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K2CuF4 is magnetically described as a spin- 1
2 , quasi-two-dimensional (2D), square-lattice XXZ ferromagnet

with weak easy-plane anisotropy. The magnetic ordering for an applied magnetic field H parallel to the c axis is
equivalent to the Bose-Einstein condensation (BEC) of lattice bosons, as discussed by Matsubara and Matsuda
[T. Matsubara and H. Matsuda, Prog. Theor. Phys. 16, 569 (1956)]. Magnetization and specific-heat measurements
were performed to obtain the temperature versus magnetic field phase diagram for H ‖ c. The phase boundary
between polarized and ordered phases was found to be expressed by the power law Hc(T ) − Hc(0) ∝ T φ with
exponent φ ≈ 1.0 in a wide temperature range, in agreement with the theory of quasi-2D BEC.
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I. INTRODUCTION

The Bose-Einstein condensation (BEC) of magnetic quasi-
particles in gapped quantum magnets has been attracting
considerable attention from the viewpoint of the quantum
phase transition (QPT) [1–4]. Dimerized quantum mag-
nets, such as TlCuCl3 [5,6], KCuCl3 [7], BaCuSi2O6 [8,9],
Ba2CuSi2O6Cl2 [10], and Ba3Mn2O8 [11,12], and quantum
magnets with strong uniaxial easy-plane single-ion anisotropy,
such as NiCl2 − 4SC(NH2)2 (abbreviated to DTN) [13,14] and
CsFeCl3 [15], undergo transverse magnetic ordering when
subjected to an external magnetic field. Because the triplet
or doublet components with Sz = +1 are regarded as lattice
bosons, these systems can be mapped onto a system of
interacting bosons. Thus, the magnetic field induced transverse
ordering can be understood as the BEC of the lattice bosons.
At T = 0 K, these systems undergo a QPT at a critical
field Hc(0) with varying magnetic field. This critical field
corresponds to the quantum critical point (QCP), which
separates the quantum paramagnetic state and BEC state. The
low-temperature magnetic properties of the gapped quantum
magnets have successfully been described by the BEC theory
rather than the mean-field theory of the spin system [16,17].

In the vicinity of the QCP, the phase boundary between the
paramagnetic and ordered phases is described by the power
law

Hc(T ) − Hc(0) ∝ T φ, (1)

where Hc(T ) is the critical field at temperature T and φ is the
critical exponent [1,3,4]. In a three-dimensional (3D) system,
the critical exponent is given by φBEC = 3/2 [1,3,4], which has
been confirmed for several gapped quantum magnets, such
as TlCuCl3 [18,19], DTN [13,14], and (CH3)2CHNH3CuCl3
[20]. On the other hand, for a quasi-two-dimensional (2D)
system, the theory [21] predicts that the phase boundary
is described with φ ≈ 1.0 in a wide temperature range
except at sufficiently low temperatures that are lower than
the magnitude of the interlayer interaction. However, this
prediction has not been sufficiently verified experimentally.
To explore the quasi-2D BEC of lattice bosons and its critical
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behavior, we performed magnetization and specific-heat mea-
surements on K2CuF4, which is described as a spin- 1

2 , quasi-
2D, square-lattice XXZ ferromagnet with weak easy-plane
anisotropy [22–33].

In 1956, using the correspondence between spin operators
and boson operators, i.e., S+

i ↔ a
†
i and S−

i ↔ ai , Matsubara
and Matsuda [34] demonstrated that the partition function
of a spin- 1

2 XXZ ferromagnet in a magnetic field, which is
expressed as

HF =−
∑

〈i,j〉

{
J⊥(

Sx
i Sx

j + S
y

i S
y

j

) + J ‖Sz
i S

z
j

}

−gμBH
∑

i

Sz
i , (2)

is mathematically identical to the grand partition function of
a system of lattice bosons with a hard core and the nearest-
neighbor attractive interaction, which is represented as

