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Domain state of the axial next-nearest-neighbor Ising model in two dimensions
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We have examined the spin ordering of an axial next-nearest-neighbor Ising model in two dimensions (2D)
near above the antiphase (〈2〉 phase). We considered an NR-replica system and calculated an overlap function
qm between different replicas, having used a cluster heat bath Monte Carlo method. We determined transition
temperature between the 〈2〉 phase and a floating incommensurate (IC) phase as TC2/J = 0.89 ± 0.01 with
frustration ratio κ(≡ −J2/J1) = 0.6. We found that the spin state at T � TC2 may be called a domain state,
because the spin structure is characterized by a sequentially arranged four types of domains with different 〈2〉
structures. In the domain state, the 2D XY symmetry of the spin correlation in the IC phase weakly breaks, and
the diversity of the spin arrangement increases as T → TC2. The Binder ratio gL exhibits a depression at T ∼ TC2

and the quasiperiodic spin structure, which is realized in the IC phase, becomes diverse at T � TC2. We discussed
that the domain state is stable against the thermal fluctuation which brings a two-stage development of the spin
structure at low temperatures.
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I. INTRODUCTION

Competition can introduce dramatic effects in spin systems
even though only short-range interactions are present [1].
A floating incommensurate (IC) phase of the axial next-
nearest-neighbor Ising (ANNNI) model is a famous example
of nontrivial spin orderings produced by simple interactions.
In the two-dimensional (2D) ANNNI model, ferromagnetic
Ising chains are coupled with ferromagnetic nearest-neighbor
and antiferromagnetic next-nearest-neighbor interchain inter-
actions on a square lattice. The Hamiltonian is described by

H = −J
∑
x,y

Sx,ySx+1,y

−J1

∑
x,y

Sx,ySx,y+1 − J2

∑
x,y

Sx,ySx,y+2, (1)

where Sx,y = ±1 is an Ising spin, and J,J1 > 0 and J2 < 0.
This model has been studied throughout the past few decades
by various methods [2–7]. It was suggested that, for κ(≡
−J2/J ) > 1/2, the IC phase exists between the paramagnetic
(PM) phase and the ground-state antiphase (〈2〉 phase), which
is a commensurate (C) phase of an alternate arrangement of
two up-spin and two down-spin chains in the y direction
[2,3]. The IC phase close to the higher transition temperature,
TC1, may be characterized by dislocations [3] that play the
same role of vortices in a two-dimensional XY (2D XY)
model [8], and the IC phase near above the lower transition
temperature, TC2, may be characterized by domain walls of
three up-spin chains or three down-spin chains penetrating the
〈2〉 phase. However, the spin ordering is yet to be clarified,
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because equilibrium properties of the IC phase are not well
understood yet, especially the change in the spin ordering
when the temperature is lowered from TC1 to TC2. Besides
that, while equilibrium MC simulations supported the above
picture of the spin ordering with TC1 > TC2 [9,10], recent
nonequilibrium relaxation (NER) MC simulations [11,12]
predicted TC1 ∼ TC2, i.e., the absence of the IC phase [13,14].
In a previous paper [15] (referred to as I, hereafter), we
reexamined the spin ordering of the ANNNI model with
J1 = J and κ = 0.6 at a high temperature range, having
used both the equilibrium MC and the NER MC methods
and showed that both methods reveal the occurrence of the IC
phase transition at TC1 ∼ 1.16J [9], and the spin ordering at
T � TC1 exhibits properties of the 2D XY model [8].

In this paper, we reexamine the spin ordering near the
other transition temperature TC2. We will propose a physical
quantity appropriate for the ANNNI model, by which we
can readily separate the 〈2〉 phase from the IC phase.
Section II describes the investigated method and quantities
of the 2D ANNNI model. Section III presents results of the
equilibrium simulation. In Sec. IV, we discuss, on the basis
of a domain picture, the spin structure of the model for both
the temperature ranges of near below TC1(T � TC1) and near
above TC2(T � TC2). Section V addresses the periodic nature
of the ANNNI model calculating the Fourier component of
the spin arrangement. Section VI is devoted to conclusions
and discussions, where we will discuss why the 2D ANNNI
model undergoes a very slow relaxation at low temperatures.

