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We propose a computational method of the Loschmidt amplitude in a generic spin system on the basis of
the complex semiclassical analysis on the spin-coherent state path integral. We demonstrate how the dynamical
transitions emerge in the time evolution of the Loschmidt amplitude for the infinite-range transverse Ising model
with a longitudinal field, exposed by a quantum quench of the transverse field � from ∞ or zero. For both
initial conditions, we obtain the dynamical phase diagrams that show the presence or absence of the dynamical
transition in the plane of transverse field after a quantum quench and the longitudinal field. The results of
semiclassical analysis are verified by numerical experiments. Experimental observation of our findings on the
dynamical transition is also discussed.
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I. INTRODUCTION

Triggered by experiments using ultracold atomic systems,
dynamics of a closed quantum many-body system has been
one of the fascinating topics in condensed matter physics [1].
In particular, the time evolution after a sudden change of the
Hamiltonian has attracted a lot of attention as a basic setting
of a problem on the out-of-equilibrium quantum state. One
of the interesting phenomenon associated with this so-called
quantum quench is the dynamical quantum phase transition
(DQPT). While the equilibrium quantum phase transition is
usually associated with a singularity of the ground-state energy
in the axis of a parameter contained in the Hamiltonian,
the DQPT involves a singularity in time. The present paper
focuses on such a dynamical singularity appearing in the return
probability to the initial state, which is directly related to the
Loschmidt amplitude defined below [2].

The phenomena of the DQPT are observed not only in
the Loschmidt amplitude but also in the time average of
local physical quantities such as order parameters. Although a
certain correspondence is pointed out [3], these two kinds of
quantities are generally different. The local physical quantities
represent the properties of the steady state in the long time
limit after a quantum quench. They bring a clear physical
consequence and are easy to access by experiments. The DQPT
of them corresponds to a phase transition with the parameter
in the Hamiltonian after a quantum quench. The Loschmidt
amplitude, on the other hand, can be seen as an extension
of the partition function on the imaginary axis corresponding
to time. The DQPT here is defined as a singular behavior
with time in the rate function of it, as an analogy with
the thermodynamic phase transition accompanied by the
singularity of the free energy as a function of the temperature.
However, the Loschmidt amplitude involves delicate points
in several aspects: physical meaning of the singularities,
experimental implementations, and even technicalities for
theoretical computations. Several recent works [2–17] have
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been devoted to resolve the first delicate point based on
statistical mechanical concepts such as renormalization group,
symmetry breaking, universality, and scaling [18]. They have
provided solid advances. For instance, the singularity has been
tied with a behavior of the order parameter and entanglement
production in systems with symmetry-broken phases [4,19].
However, a general comprehension including the relation of
the singularities to other local quantities with a generic initial
state is still lacking. One of the origins of the difficulty in
obtaining a general description lies, in our opinion, in the
limitation on theoretical techniques to compute the Loschmidt
amplitude. Most theoretical works so far depend on the
result of specific models being analytically tractable, and
generic properties of the Loschmidt amplitude’s singularity
have been speculated from the result. Hence a more versatile
computational method will be a great help in understanding
the Loschmidt amplitude.

Under this circumstance, here we propose a theoretical
framework for computing the Loschmidt amplitude for a
generic spin system on the basis of a semiclassical compu-
tation. This can be regarded as a mean-field method and is
expected to be exact in the infinite dimension, though it is still
applicable as an approximation to a generic spin system in any
dimension with an arbitrary state. The static approximation is
often used with the mean-field method and is known to give
a correct result for quantities in the equilibrium in the system
with an infinite-range interaction [20]. However, the static
approximation does not work for the computation of the
Loschmidt amplitude. In this sense, our method goes beyond
the static approximation and can be useful for computation of
out-of-equilibrium quantities.

Our semiclassical method is essentially the same as the
one used in Refs. [6,21,22], but their analysis has been
only on local physical quantities. This is presumably due to
the lack of general prescriptions to compute the Loschmidt
amplitude so far. The present work complements this point.
The key difference of our method from the preceding studies
[6,21,22] lies in the determination of the semiclassical path
that follows the initial and final conditions properly. In our
method, the range of dynamical variables is extended from
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FIG. 1. Phase diagram of the ground state in the infinite-range
transverse Ising model (1) in the plane of the transverse field � and
the symmetry-breaking longitudinal field h. The ferromagnetic (FM)
phase lies on the axis of � from zero to �c = J with h = 0, while the
other parameter area is a paramagnetic (PM) phase.

real to complex numbers, and matching the semiclassical path
with the boundary conditions is achieved in the complex space.
This idea has been proposed in Refs. [23,24] for single-spin
systems and we extensionally apply it to many-spin systems.
Accordingly, there emerge multiple solutions in the boundary
value problem, and the solution that gives the largest return
probability is selected. We find that it is this selection that
gives the singularity in the Loschmidt amplitude. In this sense,
the singularity of Loschmidt amplitude is very similar to an
equilibrium phase transition.