HL = h̄2

2md2

∑

〈i,j〉
(a†

i − a
†
j )(ai − aj ) − v0

∑

〈i,j〉
a
†
i aia

†
j aj , (3)

where m is the mass of a boson, d is the lattice spacing,
and v0 > 0 is the interaction constant. These particle quan-
tities are related to the exchange constants as h̄2/md2 = J⊥
and v0 = J ‖. The magnetic field parallel to the z direction
corresponds to the chemical potential of the boson system,
i.e., μ= gμBH + z(J⊥ − J ‖)/2, where z is the coordination
number. Using the equivalence between the spin and lattice
boson systems and the mean-field approximation to the spin
system, Matsubara and Matsuda [34] discussed the physical
properties of the λ transition in 4He. They showed that the BEC
of the lattice bosons is equivalent to the magnetic ordering
of the ferromagnet with J⊥ > J ‖. When the magnetic field
H is smaller than the saturation field Hs, which is given by
Hs = z(J⊥ − J ‖)/2 at T = 0 K, the ordered moment is canted
from the xy plane, so that it has components both parallel and
perpendicular to the magnetic field. This canted ferromagnetic
state exactly corresponds to the Bose-Einstein condensed
state of the lattice bosons. The Bose-gas description of the
spin model was extended to Heisenberg antiferromagnets in
high magnetic fields, and the phase transitions between fully
polarized and antiferromagnetic ordered states or the spin

2469-9950/2017/95(17)/174406(5) 174406-1 ©2017 American Physical Society

https://doi.org/10.1143/PTP.16.569
https://doi.org/10.1143/PTP.16.569
https://doi.org/10.1143/PTP.16.569
https://doi.org/10.1143/PTP.16.569
https://doi.org/10.1103/PhysRevB.95.174406


HIRATA, KURITA, YAMADA, AND TANAKA PHYSICAL REVIEW B 95, 174406 (2017)

structures of the ordered states were discussed from the BEC
point of view [35–37].

K2CuF4 is a well-known ferromagnetic insulator with
a layered crystal structure closely related to the K2NiF4

structure [24]. The crystal structure was first determined by
Knox [22] and later redetermined by Hidaka et al. [23]. In
contrast to many other magnets with the K2NiF4 structure [25],
K2CuF4 has ferromagnetic exchange interactions and under-
goes a ferromagnetic phase transition at TC = 6.25 K [26].
Owing to the antiferrodistortive arrangement of the elongated
axes of CuF6 octahedra, neighboring hole orbitals d(x2 − y2)
are orthogonal to each other. This leads to ferromagnetic
exchange interactions between neighboring spins in a square
lattice layer parallel to the ab plane [27].

The magnetic model of K2CuF4 in a magnetic field parallel
to the c axis can be written as

H =−J
∑

〈i,j〉
Si · Sj + JA

∑

〈i,j〉
Sz

i S
z
j − J ′ ∑

〈l,m〉
Sl · Sm

−gμBH
∑

i

Sz
i , (4)

where the first and second terms are the ferromagnetic
exchange interaction and easy-plane anisotropy in the square
lattice layer parallel to the ab plane, respectively. The third
term is the ferromagnetic exchange interaction between neigh-
boring layers. The last term is the Zeeman term. The exchange
parameters and g factor were obtained as J/kB = 22.8 K
[28], JA/kB = 0.22 K [29], J ′/kB = 0.015 − 0.017 K [30,31],
and g = 2.093 [32]. Because J 
 J ′ and JA > 0, K2CuF4 is
magnetically described as a spin- 1

2 , quasi-2D XXZ ferromag-
net with weak anisotropy of the easy-plane type. Because
the intralayer and interlayer exchange interactions are both
ferromagnetic, there is no spin frustration between neighboring
layers, as discussed for BaCuSi2O6 [8]. Therefore, the spin
ordering in K2CuF4 for H ‖ c is equivalent to the BEC of
lattice bosons with Sz = + 1, as discussed by Matsubara and
Matsuda [34].

In this paper we present a phase diagram for temperature
versus the magnetic field applied parallel to the c axis in
K2CuF4 and show that the phase boundary is described by
the power law with exponent φ ≈ 1.0 in a wide temperature
range, as predicted by the theory [21].

II. EXPERIMENTAL DETAILS

K2CuF4 crystals were prepared via the chemical reaction
2KF+CuF2 → K2CuF4. KF and CuF2 were dehydrated by
heating in vacuum at about 100◦C. The materials were then
packed into a Pt tube. Single crystals were grown from the
melt. The temperature of the horizontal furnace was lowered
from 850 to 750 ◦C over four days. The crystals obtained
were examined by x-ray powder diffraction and found to be
K2CuF4. The crystals are easily cleaved parallel to the c plane.