II. METHOD AND QUANTITIES

We apply a technique similar to one proposed by Sato and
Matsubara (SM) [9] and used in I. We consider the model
with κ = 0.6 on the L0 × L0 lattice with open boundaries.
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Quantities of interest are measured in the inner region
of L × L, with L = L0/2, i.e., L0/4 + 1 � x,y � 3L0/4.
Hereafter, we attach a new lattice site name for this region,
i.e., x,y = 1,2, . . . ,L. We apply the CHB algorithm [16,17]
to get an equilibrium spin configuration. That is, the spin
configuration of a block of L0 × ly spins is updated using
the transfer matrix method, where the transfer direction is the
x direction (L0) and the width of the block ly is determined
from the computational time costs. In the previous paper we
apply the SM procedure with ly = 6. The choice of ly = 6
was appropriate in a temperature range of T –TC1. However,
when the temperature is lowered toward TC2, the number of the
MC sweeps needed to get the equilibrium spin configuration
rapidly increases. Then we adopt a larger ly for a larger lattice
of L0 × L0.

The difficulty of studying the phase transition of the ANNNI
model is that the spin structure of the IC phase is not known a
priori. Another problem to be noted is that the 〈2〉 phase has
four equivalent structures. That is, when we look at four spins
at (4l + 1,4l + 2,4l + 3,4l + 4) (l = 0,1,2, . . .) chains, they
have either (+ + −−), (+ − −+), (− − ++), or (− + +−).
One usually investigates the squared chain magnetization
M2[= 1

L

∑L
y=1( 1

L

∑L
x=1 Sx,y)2]. This quantity characterizes

the spin correlation along the x direction. Using M2, one can
separate the IC phase from the PM phase, because in the PM
phase M2 exponentially decays with increasing L and M2 will
algebraically decay in the IC phase. However, near the lower
transition temperature TC2, calculation of equilibrium value of
M2 for a larger size L0 is hard task [9,15] and one searches for
TC2 using different quantities [9,13]. Moreover, we can hardly
investigate the 2D nature of the ANNNI model, in particular
the spin correlation along the y direction.

Here we consider another quantity for examining the
2D spin structure itself. We obtain the equilibrium spin
configuration {S0

x,y} at a temperature T . That is, we get {S0
x,y}

performing the MC simulation using some sequence of random
numbers. Then we make the MC simulation at the same
temperature T using a different sequence of random numbers
and get the spin configuration {Sx,y}. We extract the {S0

x,y}
component of {Sx,y} by calculating the spin overlap between
them. To realize this procedure, we consider an NR-replica
system. The spin configurations {Sα

x,y} (α = 1,2, . . . ,NR) of
these replicas are generated by different sequences of random
numbers. We define the �k-dependent maximum spin overlap
function q

α,β
m (�k) of the replica α and the replica β as

qα,β
m (�k) = qα,β (y0,�k), (2)

where

y0 = arg max
−L/2�y ′�L/2

qα,β (y ′,�k), (3)

qα,β (y ′,�k) = 1

L2

∣∣∣∣∣∣
L∑

x=1

L∑
y=1

Sα
x,yS

β

x,y+y ′ exp(i�k�rx,y+y ′ )

∣∣∣∣∣∣. (4)

In the IC phase a drift of the spin configuration inevitably
occurs along the y direction. We take into account the drift
with a uniform shift of the spin configuration y0. Also q

α,β
m (�k)

is free from the structure of the 〈2〉 phase. The overlap function

TABLE I. Parameters used in the CHB algorithm of the MC
simulation of the NR = 8-replica system. MCSequi and MCSmea

are the number of MC sweeps required for equilibration and
measurement, respectively.

L0 ly MCSequi MCSmea

� 48 6 4 000 12 000
64 8 10 000 30 000
96 10 20 000 60 000
128 12 40 000 80 000

qm(�k) of the system is the average of those overlap functions:

qm(�k) = 2

NR(NR − 1)

∑
α 	=β

qα,β
m (�k). (5)

Note that the overlap function at �k = 0, qm[≡ qm(0)], plays the
role of the order parameter of the ANNNI model. If qm decays
algebraically with increasing N , it reveals that the system is
in the critical phase, i.e., the IC phase; if qm remains nonzero
constant, it reveals that the system is in the LRO phase, i.e., the
〈2〉 phase. In contrast, qm(�k) for �k 	= 0 will be used to obtain
the correlation length of the spin structure.