Using the complex semiclassical method, in the present
paper, we study the infinite-range transverse Ising model
Hamiltonian with uniform coupling J and longitudinal field h:

Ĥ = −NJ

2

(
1

N

N∑
i=1

σ z
i

)2

− �

N∑
i=1

σx
i − h

N∑
i=1

σ z
i , (1)

where σα
i (i = 1,2, . . . ,N ; α = x,z) is the Pauli matrix and N

is the number of spins. For this model, we consider a quantum
quench of the transverse field � from �i to �f at t = 0. As
shown in Fig. 1, this system shows two different phases in
equilibrium [20] and both inter- and intraphase protocols of
quench are examined. The Loschmidt amplitude is defined by

L(t |ψ) = 〈ψ |e−itĤ|ψ〉, (2)

where the state |ψ〉 is chosen as the ground state of the Hamil-
tonian with � = �i. The Loschmidt amplitude is expected to
exhibit a large deviation nature, and hence its rate function
at N → ∞ is the primary object of our analysis. The rate
function is defined as

f (t |ψ) = − 1

N
lnL(t |ψ). (3)

Note that its real part, fr = Ref , accounts for the return
probability P (t |ψ) = |L(t |ψ)|2 as 2fr = − 1

N
ln P (t |ψ), while

the imaginary part has no direct physical consequence.
The rest of the paper is organized as follows. In Sec.

II, we describe the formulation and procedures needed to
make the problem computationally tractable. In Sec. III, the
analytical solutions computed from the invented method are
shown and are compared to numerical experiments on finite
size systems. Exact derivation of the rate function, available
only on some specific parameters, is also given to justify the

result. Section IV is devoted to discussion and summary. The
relevance of the present work to experiments and quantum
engineering/computation is discussed there.

II. FORMULATION

A. Spin coherent states and path integrals

We start from reviewing the path integral formulation for
spin systems. An arbitrary state of a single spin is represented
by a spin-coherent state as

|θ,ϕ〉 = eib

(
e−i

ϕ

2 cos
θ

2
|↑〉 + ei

ϕ

2 sin
θ

2
|↓〉
)

, (4)

where |↑〉 and |↓〉 are the eigenstates of σ z with eigenvalues
+1 and −1, respectively. Hereafter the gauge b is fixed to be
zero and is disregarded, since it does not affect any physical
consequences. As is well known, the average of spin variables
σ = (σx,σ y,σ z) over a spin-coherent state corresponds to
three-dimensional polar representation as

〈θ,ϕ|σ |θ,ϕ〉 = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). (5)

The spin-coherent state constitutes an overcomplete basis:∫ 1

−1
d cos θ

∫ 2π

0

dϕ

2π
|θ,ϕ〉〈θ,ϕ| = |↑〉〈↑| + |↓〉〈↓| = I,

(6)

where I denotes the 2 × 2 unit matrix. Note that two states
with different (θ,ϕ) are not orthogonal in general.

We apply this spin-coherent state formulation to N -spin
systems and write the variables as (θ,ϕ) = {(θi,ϕi)}Ni=1. Us-
ing the spin-coherent states, we write any propagator with
arbitrary time-dependent Hamiltonian Ĥ(t) as G(t |	′,	′′) ≡
〈	′′|T e−i

∫ t

0 ds Ĥ(s)|	′〉, where T is the time-ordering operator,
and 	′ = (θ ′,ϕ′) and 	′′ = (θ ′′,ϕ′′) are initial and final states,
respectively. This propagator is rewritten in a path integral
form as [23]

G(t |	′,	′′) =
∫ 	′′

	′

N∏
i=1

D cos θiDϕie
S[θ ,ϕ]. (7)

This is an integral over all possible paths of the variables
(θ(s),ϕ(s)). The action functional S[θ ,ϕ] is given by

S[θ ,ϕ] = i

∫ t

0
ds

{
1

2

∑
i

ϕ̇i(s) cos θi(s) − H(θ,ϕ,s)

}
,

(8)

where the dot symbol denotes the time derivative and
H(θ,ϕ,s) = 〈θ (s),ϕ(s)|Ĥ|θ (s),ϕ(s)〉.

B. Complex semiclassical analysis

The path integral formalism gives the exact result if we can
perform the integration over all paths literally. However, this
is difficult in general, and the semiclassical approximation is
here employed.
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1. Boundary value problem

The basic idea of the semiclassical method is to take into
account only the dominant stationary paths among all the paths.
The stationary condition in the action S leads to the following
equations of motion (EOMs):

1

2
θ̇i sin θi = ∂H

∂ϕi

,
1

2
ϕ̇i sin θi = −∂H

∂θi

. (9)

We naively expect that the solution of these EOMs, satisfy-
ing the boundary conditions (θ (0),ϕ(0)) = 	′ = (θ ′,ϕ′) and
(θ (t),ϕ(t)) = 	′′ = (θ ′′,ϕ′′), is the desired semiclassical path.
If there are multiple semiclassical paths, we give indices
to them as {(θ̄ (ν)

,ϕ̄(ν))}ν where the symbol ·̄ represents a
generic semiclassical path hereinafter. Semiclassical actions
corresponding to those paths are defined as Scl[θ̄

(ν)
,ϕ̄(ν)] =

S[θ̄
(ν)

,ϕ̄(ν)]. They give an approximation of the propagator as

G(t |	′,	′′) ∼
∑

ν

Aνe
Scl[θ̄

(ν)
,ϕ̄(ν)], (10)

where Aν denotes a possible amplitude factor.
Unfortunately, this procedure does not work in the present

problem. The solution of Eq. (9) cannot satisfy, in general, both
the boundary conditions (θ (0),ϕ(0)) = 	′ and (θ (t),ϕ(t)) =
	′′. For a given initial condition (θ(0),ϕ(0)) = 	′, the time
evolution of the system is uniquely determined by the EOMs,
and the final values (θ (t),ϕ(t)) do not necessarily coincide with
the boundary one 	′′. This is the reason why the Loschmidt
amplitude has been difficult to evaluate by the semiclassical or
similar methods, though some exceptions are found when the
semiclassical path is constant in time [6,25,26]. To overcome
this problem, following the prescription in Refs. [23,24],
we below introduce the so-called Wiener regularization term
making the path integral well defined in the action, and deal
with the unregularized action as the vanishing limit of the
regularization term. This yields a different boundary condition.