The magnetization was measured down to 1.8 K in magnetic
fields parallel to the c axis using a superconducting quantum
interference device magnetometer (Quantum Design MPMS-
XL). A 3He system (iHelium3, IQUANTUM) was used for
the measurement down to the lowest temperature of 0.5 K.
The specific heat was measured down to 0.4 K by the
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FIG. 1. Temperature variation of magnetization in K2CuF4 mea-
sured at various external fields Hext parallel to the c axis. The data
above and below 1.8 K were measured using samples A (or B) and
C, respectively. Arrows indicate the transition temperature TC, which
is assigned to the temperature with the peak in dM/dT .

relaxation method using a physical property measurement
system (Quantum Design PPMS).

For the measurement of magnetization for H ‖ c, we used
three samples, A, B, and C, in the shape of rectangular plates
with different thicknesses. Because the transition field was
smaller than 3000 Oe, a correction for the demagnetizing field
was necessary. The demagnetizing factor N was calculated by
a formula proposed by Osborn [38]. The internal field Hint is
related to the external field Hext as Hint = Hext − NM , where
M is the magnetization.

III. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependence of the mag-
netization in K2CuF4 measured at various external fields
Hext parallel to the c axis. The magnetization data above
and below 1.8 K were measured using samples A (or B)
and C, respectively. The small discontinuous jump in the
magnetization at 1.8 K for Hext � 2400 Oe is ascribed to the
difference in the internal field Hint due to the difference in
the sample shape and, thus, the anomaly is extrinsic.

With decreasing temperature, the magnetization increases
and shows a cusplike maximum. The temperature giving
maximum magnetization decreases with increasing magnetic
field. This magnetization behavior is consistent with that in a
previous report [33], where magnetization data down to 4.2 K
were reported. In the molecular-field approximation for a 3D
easy-plane-type ferromagnetic XXZ model, the magnetization
increases up to the transition temperature as a convex function
as the temperature decreases then becomes constant below
TC [34]. The existence of the cusplike maximum in the
temperature dependence of the magnetization cannot be
understood in terms of the molecular-field approximation.
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An advanced calculation will be necessary to describe the
cusplike anomaly of magnetization from the approach of
the spin system. This magnetization behavior is qualitatively
described by the following lattice boson picture. In a lattice
boson model [34], the densities of bosons ρ and 〈 Sz 〉 are
related as ρ = 〈 Sz 〉 + 1/2. Because the boson density ρ is
larger than 1

2 , it is convenient to consider holes instead of
bosons, where the holes correspond to lattice points that are
not occupied by bosons. The density of holes ρ ′ is related to
〈 Sz 〉 as 〈 Sz 〉= 1/2 − ρ ′. With decreasing temperature, the
number of thermally excited holes decreases. At TC, the BEC
of holes occurs and the number of condensed holes increases
with decreasing temperature below TC. The increase in the
number of condensed holes exceeds the decrease in the number
of thermally excited holes [1,18]. Consequently, the density of
holes has a cusplike minimum at TC. This leads to a cusplike
maximum of the density of lattice bosons, i.e., a cusplike
maximum of the magnetization at TC.

Although the cusplike maximum of the magnetization at TC

can be derived by mean-field theory for 3D BEC, we assign
the transition temperature TC to the temperature of the peak in
dM/dT indicated by arrows in Fig. 1, because this temperature
coincides with the temperature giving a peak in the specific
heat below 200 Oe, where TC has little dependence on the
internal magnetic field.

Figure 2 shows the magnetization curves for H ‖ c mea-
sured at various temperatures for K2CuF4. The horizontal
axis is the internal magnetic field Hint calculated using the
magnetization and the demagnetizing factor. The inset shows
its second derivative d2M/dH 2

int versus Hint. In a weak
field, the magnetization is proportional to the internal field
and its slope becomes smaller with decreasing temperature,
which is consistent with the temperature dependence of the
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FIG. 2. Magnetic field dependence of the magnetization M in
K2CuF4 measured at various temperatures for H ‖ c, where the
horizontal axis denotes the internal magnetic field Hint. The inset
shows its second field derivative d2M/dH 2

int vs internal magnetic
field Hint. Arrows indicate the transition fields Hc(T ).
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FIG. 3. Temperature variation of total specific heat in K2CuF4

measured at various external magnetic fields parallel to the c axis.
The dashed line denotes the lattice contribution estimated from the
Debye T 3 law with a Debye temperature of �D = 270 K [26]. The
solid line denotes the fit using Eq. (5) with J/kB = 21.0 K. The
inset shows a magnification of the curves around 6 K, where a λ-
like anomaly associated with the ferromagnetic phase transition is
observed. Arrows indicate transition temperatures.