III. RESULTS

We investigate the equilibrium properties of the ANNNI
model with the overlap function qm. We focus our effort in the
temperature range of T � TC1(∼1.16J ). We perform the CHB
simulation of the ANNNI model on lattices with L0 = 24–128.
We make two simulations: a gradual cooling simulation and
a gradual heating simulation. In the gradual cooling (heating)
simulation, we start with a PM (〈2〉) spin configuration at a
high (low) temperature and perform the simulation described
below; then the temperature is lowered (raised) by some fixed
interval �T and we perform the same simulation starting
with the last spin configuration at the previous temperature,
and so on. For each temperature, after MCSequi sweeps are
discarded, data of interest are measured for every ten sweeps
over MCSmea sweeps. Data presented here are averages of
those of two simulations, and errors are differences between
them. Hereafter, averages of data Q in the inner L × L lattice
are described as 〈Q〉L. The parameters used in the equilibrium
simulation are listed in Table I.

A. Spin overlap

Figure 1 shows 〈qm〉L as functions of T for different L.
At high temperatures, 〈qm〉L for a larger L is smaller than
that for a smaller L. As the temperature is decreased from a
high temperature, 〈qm〉L’s for all L increase and come together
at T ∼ 0.89J . Below this temperature, the L dependence of
〈qm〉L is reversed. This result clearly reveals that some 2D LRO
takes place at T < 0.89J . That is, the transition temperature
between the IC phase and the 〈2〉 phase is TC2/J = 0.89 ±
0.01, because the LRO phase of the 2D ANNNI model is the
〈2〉 phase.
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FIG. 1. Temperature dependencies of the spin overlap function
〈qm〉L in the ANNNI model with κ = 0.6, computed over the inner
lattice with L = L0/2.

B. Binder ratio

Next we consider the Binder ratio [18] to examine the nature
of the phase transition at TC2. In a usual ferromagnetic (FM)
model on a cubic lattice with the linear dimension L, the Binder
ratio gL of the magnetization M monotonically increases with
decreasing temperature and reaches 1 for T → 0. In the PM
phase, gL decreases with increasing L, while gL increases with
L in the FM phase. Then the Binder ratio is independent of L

at the critical temperature T = TC . That is, the Binder ratios
of different L’s intersect at T = TC .

The Binder ratio gL of qm is defined as

gL = 1

2

(
3 −

〈
q4

m

〉
L〈

q2
m

〉2
L

)
. (6)

Figure 2 shows temperature dependencies of gL for different
L. They show unusual behaviors. For T > TC2, gL increases
with L and seems to reach some finite value that is smaller than
1. On the other hand, for T < TC2, gL rapidly increases toward
1. This result is compatible with the fact that the IC phase for
TC2 < T < TC1 is the KT-like phase, i.e., a critical state, and

FIG. 2. Temperature dependencies of Binder ratio gL in the
ANNNI model with κ = 0.6.

FIG. 3. Distribution PL(qm) of the spin overlap qm in the ANNNI
model with κ = 0.6.

that the 〈2〉 phase for T < TC2 is the LRO phase. A queer
point is its temperature dependence. As the temperature is
decreased from a high temperature, gL once increases, reaches
its maximum value at T ∼ 1.00J , then decreases down to
around TC2. That is, the phase transition at TC2 accompanies
with a diversity of the spin structure.

We consider the distribution PL(qm) of the order parameter
qm to investigate the diversity of the spin structure. Attention is
paid whether PL(qm) exhibits a usual single peak reminiscent
of the continuous phase transition or a double peak of the
first-order phase transition. Figures 3(a)–3(c) show PL(qm) for
T ∼ TC2. They exhibit a single peak revealing that the phase
transition at TC2 is some continuous one. For T > TC2, as L

increases, the peak position q
(p)
m shifts to the small qm side, and

the peak height PL(q(p)
m ) seems to saturate. These results are

compatible with the L dependencies of 〈qm〉L and gL shown in
Figs. 1 and 2, respectively. As T → TC2, PL(qm) becomes
broader and seems to be independent of L. For T < TC2,
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FIG. 4. Temperature dependencies of the correlation-length ra-
tios ξx/L and ξy/L in the x and y directions, respectively, in the
ANNNI model with κ = 0.6.

the weight of PL(qm) at smaller qm diminishes and PL(1),
which is the weight of the 〈2〉 phase, increases. Therefore,
the depression of gL at T ∼ TC2 corresponds with a spread
of PL(qm). We believe the spread attributes to a characteristic
nature intrinsic to the 2D ANNNI model. We consider the
〈2〉 phase with some 〈2〉 structures, i.e., a single-domain
state {Sα

x,y}. Suppose that one domain wall penetrates in the
system. Then the system is separated into two domains with
different 〈2〉 structures, i.e., a two-domain state {Sβ

x,y}. The
spin overlap function q

α,β
m (�k) takes various values, depending

on the location and the shape of the domain wall. Therefore,
the broad peak of PL(qm) at T � TC2 may suggest that the
system is composed of domains with different 〈2〉 structures.
In this temperature range, the spin correlations along the x and
y directions will become anisotropic.