2. Wiener regularization and modified boundary condition

By using the prescription by Klauder [23], Alscher and
Grabert demonstrated that the exact propagator can be com-
puted in single-spin systems with arbitrary time-dependent
magnetic fields [24]. Here we apply this to many-spin systems.

The Wiener regularization is defined as

W [θ ,ϕ] = −1

4
m

∫ t

0
ds
∑

i

(
θ̇2
i + ϕ̇2

i sin2 θi

)
, (11)

where m represents a constant. Adding this term to the
action, S[θ ,ϕ] → S[θ ,ϕ] + W [θ ,ϕ], and taking the stationary
condition, we obtain the modified semiclassical EOMs as

1

2
θ̇j sin θj = ∂H

∂ϕj

+ i

2
m(ϕ̈j sin2 θj + 2θ̇j ϕ̇j sin θj cos θj ),

(12a)

1

2
ϕ̇j sin θj = −∂H

∂θj

− i

2
m
(
θ̈j sin2 θj − ϕ̇2

j sin θj cos θj

)
.

(12b)

Due to the regularization term, the higher-order derivatives
appear in the EOMs and its general solution has more arbitrary
constants, which naturally enables us to have a solution
connecting to both the boundary values 	′ and 	′′. Meanwhile,
the terms coming from the regularization introduce the
imaginary number into the EOMs. Hence the corresponding
semiclassical path becomes complex in general and loses a
clear physical interpretation. Bloch sphere representation is not
applicable to visualize the semiclassical path. From a formal
correspondence, the Wiener regularization can be regarded as
a kinetic energy of spins with a pure imaginary mass.

To recover the original action, we take the zero mass limit
m → 0. For small m, the time span s ∈ [0,t] is divided into
three characteristic regions [24]: T1 = [0,m], Tcl = [m,t − m],
and T2 = [t − m,t]. In Tcl, the mass terms proportional to
m become irrelevant and the time evolution is essentially
driven by the original unregularized EOMs. In T1 and T2,
the trajectory is strongly hinged by the mass terms to match
the boundary conditions. As a result, in the m → 0 limit, we
observe jumps at s = 0 and s = t from the boundary values to
the edges of the semiclassical path in Tcl → [0,t]. These jumps
give a condition for the values at the boundary (θ̄(0),ϕ̄(0)) and
(θ̄(t),ϕ̄(t)), which has a simple explicit form:

tan

(
θ̄i(0)

2

)
eiϕ̄i (0) = tan

(
θ ′
i

2

)
eiϕ′

i , (13a)

tan

(
θ̄i(t)

2

)
e−iϕ̄i (t) = tan

(
θ ′′
i

2

)
e−iϕ′′

i . (13b)

This condition implies that there can be multiple semiclas-
sical paths to satisfy Eq. (13) and that they can be complex
even in the m → 0 limit. We note again that, for single-spin
systems, it was shown in Ref. [24] that the solution of the
unregularized EOMs (9) under the condition (13) gives the
exact propagator.

3. Solving the boundary value problem

The boundary value problem becomes well-defined now
and we can find solutions matching both the boundary
values 	′ and 	′′ in a generic situation. A practical way
for solving the problem is to employ the following variable
transformation [24]:

ζj (s) = tan

(
θj (s)

2

)
eiϕj (s), (14a)

ηj (s) = tan

(
θj (s)

2

)
e−iϕj (s). (14b)

These variables are, if (θj (s),ϕj (s)) are real, a stereographic
representation of a point on the unit sphere projected from the
south pole onto the equatorial plane. Hence we call them stere-
ographic variables. The boundary condition is now written as

ζj (0) = ζ ′
j ≡ tan

(
θ ′
j

2

)
eiϕ′

j , (15a)

ηj (t) = η′′
j ≡ tan

(
θ ′′
j

2

)
e−iϕ′′

j , (15b)
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and the remaining boundary values, ζi(t) and ηi(0), are
not specified. The spin variables in the Hamiltonian
are converted to the stereographic variables through the
relation

〈θj ,ϕj |σ j |θj ,ϕj 〉 = 1

1 + ζjηj

⎛
⎜⎝

ζj + ηj

−i(ζj − ηj )

1 − ζjηj

⎞
⎟⎠, (16)

and the semiclassical EOMs (9) are

ζ̇j = −i(1 + ζjηj )2 ∂H
∂ηj

, (17a)

η̇j = −i(1 + ζjηj )2 ∂H
∂ζj

. (17b)

Using the solution of the EOMs, (ζ̄j ,η̄j ), we can write the
semiclassical action as [24]

eScl[ζ̄ ,η̄] =
N∏

j=1

⎧⎨
⎩
√

(1 + ζ̄j (0)η̄j (0))(1 + ζ̄j (t)η̄j (t))

(1 + ζ ′
j η

′
j )(1 + ζ ′′

j η′′
j )

(
ζ ′
j η

′
j ζ

′′
j η′′

j

ζ̄j (0)η̄j (0)ζ̄j (t)η̄j (t)

) 1
4

⎫⎬
⎭

× exp
∫ t

0
ds

⎧⎨
⎩1

4

N∑
j=1

(1 − ζ̄j η̄j )( ˙̄ζj η̄j − ζ̄j ˙̄ηj )

ζ̄j η̄j (1 + ζ̄j η̄j )
− iH(ζ̄ ,η̄,s)

⎫⎬
⎭. (18)

4. Spatially uniform solutions

A problem arises when we compute the semiclassical paths
satisfying Eq. (15). We need to fix both the initial conditions
on ζi and the final ones on ηi . The initial conditions on ηi must
be selected so as to meet the final conditions. This requires us
to solve the EOMs many times, and results in a bottleneck of
the present method to compute the propagator. This is because
the computational cost for searching such an initial condition
grows exponentially with the number of spins. Therefore,
in practice, we need an assumption that reduces the degree
of freedom, namely, the computational cost of searching the
initial value of ηi .

