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Entropy production in a photovoltaic cell
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We evaluate entropy production in a photovoltaic cell that is modeled by four electronic levels resonantly
coupled to thermally populated field modes at different temperatures. We use a formalism recently proposed, the
so-called multiple parallel worlds, to consistently address the nonlinearity of entropy in terms of density matrix.
Our result shows that entropy production is the difference between two flows: a semiclassical flow that linearly
depends on occupational probabilities, and another flow that depends nonlinearly on quantum coherence and
has no semiclassical analog. We show that entropy production in the cells depends on environmentally induced
decoherence time and energy detuning. We characterize regimes where reversal flow of information takes place
from a cold to hot bath. Interestingly, we identify a lower bound on entropy production, which sets limitations
on the statistics of dissipated heat in the cells.
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I. INTRODUCTION

In the past decade a number of physical quantities,
such as charge and spin, have been accurately measured
in quantum systems [1–3], and these measurements have
found practical applications in superfast computation and
supersecure communication [4,5]. More recently, in making
use of superconducting qubits and transport by tunneling [6,7],
heat dissipation had also been successfully measured in
quantum devices [8–10], although yet in the absence of full
quantum features [11,12]. Industrial photocell technology has
reached a saturation in the efficiency of converting solar energy
to electricity, and by recent quantum control of heat flow these
cells achieve higher efficiencies [13].

All these indicate how important it is to understand a consis-
tent theory for quantum thermodynamics. The ultimate goal of
such a theory is to introduce possible correspondences between
information and physical quantities. These correspondences
are the textbook laws of thermodynamics in deterministic
classical systems. In stochastic systems [14–18], however, they
are a set of relations such as the Jarzynski inequality [19] and
the Crook fluctuation theorem [20]. In quantum devices the
existence of universal correspondences between information
and physics are a subject of research. Here we study the
correspondence for entropy as an informational measure.

Entropy is one of the central quantities, whose consistent
evaluation in quantum theory is obscure due to its nonlinear
dependence on the density matrix; S = −kBTrρ̂ ln ρ̂, with ρ̂

being the density matrix. This quantity is one of the funda-
mental characteristics for quantifying many-body correlations
and proved useful in critical phenomena, quantum quenches,
topologically ordered states, strongly correlated systems,
etc. [21]. In quantum information theory entropy helps to
identify sources of fidelity loss [22]. Standard time-evolution
formalisms in open quantum systems [23,24] that allow one
to compute density matrices at different times are useless in
evaluating entropy due to its nonlinear dependence on the den-
sity matrix [25,26]. Recently some progress has been made to
consistently evaluate it in the weak-coupling regime [27] using
the so-called extended Keldysh technique on multiple parallel
worlds [28–30]. In this terminology the system of interest and

whatever is coupled to it make a world. This evaluation beyond
perturbation theory is still an open problem [31].

We previously calculated entropy production in simple
examples of quantum heat engines [28–30,32]. A quantum
heat engine (QHE) is a small quantum system with a number
of energy levels that are coupled to several heat reservoirs.
These devices are known for converting incoherent photons
of thermal environments into coherent emissions [33]. Our
results for simple QHEs showed that entropy flow has two
parts: (1) an incoherent part, which linearly depends on the
quantum system density matrix, and (2) a coherent part, which
is nonlinear. Given that both parts depend on the density
matrix, the reason for using this terminology, the first place
being Ref. [29], has been that the nonlinear part is independent
of occupation probabilities and depends only on the quantum
coherence element of the density matrix as a result of the
coherent drive. Interestingly, this part has no semiclassical
analog. Separately, we showed in Ref. [30] that the total flow
of entropy, which is the difference between these two parts,
corresponds exactly to physical quantities, more precisely, to
the full counting statistics of energy fluctuations [30]. This
correspondence is conceptually the analog of the second law
for a quantum theory for thermodynamics, but it is limited to
the weak-coupling limits. Although the information content in
the incoherent part is carried out by standard correlations, the
so-called Kubo-Martin-Schwinger (KMS) correlations [34], in
the coherent part it indicates a large class of correlators that
exists beyond the standard ones, the so-called extended KMS
correlations [29].