C. Correlation length

We consider the spin correlation length ξμ along the μ

direction (μ = x,y) to examine the speculation mentioned
above. This quantity is obtained from the spin overlap function
as

ξμ = 1

2 sin(|�kmin|/2)

√ 〈
q2

m

〉
L

〈|q(�kmin)|2〉L
− 1, (7)

where �kmin = (π/L,0) and �kmin = (0,π/L) in the x and y

direction, respectively. One usually studies the ratio of the
correlation length ξμ to the linear lattice size L, ξμ/L, to
determine the transition temperature TC [19]. Here we pay
attention to the relation in the spin correlation between the x

and y directions.
Figure 4 shows the correlation-length ratios ξx/L and ξy/L

for different L as functions of T . In the x direction ξx/L

smoothly increases with decreasing temperature. On the other
hand, in the y direction ξy/L exhibits an interesting behavior.
As the temperature is decreased from a high temperature,

TABLE II. Spin arrangements of the domain element {Sx, y} ≡
(sx,y,sx,y+1,sx,y+2,sx,y+3) and the domain values τx,y(= a, b, ā, or b̄).
Here the location of the element is distinguished by y0 = mod[y,4].

{Sx, y} \ y0 1 2 3 0

+1 +1 −1 −1 a b̄ ā b

+1 −1 −1 +1 b a b̄ ā

−1 −1 +1 +1 ā b a b̄

−1 +1 +1 −1 b̄ ā b a

ξy/L once increases, becomes maximum at T ∼ 1.00J ,
then decreases down to TC2. We note that the temperature
dependence of ξy/L is quite similar to that of gL shown in
Fig. 2. This fact indicates that the diversity of the spin structure
suggested by gL and PL(qm) comes from the decrease of the
spin correlation along the y direction.

The remarkable point is that the nature of the spin
correlation changes as the temperature is decreased toward
TC2. Of course, ξy ∼ ξx in the PM phase (T > TC1 ∼ 1.16J ).
This relation holds near below TC1 and remains down to
T ∼ 1.0J . That is, for T > 1.0J the system is almost
isotropic for every direction like that of the KT phase in
the 2D XY model. For T � 1.0J , ξx and ξy exhibit different
temperature dependencies; i.e., one increases with decreasing
temperature and the other decreases. Therefore, T = 1.0J is
a temperature below which the nature of the spin correlation
gradually changes from that of the KT-like state to that of
another state, probably a domain state.

IV. DOMAIN STRUCTURE

Now we examine the spin structure itself at T � TC2.
Here we discuss it on the basis of the domain picture. For
this aim, we define a domain variable τx,y(= a, b, ā, or
b̄), which describes the element of the domain. Values of
τx,y are determined as follows. We consider sequential four
spins (sx,y,sx,y+1,sx,y+2,sx,y+3). Elements of the 〈2〉 structure
are (+1, + 1, − 1, − 1), (+1, − 1, − 1, + 1), (−1, − 1, + 1,

+ 1), and (−1, + 1, + 1, − 1). These elements are distin-
guished by the location in the lattice. Since the 〈2〉 phase has
the translational symmetry of y → y + 4l (l = 1,2, . . .), if
the spin arrangement of (sx,y+4l ,sx,y+4l+1,sx,y+4l+2,sx,y+4l+3)
is the same as that of (sx,y,sx,y+1,sx,y+2,sx,y+3), τx,y+4l = τx,y .
The spin configurations and domain values are listed in
Table II. Hereafter we describe the domain composed of
d(= a, b, ā, or b̄) element as D(= A, B, Ā, or B̄) domain,
respectively, and the domain wall between the D1 and D2

domains as WD1−D2 , where D1,D2 = A,B,Ā,B̄. When the
D domain covers the whole lattice, we call the state the
D-type 〈2〉 phase. We readily find an interesting property of
the arrangement of neighboring two domains. If the domain
wall is composed of three up-spin or down-spin chains, when
we watch the domain while increasing the chain site y, the A

follows the B, the B the Ā, the Ā the B̄, and the B̄ the A. That is,
the domains will appear sequentially as A → B̄ → Ā →
B → A → B̄ · · · . An example of this is as follows:
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y 1 2 3 4 5 6 7 8 9 10 11 12
y0 1 2 3 0 1 2 3 0 1 2 3 0