In the present paper, we assume the spatial uniformity.
Our Hamiltonian (1) has infinite-range interactions and the
mean-field ansatz gives the exact result for static systems.
Although it is not evident whether the spatial uniformity
holds for dynamical systems, we examine this ansatz in the
following. The boundary values of (ζi(s),ηi(s)) are identical
for all i’s, so that (ζ ′

i ,η
′
i) = (ζ ′,η′) and (ζ ′′

i ,η′′
i ) = (ζ ′′,η′′).

Then, only two functions, ζ (s) and η(s), are sufficient to
describe the dynamics, and the exhaustive search of η(0) is now
a reasonable task. Moreover, as far as the Loschmidt amplitude
is concerned, the initial and final boundary values are common:
ζ ′ = ζ ′′ = ζb and η′ = η′′ = ηb. Summarizing these particular
conditions, we obtain the explicit formulas of the EOMs as

ζ̇ = i�
(
1 − ζ 2

)− 2iζ

(
h + J

1 − ζη

1 + ζη

)
, (19a)

η̇ = −i�
(
1 − η2

)+ 2iη

(
h + J

1 − ζη

1 + ζη

)
. (19b)

For a given t , these EOMs are solved under the conditions
ζ (0) = ζb and η(t) = ηb. The other boundary values ζ (t) and
η(0) are not specified and are determined uniquely from the
above conditions. We also note that the relation ζ (s) = η∗(s)
does not necessarily hold in general.

The solutions (ζ̄ (ν)(s),η̄(ν)(s)) are not unique and we can
represent the Loschmidt amplitude as

L(t |	b) = 〈	b|e−iĤt |	b〉 ∼
∑

ν

Aνe
−Nf [ζ̄ (ν),η̄(ν)], (20)

where

f [ζ̄ ,η̄]

= −1

2
ln

(1 + ζbη̄(0))(1 + ζ̄ (t)ηb)

(1 + ζbηb)2

−i

∫ t

0
ds

(
�

2
(ζ̄ + η̄) + h + J

2

1 + 2ζ̄ η̄ − 3ζ̄ 2η̄2

(1 + ζ̄ η̄)2

)
.

(21)

The time derivative terms are eliminated by performing the
integration by parts or using the EOMs. We also note that the
amplitude Aν is not important to calculate the rate function in
Eq. (3) at N → ∞.

5. Dominant semiclassical paths and a heuristic search procedure

Equation (13) has a countably infinite number of solutions,
and the EOMs do as well. Among those many semiclassical
solutions, the one that makes the real part of f [ζ̄ (ν),η̄(ν)] the
smallest gives the rate function in Eq. (3). How can we find
such a dominant solution? The exhaustive search of η̄(0) in the
whole complex space is not plausible even under the spatial
uniformity. To overcome the situation, we here give a heuristic
procedure to obtain such a dominant path. Since the correct
initial condition η̄(0) depends on the end time t , we hereafter
use a notation C(t) = η̄(0; η̄(t) = ηb). The basic idea of the
heuristic is starting from a trivial solution at a specific time t∗
and extending it with changing the time t from t∗ gradually.

The first trivial solution is obtained at t∗ = 0, where
C(0) = ηb. Then, for a small time step �t , C(�t) is obtained
as follows. We examine several values as the initial condition
for η̄(s) around ηb and solve the EOMs. We select the best
one for C(�t) that makes the final value η̄(s = �t) closest
to ηb. For the next time step t = 2�t , we examine the values
around C(�t) and repeat the same procedures, giving C(2�t).
We repeat this procedure until we reach a desired end time t ,
yielding the sequence of the initial condition. We write this
sequence as C1(t).

To obtain the second trivial solution, an important observa-
tion is that the dynamics is periodic at most parameters [22].
There exists a specific period τ and the order parameters at
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FIG. 2. Schematic pictures of the heuristic to obtain appropriate
initial conditions C1(t) (left panel) and C2(t) (right panel) of η̄t .
The complex plane of η is schematically mapped to the horizontal
axis. Here, η̄t (s) denotes the semiclassical path satisfying the final
condition η̄(t) = ηb for given t . The initial condition, η̄(0), for given
t is accordingly searched, starting from t = 0 (C1) or t = τ (C2).

tn = t0 + nτ are identical for ∀n ∈ N. This implies that
at t∗ = τ the final condition η̄(s = t∗) = ηb is realized by
having the initial condition η̄(0) = ηb, yielding C(t∗ = τ ) =
ηb. Extending C(t) back from t = τ to t = 0 based on the
same procedure for C1(t), we get another sequence of the
initial condition, and write it as C2(t). In Fig. 2, a schematic
picture of this heuristic is given.