In this paper we evaluate entropy flow for a practical QHE
model compared to the simple modeled we previously studied.
There are a number of QHE models that resemble interesting
physical phenomena, such as light-harvesting biocells [35,36],
photovoltaic cells [13,37,38], and lasing heat engines [39]. Our
system of interest is the QHE introduced by Scully et al. [13],
which has four energy levels, two nearly degenerate ground
states, and two excited states, and is weakly coupled to two
large heat baths kept at different temperatures Tc and Th (see
Fig. 1). This QHE is externally driven by a frequency that
is almost equal to the energy difference of excited states.
The statistics of energy dissipations for this QHE have been
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FIG. 1. A quantum heat engine with near-degenerate ground
states |1〉 and |2〉, and excited states |h〉 and |c〉, that resonantly (with
frequency ωl) is coupled to two large heat baths kept at temperatures
Tc and Th. Typical occupation probabilities are represented in green.

previously studied in Ref. [40] and shown to be non-
Poissonian, from which various cumulants of energy ex-
changes can be extracted. In this QHE several phenomena
have been studied, such as lasing without inversion [41], work
extraction from a single thermal reservoir [42], and elevated
output powers [13]. Here, the main reason we evaluate entropy
flow is to understand how to link energy fluctuations and
entropy, and if the engine performs any sign of quantum
thermodynamics beyond classical limits.

Our result shows interesting features in the entropy flow.
We find that the presence of nonlinear flow can make entropy
production in photovoltaic cells much slower or much faster
than the semiclassical rate. We also study how decoherence
time, which is induced by environments [43], and energy
detuning, as a result of lifting degeneracy, affect the net
entropy flow. By designing a QHE with lower decoherence
time, we can speed up the flow of entropy between hot and
cold baths. Lifting the degeneracy will result in the suppression
of nonlinear flow that is the direct consequence of quantum
coherence reduction. Finally, we obtain a lower bound on
entropy flow as a direct result of nonlinearity in the flow.

In Sec. II we discuss the Hamiltonian and the entropy
evaluation to become prepared for Sec. III, where we compute
the flow in a four-level QHE. Results are briefly discussed
in Sec. IV, and some details can be found in Appendixes A
and B.

II. THE MODEL AND FORMALISM

In this section, after introducing the Hamiltonian model
and the time evolution of the density matrix, we explain how
entropy, whose evaluation requires time evolution of nonlinear
operator, is consistently evaluated.

A. The Hamiltonian

Let us consider a QHE with quantum states |x〉 correspond-
ing to energy eigenvalues Ex coupled to a number of heat baths
labeled by α. The Hamiltonian of this system is H = H0 +
Hint, with the noninteracting part H0 being Hsys + ∑

α Hα with

the following system and reservoir Hamiltonians:

Ĥsys =
∑

x

Ex |x〉〈x|,

Ĥα =
∑

q

h̄ωq,αb̂†q,αb̂q,α, (1)

and with b̂q,α (b̂†q,α) being an annihilation (creation) photon
operator with momentum q in the reservoir α. The interaction
Hamiltonian is

Ĥint =
∑

α

∑
xx ′

|x〉〈x ′|X(α)
xx ′ (t),

X̂
(α)
xx ′ (t) = h̄

∑
q

cxx ′,qαb̂qα exp(−iωqαt) + H.c., (2)

with the X̂ operator acting on heat baths, and the complex-
valued cxy,qα that couples the transition x → x ′ to a photon of
certain momentum in a heat bath. The coefficient exp(±iωqαt)
shows the time dependence of the creation and annihilation
operators. We assume adiabatic switching on interaction such
that far in the past t → −∞, all couplings are absent; therefore
the total density matrix is separable into subsystems. As the
couplings slowly grow, the density matrix can be formally
determined from [23]

ρ̂(t) = T ei
∫ t

∞ dτĤint(τ )ρ̂(−∞)T̄ ei
∫ t

−∞ dτĤint(τ ), (3)

with T (T̄ ) being (anti-) time ordering operator. One can
expand Eq. (3) in terms of X̂ operators. The Keldysh
formalism [24] is a general method to evaluate all energy
orders [24,44], for which the Keldysh contour is considered to
represent the evolution of bra and ket states at different times;
i.e., the ket (bra) states evolve along (opposite to) the time
flow. Details can be found in Ref. [27].

B. Entropy

As mentioned above, entropy is nonlinear in the density
matrix of world. Let us consider that in a world with the
density matrix ρw consisting of several systems and heat baths,
the system of interest has the partial density matrix ρ̂. The
entropy of this system is S = −Trρ̂ ln ρ̂ and is evaluated by
tracing out all except the system of interest. Here we assume
kB = 1. This logarithmic dependence makes the evaluation of
entropy mathematically involved.