Sx,y +1 +1 −1 −1 +1 +1 +1 −1 −1 +1 +1 −1
τx,y a a a − − b̄ b̄ b̄ b̄ b̄ − −
13 14 15 16 17 18 19 20 21 22 23 24 25
1 2 3 0 1 2 3 0 1 2 3 0 1

−1 −1 +1 +1 −1 −1 +1 +1 +1 −1 −1 +1 +1
ā ā ā ā ā − − b b b · · ·

Figures 5(a) and 5(b) show the snapshots of the domain
structures at T � TC1 and at T � TC2, respectively. For
T � TC1, the system is composed of small domains which
are separated by tangled domain walls. On the other hand, for
T � TC2, the system is composed of several large domains,
each of which runs across the lattice. That is, the difference in
the domain structures between the two temperature ranges is
the size of the domains. For either case, four types of domain
appear in order as speculated above. We calculate the average
domain width WL for different sizes L of the lattice and

FIG. 5. Snapshots of the domain structure at (a) T = 1.1J and
(b) T = 0.92J in the ANNNI model with κ = 0.6 on the 128 × 128
lattice. The domain elements a, b, ā, and b̄ are described by red,
blue, green, and yellow, respectively, and the domain wall element
by white.

extrapolate it to L → ∞. Figure 6 shows WL as functions
of T together with its extrapolation. As the temperature is
decreased from a high temperature, WL first increases slowly
down to T ∼ 1.00J , and then WL increases rapidly and its
extrapolation seems to diverge as T → TC2.

V. FOURIER COMPONENT S(k)

In an experimental point of view, the Fourier component
of the spin arrangement is interesting. The Fourier component
S(k) along the y direction is given by

S(k) =
∣∣∣∣∣∣

L∑
y=1

m(y) exp(iky)

∣∣∣∣∣∣, (8)

where m(y)(= ∑L
x=1 Sx,y/L) is the averaged magnetization

of the yth chain. This quantity gives the periodicity of the
spin arrangement in the y direction. The period n of the spin
arrangement is given by n = 2π/k, and the 〈2〉 phase corre-
sponds to k = π/2. Figure 7 shows S(k) at two temperatures of
well above and near above TC2 for different size L. For either
temperature, S(k) exhibits a single rather broad peak which
grows with increasing L. The result suggests that the system
has a quasiperiodic spin arrangement characterized by the peak
position k(p) and its deviation �k. Note that the number of the
periodic spin arrangements describing S(k) is roughly given

FIG. 6. Temperature dependencies of the average domain width
WL of the lattice with L in the ANNNI model with κ = 0.6.
The extrapolation to L → ∞ is made using the WL = W∞ + A/L

assumption.
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FIG. 7. The Fourier components of the spin structure S(k) for
two temperatures well above (open symbols) and near above (solid
symbols) TC2.

by np ∼ �k/(π/L) = (�k/π )L. Thus, �k gives the diversity
of the spin structure. Here we estimate the peak k(p) and its
deviation �k from

k(p) =
π∑

k=π/L

kS̃(k)/
π∑

k=π/L

S̃(k), (9)

(�k)2 =
π∑

k=π/L

(k − k(p))2S̃(k)/
π∑

k=π/L

S̃(k). (10)

where S̃(k) = S(k) − ∑π
k=π/L S(k)/L. We calculate k(p) and

�k for different L and extrapolate them to L → ∞.
Figures 8(a) and 8(b) show k(p) and �k for different L as
functions of T , respectively, together with their extrapolated
values. As the temperature is decreased from a high temper-
ature, k(p) increases toward k(p) = π/2 at TC2. On the other
hand, �k changes a little above TC2 and the extrapolation
value has a finite value, suggesting that some quasiperiodic
spin structure occurs above TC2. A notable thing is that �k has
a mound near above TC2. Again we see that the diversity of the
spin structure along the y direction is enhanced at T � TC2.
For T < TC2, �k diminishes, revealing that the spin structure
in the 〈2〉 phase is periodic with period four.

VI. DISCUSSION AND CONCLUSIONS

We have examined the spin ordering near the lower
transition temperature TC2 of the 2D ANNNI model with κ =
0.6, having used a CHB Monte Carlo method. We considered
an NR-replica system and calculated an overlap function qm

between different replicas. We determined TC2/J = 0.89 ±
0.01 and examined the nature of the spin structure at T � TC2

by the use of different quantities. The results were summarized
in Fig. 9. In the floating IC phase, the nature of the spin
correlation for T � TC2 is considerably different from that for
T � TC1. For T � TC2, the system is characterized by large
domains, each of which run across the lattice. Therefore, we
may call the spin structure for T � TC2 a domain state.