The question is whether these two sequences of initial
conditions, C1(t) and C2(t), are identical or not. If they are
different, they give two different semiclassical paths. In such
a situation, there should be a switch between two paths at
a certain critical time tc in the period [0,τ ] that yields a
singularity of the Loschmidt amplitude. Meanwhile, if they
are identical, only one dominant semiclassical path exists and
is analytic with respect to t .

For longer time t > τ , we repeat the above procedure. For
the next period [τ,2τ ], C3(t) is obtained by extending C(t)
from t = τ to 2τ with the trivial value C(τ ) = ηb, and C4(s)
is given by an extension from t = 2τ to τ with C(2τ ) = ηb.
We note that by construction C2(s) and C3(s) are continuously
connected. The solutions for the whole time axis are obtained
along this way.

We adopt the above scenario to search the solution.
This may give a wrong result in general, but, as far as
we have investigated, the result shows a good agreement
with numerical experiments as we see in the following. Our
heuristic procedure is constructed under the assumption that
the system shows a periodic behavior and only one transition
at most in one cycle. As long as this assumption is true,
our heuristic can find the correct dominant path. For more
general cases, e.g., spin glasses without periodicity [25,26],
other heuristics should be tailored. Investigation of such cases
is beyond the scope of this paper and will be an interesting
future work.

III. RESULT

We present the results of our semiclassical computation.
We study two cases: quenches from �i = ∞ (Sec. III A)
and quenches from �i = 0 (Sec. III B). The first case is the
quench from �i = ∞ to a finite value �f < ∞, where the
boundary condition is the ground state at �i = ∞, namely,

|	b〉 = ⊗i |→〉i with |→〉i being the eigenstate of σx
i for

eigenvalue +1. The other case is the opposite quench, from
�i = 0 to �f > 0. We set h � 0+ and thus |	b〉 = ⊗i |↑〉i .
Since exact calculation is possible for a quench from �f = ∞
to �i = 0, we show its result in Sec. III A as well. We also show
the results of numerical studies in Sec. III C to confirm that the
complex semiclassical analysis gives a reasonable result.

A. Quench from �i = ∞
In this case, the boundary condition is given by (θ ′,ϕ′) =

(θ ′′,ϕ′′) = (π/2,0), that is (ζb,ηb) = (1,1). With this boundary
condition, if h = 0, the state does not evolve and the semi-
classical path is written as ζ̄ (s) = η̄(s) = 1 for ∀s. Hence we
consider the case h > 0 where, as we show below, a finite
periodicity 0 < τ < ∞ is present. In fact, we see several
patterns of the rate function and DQPT as well. We obtain
the corresponding phase diagram.

1. Solvable case: �f = 0

We first investigate the quench to �f = 0. In this case, the
state is evolved under the classical Ising Hamiltonian and
an analytical solution of Eq. (19) is available. We solve the
equation under the conditions ζ (0) = 1 and η(t) = 1. Putting
the initial condition as (ζ (0),η(0)) = (1,C), we get the explicit
solution of the dynamics as

ζ̄ (s) = exp

(
−2is

(1 + C)h + (1 − C)J

1 + C

)
, (22a)

η̄(s) = C exp

(
2is

(1 + C)h + (1 − C)J

1 + C

)
. (22b)

Then the condition η(t) = 1 gives us

C exp

(
2it

(1 + C)h + (1 − C)J

1 + C

)
= 1, (23)

which yields C(t).
This example clearly shows the presence of multiple paths

satisfying the boundary condition. As declared in Sec. II B 5,
we investigate two paths associated with the initial conditions
C1(t) and C2(t), each of which is continuously extended from
C(0) = ηb = 1 and from C(τ ) = ηb = 1, respectively, where
τ is the period of the dynamics. The period τ can be obtained
by putting C = 1 and t = τ in the solution (22) as

τ = π

h
. (24)

The solutions of Eq. (23) connecting to C(0) = 1 and C(τ ) =
1, C1(t) and C2(t), respectively, are shown in Fig. 3 for
h/J = 0.1. As a reference, the solutions in the next period
[τ,2τ ], C3 and C4, are also displayed. Given a time t , the rate
function fk(t) corresponding to the initial condition Ck(t) is
evaluated by inserting Eq. (22) with C = Ck(t) into Eq. (21)
and performing the integration with respect to s. The result
is shown in the right panel of Fig. 3. This exhibits the DQPT
at t = τ/2 where the switch from f1 to f2 occurs. Similarly,
the switch from f3 to f4 occurs at t = 3

2τ , showing another
DQPT.

Apart from the analytical solution of the EOMs, the rate
function itself can be computed exactly for the case �f = 0.
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FIG. 3. (Left, center) Initial condition C(t) = η(0; η(t) = ηb) satisfying Eq. (13) is plotted against t at �i = ∞, h/J = 0.1, and �f = 0.
The left and center panels are for the real and imaginary parts, respectively. Two periods [0,τ ] and [τ,2τ ] are focused on, and two branches in
each period are displayed and the vertical straight line denotes the period τ = π/h. The period τ is given by Jτ = 10π in the present case.
(Right) The real part of the rate function fr(t) corresponding to those four branches are shown. The analytical solution (31) is shown by the
dashed lines. The actual rate function follows the smallest branch at each t as in the upper left panel of Fig. 10.