Consider the simple example that interactions are so weak
that the quantum system is perturbed only in the vicinity
of its equilibrium state at ground state. In this case the
density matrix can be approximated to ρ(t) ≈ p0 + ρ(1)(t),
with |ρ(1)/p0|�1. The entropy flow, i.e., F = dS/dt , becomes
−(1 + ln p0)dρ(1)/dt − (1/2p0)d(ρ(1))2/dt + · · · , which is
clearly nonlinear in the density matrix. We showed
in Ref. [29] that for any positive n one can show
d(ρ)n/dt 	= n(ρn−1)dρ/dt . In other words, one cannot sim-
plify −(1/2p0)d(ρ(1))2/dt to −p0dρ

(1)/dt . Such a simplifica-
tion is only meaningful for noninteracting systems.

First one must notice that in the logarithmic expansion
of entropy there are infinite terms to be computed. This is
impossible and, moreover, we cannot find any clear criteria
to make a meaningful truncation on the expansion. Nazarov
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in Ref. [27] suggested that we rewrite entropy as a limit of
the Renyi entropies [45], i.e., S = − limM→1 dSM/dM , with
the Renyi entropy of positive degree M being SM = Tr{ρ}M .
Naturally computing the Renyi entropy flows is the next
problem to achieve (see Appendix A). We proposed in Ref. [29]
how to compute the time evolution of the operator {ρ̂}M (t)
without using the solution of ρ̂. In order to evaluate the
entropy flow in a quantum system one should evaluate the
Renyi entropy flow and analytically continue it to M → 1.
Detailed analysis shows that the consistent entropy flow has
two parts, Qi and Qc:

dS

dt
= Qi − Qc

T

Qi =
∑
x ′yy ′

ρx ′yχ̃y ′x ′,yy ′ (ωyy ′ )(n̄(ωyy ′ ) + 1)ωyy ′

Qc =
∑

xx ′yy ′
ρx ′xρy ′yχ̃xx ′,yy ′ (ωyy ′ )ωyy ′ , (4)

with Qi being the incoherent flow of entropy and Qc the
coherent part. h̄ωyy ′ ≡ Ey − Ey ′ and χ̃xx ′,yy ′ represent the
generalized dynamical susceptibility between two transitions:
|x〉 → |x ′〉 and |y〉 → |y ′〉. n̄ denotes the Bose distribution.

Equation (4) has two parts: (1) the incoherent flow Qi ,
which is linearly proportional to the reduced density ma-
trix, and (2) the coherent part Qc, which is nonlinear—in
fact, quadratic, because we calculate it in the second-order
perturbation theory. This entropy flow can be equivalently
determined from using the corresponding physical quantities,
which are the full counting statistics of energy transfers (see
Appendix B).

III. FOUR-LEVEL QUANTUM HEAT ENGINES

Let us calculate entropy flow in the four-level QHE
introduced by Scully et al. [13] and shown in Fig. 1. This
QHE consists of two nearly degenerate lower levels |1〉 and
|2〉 (denoted by label i,j = 1,2) with energy E1 = E2 + δ and
δ being energy detuning, and two excited levels |h〉 and |c〉
with energies Eh and Ec (denoted by labels α = h,c) (see
Fig. 1). An example of such a QHE is a laser heat engine in
which environmental noise helps to increase the net emitted
laser. The full counting statistics of energy transfers in this
QHE have been calculated in Ref. [40]. By applying the first
cumulant of the energy statistics in the second law (as we
will show in next section) we can immediately determine a
semiclassical value for the entropy flow. However, here we
calculate it using a formalism that is free of any assumption
about the underlying quantum thermodynamics. Therefore we
notice that our results are dramatically different from what a
semiclassical approach predicts.

Here we choose the probe environment to be the hot
bath with temperature Th. The quantum system is externally
driven by a single-mode cavity at the frequency ωl ≈ (Eh −
Ec)/h̄. The driving Hamiltonian is Ĥsys−dr = �(b̂†l |c〉〈h| +
b̂l|h〉〈c|),b̂l (b̂†l ) being the annihilation (creation) operator for
the cavity mode; 〈b̂†l b̂l〉 = n̄l ; 〈b̂l b̂

†
l 〉 = ñl with n̄l being the

average number of photons in the cavity and ñl ≡ n̄l + 1
[13,41].