In the domain state in Fig. 9, the 2D XY symmetry of
the spin correlation breaks; i.e., the spin correlation length in

FIG. 8. Temperature dependencies of k(p) and �k of the lattice
with L in the ANNNI model with κ = 0.6. The extrapolations to L →
∞ for k(p) and �k are made using k

(p)
L = k(p)

∞ + A/L and �kL =
�k∞ + B/

√
L assumptions, respectively.

the axial direction ξy decreases with lowering temperature,
in contrast with a monotonous increase of that in the chain
direction ξx . In consequence, the diversity of the spin arrange-
ment increases as T → TC2 and the Binder ratio gL exhibits a
depression at T ∼ TC2. Also the quasiperiodic spin structure,
which is realized in the IC phase, becomes diverse at T � TC2.
Note that the domain state is analogous to a nematic phase
[20,21] found in systems with short-range ferromagnetic and
long-range antiferromagnetic interactions and will be stable
against the thermal disturbance.

Here we consider the stability of the domain state. We first
note that an isolated domain is unstable, because it readily
collapses with thermal noise. On the other hand, the domain
state occurring at T � TC2 is sequentially arranged four
types of domains: A → B̄ → Ā → B → A → B̄ · · · . This
structure is stable against the thermal fluctuation. We consider
the A-type 〈2〉 phase with three domains of B̄, Ā, and B. Sup-
pose that the B̄ domain collapses. Then domain arrangement
becomes as A → Ā → B → A and an unfavorable domain
wall of WA−Ā appears. This domain structure is unstable, and

FIG. 9. The spin ordering of the 2D ANNNI model with κ = 0.6.
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FIG. 10. The MC sweep t dependence of the maximum spin
overlap qm(t) starting with paramagnetic spin configuration in the
ANNNI model with κ = 0.6. The last points are ones estimated by
the equilibrium CHB simulation.

as soon as the B̄ collapses, another B̄ arises between the A and
the Ā domains, because further collapse of the Ā also yields
an unfavorable domain wall WA−B . Therefore, the collapse of
three domains of B̄, Ā, and B will occur concurrently. This
is a very rare event especially at low temperatures, because
the domain size becomes larger and larger as the temperature
is decreased toward TC2. The reverse is also true. That is, the
concurrence of three domains in the 〈2〉 phase is also a very
rare event. These properties explain a well-known phe-
nomenon of the 2D ANNNI model; i.e., a huge number
of the MC sweep is necessary to get an equilibrium spin
configuration.

Development of the spin structure exhibits an interesting
property in this temperature range. Figure 10 shows the
development of the maximum spin overlap qm(t) starting
with paramagnetic spin configuration for various temperatures.
Here we adopt a single-spin-flip heat-bath MC algorithm and
t being the number of the MC sweep. For a temperature
well above TC2, qm(t) monotonously increases toward qm(∞),
which is estimated in the equilibrium CHB MC simulation. On
the other hand, for temperatures T ∼ TC2, qm(t) exhibits two-
stage development. In the first stage, it increases algebraically
with t and reaches a value of q̄m ∼ 0.5 at t̄ ∼ 104, which is

FIG. 11. The MC sweep t dependence of the Fourier component
S(k) of the spin structure starting with paramagnetic spin configu-
ration in the ANNNI model with κ = 0.6. S(k) for t = ∞ is one
estimated by the equilibrium CHB simulation.

almost independent of the temperature (even for well below
TC2). In the second stage, qm(t) slowly increases with t until
qm(t) reaches its equilibrium value qm(∞). Again we see qm(t)
are almost independent of the temperature within this time
scale. We find that this two-stage development of qm(t) comes
from the domain structure of the model. Figure 11 shows the t

dependence of S(k) at T ∼ TC2. As t increases from t = 0, the
peak of S(k) develops and becomes single peaked at t ∼ 104.
Above this time, the peak position k̄ increases very slowly
toward kp of the equilibrium result while clarifying its shape.
That is, the first stage of the development of the spin structure
is the creation of some quasiperiodic spin arrangement, and in
the second stage the period of the periodic structure gradually
changes to fit its equilibrium one. The later stage is the collapse
of different domains, which is very slow, as discussed above.
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