Dashed lines in the right panel of Fig. 3 represent the result. In
terms of the total spin operator Ŝz = 1

2

∑
i σ

z
i , our Hamiltonian

after the quench is written as

Ĥ = −2

(
J

N
Ŝ2

z + hŜz

)
. (25)

The eigenvalue of this Hamiltonian is characterized by that of
Ŝz denoted by M taking the value N

2 − k with k = 0,1, . . . ,N .
For a given M , there are

(
N

k

)
degenerate states. Let us define

a normalized vector |N
2 − k〉 in this subspace, which is the

equal-weight sum of the
(
N

k

)
basis vectors. Using this basis,

we can write the initial state as

|	b〉 =
N∑

k=0

(
1

2

) N
2

√(
N

k

)∣∣∣∣N2 − k

〉
. (26)

Applying the time-evolution operator e−iĤt only gives a phase
factor for each term. The Loschmidt amplitude is written as

L(t) =
N∑

k=0

(
1

2

)N(
N

k

)

× exp

{
2i

[
J

N

(
N

2
− k

)2

+ h

(
N

2
− k

)]
t

}
.

(27)

Using an approximation valid for N � 1

(
1

2

)N(
N

k

)
∼
√

2

πN
exp

[
− 2

N

(
k − N

2

)2
]
, (28)

we write the amplitude as

L(t) ∼
√

2

πN

∑
k=− N

2 ,− N
2 +1,..., N

2

exp

[
− 2

N
(1 − iJ t)k2 − 2ihtk

]
.

(29)

For N � 1 the range of the sum can be safely extended from
k = −∞ to ∞ to yield

L(t) ∼
√

2

πN

∞∑
n=−∞

∫ ∞

−∞
dφ

× exp

[
− 2

N
(1 − iJ t)φ2 − 2ihtφ + 2iπnφ

]

=
√

1

1 − iJ t

∞∑
n=−∞

exp

[
−N

(ht − πn)2

2(1 − iJ t)

]
, (30)

where the Poisson summation formula is used in the first
line [18]. We then define n that minimizes fr(t ; n) as n∗(t) =
argmin

n∈Z
fr(t ; n), where

fr(t ; n) = (ht − πn)2

2(1 + J 2t2)
. (31)

The contribution from n = n∗ dominates the sum in Eq. (30)
and we obtain the real part of the rate function as fr(t) =
fr(t,n∗(t)). fr(t) exhibits singularities because n∗(t) changes
discretely as t grows. Thus the transition time tc is obtained by
equating two neighboring values fr(t ; n) = fr(t ; n + 1) as

tc(n) = π

h

(
n + 1

2

)
. (32)

Hence the period is given by τ = π/h. The branches of
fr(t ; n) with n = 0,1,2 are shown in the right panel of Fig. 3,
which exhibits the perfect agreement with fk(t) evaluated by
the integration in Eq. (21) with the solution of EOMs (22)
and Ck(t).

Two noteworthy consequences are provided by this analyti-
cal solution. One is that the DQPT always exists for any h > 0,
while it does not for h = 0. Some earlier works have pointed
out that a DQPT appears when quench crosses an equilibrium
quantum phase transition [2,7]. The present results reveal the
existence of the opposite situation. The other is that the real
part of the rate function fr(t) = fr(t ; n∗(t)) shrinks by the
speed of O(t−2) as t grows and finally vanishes in the limit
t → ∞. The vanishing rate function may be thought to imply
|L(t)| → 1, but this is not the case because of the presence of
the factor 1/

√
1 − iJ t in Eq. (30). The modulus of this factor
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FIG. 4. Semiclassical paths and the rate functions at �i = ∞, h/J = 0.1, and �f/J = 0.6. (Left) The paths with the initial condition
ζ (0) = ζb and η(0) = ηb. The period Jτ ≈ 5.8 can be read off. The real part of η is omitted because Re{η(s)} = Re{ζ (s)}. (Center) Given the
end time t = τ , the real parts of semiclassical paths with the modified initial conditions η(0) = C(t) to satisfy Eq. (13) are plotted against the
dummy time s. Two different paths corresponding to different initial conditions, C1 and C2, are shown. The real parts of ζ2 and η2 are identical
and are overlapping. As a guide to the eye, two horizontal straight lines are drawn at unity and zero. (Right) Two branches of the rate function
f1(t) and f2(t). A DQPT occurs around J tc ≈ 4.42.

decreases as t grows, so that |L(t)| goes to zero. This implies
that there exists a crossover time t× determined by comparing
the O(1) factor and the exponentially scaling one e−Nf . For
t > t× the O(1) factor dominates the Loschmidt amplitude.
However, the crossover time t× is expected to an unbounded
increasing function of N . Hence in the large size limit our
computation of the rate function is meaningful in the whole
time region.

2. General �f > 0

Let us proceed to general final values �f > 0. The analytical
solution of the EOMs is not available in this case. Hence we
numerically search the initial conditions C1(t) and C2(t) and
evaluate the corresponding rate functions f1(t) and f2(t).