The stationary density matrix solution can be summarized
in the vector R = {ρ11,ρ22,ρhh,ρcc,Re(ρ12)}. This vector can
be evaluated using the time-evolution equation d R/dt = L R
by assuming that the density matrix slowly varies (Markov
approximation); thus we approximate ρ(t − t ′) ≈ ρ(t). One
can determine the following L for the dynamics:

L ≡⎛
⎜⎜⎜⎝

χ11 0 χ̃h1ñh χ̃c1ñc −2χ̃12

0 χ22 χ̃h2ñh χ̃c2ñc −2χ̃12

χ̃h1n̄h χ̃h2n̄h χhh �2nl 2χ̃1h,h2n̄h

χ̃c1n̄c χ̃c2n̄c �2ñl χcc 2χ̃1c,c2n̄c

−χ̃12 −χ̃12 χ̃1h,h2ñh χ̃1c,c2ñc χ

⎞
⎟⎟⎟⎠,

(5)

with coupling χii being −∑
α χ̃iα,αi n̄i ; χhh being

−∑
i χ̃ih,hi ñh − ñl�

2; χcc being −∑
i χ̃ic,ci ñc − n̄l�

2; χ

being −(1/2)
∑

i,α χ̃iα,αi n̄α − 1/τ2; and the symmetric χij

being (1/2)
∑

α χ̃iα,αj n̄α for i 	= j .
This evolution equation has been solved explicitly (see

Eq. (S26) of the Supplemental Materials in Ref. [13]). One
should notice that χ depends on decoherence time τ2, which
is induced by environment and affects all elements of the
system density matrix, including an exponential decay of the
imaginary part of the coherence Imρ12 ≈ exp(−t/τ2).

Being equipped with the stationary solution for R, we can
now compute the entropy flow by substituting it in Eq. (4).
The result is that the stationary flow of entropy from the probe
(hot) heat bath becomes

dS

dt
=

{
γph − Eh2χ̃h2n̄

(
Eh2

Th

)
p2 − Eh1χ̃h1n̄

(
Eh1

Th

)
p1

− χ̃1h,h2

[
Eh1n̄

(
Eh1

Th

)
+ Eh2n̄

(
Eh2

Th

)]
Reρ12

− 1

2

∑
i=1,2

Ehiχ̃1h,h2|ρ12|2
}
/Th, (6)

with px ≡ ρxx for x being 1,2,H.c., χ̃αi ≡ χ̃iα,αi(ωiα) being
the dynamical response function, and χ̃1α,α2 = √

χ̃α1χ̃α2.
Moreover, γ ≡ ∑

i=1,2 [n̄(Ehi/Th) + 1]Ehiχ̃hi . Equivalently,
one can compute the flow of entropy by using its corresponding
full counting statistics of energy transfers in Eq. (B1).

In Eq. (6) the linear terms determine incoherent flow, where
the first term is the entropy gain by photon absorption and
the next three terms are entropy loss in photon decays. The
quadratic term is the coherent flow that is the entropy loss due
to extended KMS correlators.

Before discussing results, let us briefly show how one can
derive the incoherent part independently using the combination
of textbook second law and the statistics of energy transfers
worked out in Ref. [40]. The full counting statistics generating
function of energy Etr being exchanged during time interval T
is G(ξ,t) = Trρ(ξ,t), with ρ(ξ,t) being the stationary solution
of dρ(ξ,t)/dt = L (ξ )ρ(ξ,t), with ξ being the characteristic
parameter. The explicit form of L (ξ ) is given by Eq. (14)
of Ref. [40]. This generating function determines the first
cumulant d〈E〉/dt . By substituting it in the relation between
entropy and energy flows dS/dt = (1/T )dE/dt , one can
exactly obtain the first two lines of Eq. (6). However, it
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FIG. 2. Incoherent (red) and coherent (blue) entropy flows in
a hot (probe) environment versus cold-bath temperature Tc for (a)
two different values of decoherence time τ2 = 5 (dotted) and 10
(solid) and the absence of detuning energy. (c) Two different values
of detuning δ/Eh1 = 0 (dotted) and 7% (solid) both for the case of
longer detuning time τ2 = 10. (b,d) The corresponding p1,p2,pc,ph

(black) and −Reρ12 (red) with the same order for dotted and solid
lines. Other parameters are Eh = 1.5,Ec = 0.4,E1 = E2 = 0.1,Th =
�/2 = nl = χ̃h1 = χ̃h2 = χ̃c2 = 10χ̃c1 = 1.

is important to notice that the second law is unable to
provide the complete flow of entropy with coherent flow
included.

