi.org/10.1103/PhysRevB.93.205112
https://doi.org/10.1103/PhysRevB.93.205112