Our heuristic procedure starts from evaluating the period
τ of the dynamics. For this purpose, we run the numerical
simulation of the EOMs (19) using the naive initial condition,
ζ (0) = ζb = 1 and η(0) = ηb = 1. We employ the Runge-
Kutta method of the fourth order. As an example, we show
the result for the case with h/J = 0.1 and �f/J = 0.6 in
the left panel of Fig. 4. The period Jτ ≈ 5.8 is easily
read from this panel. We again stress that this dynamics
with the naive condition η(0) = ηb = 1 does not satisfy the
boundary condition (13) for a generic end time t . Given
an end time t , we need to estimate the appropriate initial
condition η(0) = C(t), and then compute the path (ζ̄ (s),η̄(s)).
As a result, the semiclassical paths satisfying Eq. (13) are
very different from the naive ones. Putting the end time as
J t = Jτ ≈ 5.8, we plot the real parts of such paths in the
center panel of the same figure. As explained in Sec. II B 5, we
have two different sequences of the initial conditions, yielding
two different paths (ζ̄1(s),η̄1(s)) and (ζ̄2(s),η̄2(s)). Both paths
satisfy ζ̄ (0) = ζb = 1 and ¯η(t) = ηb = 1 as they should. The
real parts of the corresponding two rate functions are plotted in
the right panel. The smaller branch at each time corresponds to
the true rate function, leading to the DQPT at J tc ≈ 4.42 as a
switch from f1 to f2. Note that this panel is plotted against the
end time t while the center one is plotted against the dummy
time s, given the end time t = τ .

The DQPT observed here has the nature of the first order
transition, in a sense that the first order time derivative of
the rate function jumps at the transition time. By examining

several parameters, we have realized that this first order nature
tends to be stronger as �f increases, but suddenly vanishes at
a certain critical value �fc(h). For � > �fc(h), the curve of the
rate function has a smooth peak without singularity. In Fig. 5,
we plot C1, C2, f1, and f2 for h/J = 0.1 with two slightly
different values of �f , �f/J = 1.5 and 1.6. They clearly show
that the critical value �fc(h) is present between these two values
of �f . In the same way, computing the rate function in a range
of h and �f , we draw a phase diagram in the case of quench
from �i = ∞ in Fig. 6. The phase boundary approaches the
equilibrium transition point �c = J in the limit h → 0. This
is reasonable because the period of the dynamics τ diverges as
h → 0 at �f < �c, and DQPTs do not exist according to the
present scenario.

B. Quench from �i = 0

We next study the opposite quench from �i = 0. The
boundary condition is now given by ζb = ηb = 0.
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FIG. 5. Plot of the initial conditions C1 and C2 (left) and the
corresponding rate functions f1 and f2 (right) at �i = ∞ and h/J =
0.1 with �f/J = 1.5 (top) and �f/J = 1.6 (bottom). For �f/J = 1.5,
two different branches exist and a DQPT occurs at J tc ≈ 1.76, while
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FIG. 6. Phase diagram for the quench from �i = ∞. The phase
boundary line is the interpolation of the data points.

As in the previous case, the numerical search of C1(t) and
C2(t) brings the behavior of the rate function and the DQPT
in this case. However, the results are rather different. In the
previous case, the DQPT was first order like and there was
a prominent cusp in a period [0,τ ]. When going across the
DQPT boundary, the cusp turned into a smooth peak and the
bifurcation or merge of the two initial conditions C1(t) and
C2(t) occurs in the middle of the period [0,τ ]. For the quench
from �i = 0, however, this is not the case and the DQPT
emerges in a more delicate form.

Figure 7 contains the plots of C1, C2, f1, and f2 for
h/J = 0.1 with two slightly different values of �f , �f/J = 0.6
and 0.7. This figure demonstrates that the bifurcation of the
two initial conditions C1(t) and C2(t) occurs around t ≈ τ

in a rather continuous manner. As a result, discriminating
the two branches of the solution is harder than the quench
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FIG. 7. Plot of the initial conditions C1 and C2 (left) and the
corresponding rate functions f1 and f2 (right) at �i = 0 and h/J =
0.1 with �f/J = 0.6 (top) and �f/J = 0.7 (bottom). The period τ of
the dynamics is Jτ ≈ 5.8 and Jτ ≈ 6.6 for �f/J = 0.6 and �f/J =
0.7, respectively. Comparing �f/J = 0.6 and 0.7, we can see a new
branch emerges around t ≈ τ , which gives a DQPT at a very close
time to τ . For the bottom right panel, fr coming from the plateau
region of C2(t) is out of the range in the shown scale, meaning that it
is irrelevant for the DQPT.
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FIG. 8. Phase diagram for the quench from �i = 0.

from �i = ∞. This tendency holds for the range of h and
�f we have searched, which requires us to conduct a more
precise numerics to obtain the phase diagram. Moreover, as
we see from the bottom panels (�f/J = 0.7), C2(t) tends to
show a rather singular behavior: a smooth curve suddenly
changes into a plateau as t decreases and finally it vanishes for
small t . Although we cannot completely reject a possibility
that these behaviors are caused by certain numerical errors,
we have carefully checked and confirmed that the shown
C2(t) satisfies the boundary condition in a good precision for
the intermediate and large t region, and no branches exist
continuously connected to the plateau for small t . Hence these
singular behaviors are expected to be true. Fortunately, they
are irrelevant for locating the DQPT point since the DQPT
occurs at larger t where no pathological behavior appears.
The resultant phase diagram for �i = 0 is given in Fig. 8.
The phase boundary �fc(h) approaches �d/J = 1/2 in the
limit h → 0+. This is reasonable because �d is the dynamical
transition point of an order parameter, mz = 〈�(t)|σ z|�(t)〉,
where |�(t)〉 = e−itĤ|	b〉, with this particular choice of �i

[22]. Upon approaching �d, the period τ of the dynamics
diverges and DQPTs should vanish. Note that this dynamical
value �d does not have any meaning for the equilibrium
transition. This is in contrast to the quench from �i = ∞
where the equilibrium transition point �c works as the DQPT
transition point at h = 0.