magnetization shown in Fig. 1. In a strong field, the magneti-
zation curve behaves similarly to the Brillouin function. Here,
we assign the transition temperature Hc to the field with the
cusplike minimum in d2M/dH 2

int, indicated by arrows in the
inset of Fig. 2, because the transition points are consistent
with those obtained from the temperature dependence of the
magnetization shown by arrows in Fig. 1.

Figure 3 shows the low-temperature specific heat measured
at various external magnetic fields. The dashed line denotes the
lattice contribution estimated from the Debye T 3 law with a
Debye temperature of �D = 270 K [26]. A small discontinuous
anomaly at approximately 9 K arises from an instrumental
problem and is not intrinsic. Below 3 K, where the lattice
contribution is negligible, the specific heat is proportional to
the temperature T , which is a characteristic of 2D Heisenberg
ferromagnets [39]. This confirms that K2CuF4 has good two-
dimensionality. The sharp λ-like anomaly at approximately 6 K
indicates a magnetic phase transition. As shown in the inset,
the λ-like anomaly becomes small as the external magnetic
field increases. Above 900 Oe, the transition temperature is
undistinguishable.

From the spin-wave theory, the low-temperature magnetic
specific heat CM of a 2D Heisenberg ferromagnet is given
as [39]

CM = πR

12S

kB

J
T . (5)

Fitting the experimental specific heat below 2.0 K, we
obtain J/kB = 21.0 ± 0.4 K. This value of J is somewhat
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FIG. 4. (a) Temperature vs internal magnetic field phase diagram
for K2CuF4 with H ‖ c. Closed triangles and circles are transition
points determined from the temperature and field dependences of
the magnetization, respectively. The cross mark (×) is the Curie
temperature obtained by specific-heat measurement at zero magnetic
field. The solid line is the linear fit to the phase boundary below
5 K. (b) Double logarithmic plot of H (T ) − Hc(0) against T with
Hc(0) = 2410 Oe. The solid line is a fit with φ = 1.01.

larger than J/kB = 17.6 K obtained by Yamada [26], who
used the specific-heat data between 1.3 and 3 K, but is smaller
than J/kB = 22.8 K obtained from the dispersion relation by
Funahashi et al. [28].

Figure 4(a) shows the phase diagram for temperature versus
internal magnetic field for K2CuF4 with H ‖ c. The transition
points determined from the temperature and magnetic field
dependences of the magnetization are consistent with each
other. We can see that the phase boundary is linear in a
wide temperature range below 5 K in accordance with the
theory [21]. The solid line in Fig. 4(a) is a linear fit to the
experimental phase boundary below 5 K. From the linear
fit, we obtain the transition field Hc(0) at T = 0 K to be
Hc(0) = 2415 Oe. We also apply the power law in Eq. (1) to the
experimental phase boundary between 0.53 and 5 K. The best
fit is obtained for φ = 1.01 and Hc(0) = 2410 Oe. Figure 4(b)
shows a double logarithmic plot of H (T ) − Hc(0) against T

with Hc(0) = 2410 Oe. The solid line is the linear fit with
φ = 1.01. From these results, we deduce that quasi-2D BEC oc-
curs in this temperature range. Because the interlayer exchange
interaction in K2CuF4 is J ′/kB = 0.015–0.017 K [30,31],
the crossover from quasi-2D BEC to 3D BEC described
by setting φ = 3/2 is expected to occur at approximately
20 mK, which is much lower than the present temperature
range.

IV. SUMMARY

In conclusion, we have presented the results of magnetiza-
tion and specific-heat measurements on the S = 1/2, quasi-2D,
easy-plane-type XXZ ferromagnet K2CuF4 for H ‖ c, which
is equivalent to the lattice boson model described by Eq. (3).
We obtained the phase diagram for temperature versus internal
field as shown in Fig. 4(a). The phase boundary between the
polarized paramagnetic and ordered phases is described by
the power law in Eq. (1) with exponent φ ≈ 1.0 in a wide
temperature range below 5 K. This result is in agreement with
the theory of quasi-2D BEC universality [21].
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