Unlike in the �i = ∞ case, the dynamics does not stop
even at h = 0. This enables us to see an interesting behavior
of the Loschmidt amplitude at h = 0 and �f = �d. This point
is on the separatrix in the phase space and the order parameter
monotonically decreases as t grows. No periodicity exists
(or τ = ∞). Hence we only examine the first sequence of
the initial condition for η(s) and C1(t), and compute the
corresponding rate function. The result is shown in Fig. 9. This
figure shows that the rate function asymptotically vanishes as
t → ∞, but this does not necessarily imply |L(t)| → 1 as
pointed out at the end of Sec. III A 1.

C. Comparison with numerical experiments

To validate our semiclassical computations, we here show
the results of numerical experiments and compare them
with the semiclassical results for several parameters. Our
Hamiltonian (1) commutes with the squared total spin operator
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Ŝ
2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . For both the quenches from �i = 0 and
∞, the initial state is in the subspace of the total spin S = N/2.
Hence the state of our system preserves this total spin and we
may consider the time-dependent state inside this subspace.
In the basis of the eigenvalues of Ŝz, our Hamiltonian is
represented in a tridiagonal matrix form and we can easily
evaluate the time evolution of the state |�(t)〉 = e−itĤ|	b〉
by the LU decomposition. The dimension of the subspace is
N + 1 and we can treat fairly large size systems. However,
the computation requires us to take a lot of sums of complex
numbers and the numerical precision tends to be degraded
as N becomes large. This computational difficulty sensitively
depends on the parameters and below the simulated system
sizes are adaptively changed for this reason.

Figure 10 contains the plots of the rate functions for the
quench from �i = ∞. The results of numerical simulation
show a good agreement with the theoretical curve denoted by
the solid black line, both below and above the transition point
�fc(h/J = 0.1)/J ≈ 1.53. This justifies our semiclassical
computation. The upper left panel in Fig. 10 for �f = 0 and
h/J = 0.1 is compared with the result in Fig. 3 where the
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FIG. 10. Real part of the rate function for �f/J = 0 (upper left),
0.5 (upper right), 1.0 (lower left), and 2.0 (lower right) at h/J =
0.1 for the quench from �i = ∞. The three panels except for the
lower right one show the DQPT, which is in agreement with the
semiclassical computation given by the black solid line.

period is given by Jτ = πJ
h

≈ 31.4. We see the consistent
agreement between the numerical and semiclassical compu-
tations. The deviation for the whole time and the oscillating
behavior at large t are considered to be due to the finite size
effect.

Figure 11 represents the result of a quench from �i = 0
at h = 0+. Again, the numerical results show a fairly good
agreement with the semiclassical curve. At the separatrix,
�f/J = 1/2, the monotonic decay of the rate function after
a single peak is well reproduced by the numerics, validating
our semiclassical computation even at a special point of the
dynamics.

IV. DISCUSSION AND SUMMARY

In this paper, we have presented a computational method for
the Loschmidt amplitude based on the complex semiclassical
approach, and applied it to the transverse field Ising model
with a symmetry breaking field in the infinite dimension.
Two quantum quenches, from zero and infinite transverse
fields, have been examined. From the behavior of the rate
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FIG. 11. Real part of the rate function for �f/J = 0.25 (upper
left), 0.5 (upper right), 0.75 (lower left), and 1.25 (lower right) at
h = 0+ for the quench from �i = 0. The upper two panels do not
show any DQPT while the lower ones do. The upper right panel is for
the separatrix and the corresponding rate function shows a monotonic
decay after a smooth peak.
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function, the presence or absence of the DQPTs have been
captured. The phase diagrams have been mapped out in the
plane of final transverse field and symmetry breaking field.
These results have been examined by numerical simulations
independently that solve the Schrödinger equation literally,
which fully supports our semiclassical computations.

Although our computational method has succeeded in
unveiling several properties of the Loschmidt amplitude, its
physical implications are still unclear. Žunkovič et al. have
pointed out a connection between the Loschmidt amplitude
and the order parameter in the steady state long after the quench
[3]. However, we have not found such a connection as far as the
quench from �i = ∞ is concerned. Therefore, the presented
result might add a further mystery on the DQPT. Disentangling
DQPTs of the Loschmidt amplitude and an order parameter
may open a new comprehension on quantum dynamics.

An experimental observation of a DQPT is a fascinat-
ing topic. A very recent work [27] has actually observed
DQPTs using a certain topological nature of the singularity
[28–30]. Unfortunately, this is possible only in noninteracting
systems and its generalization to interacting systems is unclear.
Although there are some other experiments [31,32] observing
the Loschmidt amplitude, their methods rely on the smallness
of the system or certain locality of the phenomena. The
application of their methods to global phenomena in many-spin
systems is again nontrivial. Our model, the Ising model with

long range interactions, itself can be realized in a trapped ion
system [33]. Another recent experiment on this system has
observed nontrivial cusps in the probability to return to the
ground-state manifold, giving a clear evidence of the DQPT
[4,19]. Their setup corresponds to �i = 0 and h = 0+ in the
present paper, and we expect that further nontrivial results can
be obtained in other setups according to our findings. Such
additional experiments are encouraged.

A more direct application of our method might be found in
quantum engineering or computing. In those disciplines, it is
an important problem to estimate the probability of achieving
a desired state in certain quantum processes. For example,
in quantum annealing [34–36], the probability of finding the
ground state is an important object to be calculated. Using
techniques from the spin glass theory [25,26] combined with
the present method, its typical value might be evaluated.
This will provide a theoretical challenge for both quantum
mechanics and random spin systems.
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