Let us consider two QHEs with no energy detuning, i.e.,
δ = 0, and for two different values of decoherence time, i.e.,
τ2 = 5 (dotted) and 10 (solid). The incoherent (coherent)
entropy flows F i (Fc) in the probe environment depend on
the temperature of the cold environment Tc. This dependence
is plotted in Figs. 2(a)–2(d) for the couplings specified in the
caption. The net entropy is F = F i − Fc, as shown in Eq. (4).

At low Tc � Th, Fig. 2(a) indicates that entropy flows out
of the hot bath. By warming up the cold bath above the onset
temperature To > 0.42 the overall ground-state populations,
as shown in panel (b), are suppressed and the excited states
become more populated. This causes the reversal flow of
entropy from the cold to the hot bath. At the onset temperature
there is no flow of entropy expected. As shown, the onset
temperature does not depend on decoherence time. Let us now
compare the net entropy flow F = F i − Fc determined from
the consistent formalism and the semiclassical flow predicted
by the second law, which is equivalent to the incoherent part F i .
One can see in Fig. 2(a) that the net flow is heavily suppressed.
This suppression takes place due to the contribution of the
nonlinear (coherent) part of the flow that is quadratic in ρ12

and is as important as the semiclassical part where ρ12 is
not negligible. Moreover, at the low Tc limit, the smaller the
decoherence time τ2, the faster entropy flows out of the probe
environment.

Now let us study the effect of energy detuning on entropy
flow. Figure 2(c) shows incoherent (coherent) entropy flow F i

(Fc) for two QHEs with detuning ratio δ/Eh2 = 0 (dotted)
and 7% (solid). Panel (d) shows the corresponding stationary
populations and coherence. By increasing the energy detuning
the onset temperature becomes larger. This is mostly because
of a sign change in Reρ12 in the presence of detuning, which in
Eq. (6) makes the linear term on Reρ12 turn from positive at low
Tc to negative at higher Tc, and this reduces the total entropy
flow and causes a shift of the onset temperature forward.

Now let us simplify the entropy flow for the cold bath being
at zero temperature limit. One can see in Fig. 2 that at zero Tc

both parts of entropy flow are at their extrema and with opposite
signs. We use Eq. (6) and analytically compute the flow for an
engine with zero detuning. One can simplify the time evolution
of p1 and p2 in the limit of Tc ≈ 0 using Eq. (5). Some lines
of algebraic calculations show that the stationary value of the
ground-state occupation probabilities under such conditions is
pi = ph exp(EH/kBTh) + [ηi/n̄(EH/Th)]pc − λiReρ12, with
ηi being χ̃ci/χ̃hi, λ1 = √

rh, λ2 = 1/λ1, EH ≡ Ehi , and rh ≡
χ̃h2/χ̃h1. Substituting them all in the entropy flow of Eq. (6)
will determine the entropy flow for the QHE:

dS

dt

∣∣∣∣
Tc≈0

= − EH

kBTh

[pc(χ̃c1 + χ̃c2) + χ̃1h,h2|ρ12|2]. (7)

Equation (7) clearly states that the engine at zero cold-bath
temperature exhibits a persistent negative flow of entropy from
hot to cold bath, no matter what the other parameters are. This,
at least in the weak-coupling limit, indicates no violation takes
place against the third law in this engine.

Given that the entropy flow changes sign at the onset
temperature, one can simplify Eq. (6) to find out the condition
where reversal flow occurs, which is,

[n̄(EH/Th) + 1](1 + rh)ph − n̄(EH/Th)(p1 + rhp2

+ 2
√

rh Re ρ12) − √
rh|ρ12|2 � 0, (8)

with zero flow at the onset temperature.
Before concluding, let us make some important remarks

about the net entropy flow in these quantum photovoltaic cells.
For devices with rh = 1, by dividing both sides of Eq. (6) by
χ̃h1EH and denoting the left side f = (dS/dt)/χ̃h1EH , a few
lines of algebra simplify the result into a quadratic equation
for quantum coherence: |Reρ12|2 + 2n̄Reρ12 + n̄(1 − pc) −
(3n̄ + 2)ph + f = 0. Solving this equation for Reρ12 will
determine the condition for it to be real-valued. One can find
the forbidden zone is where pc + (3n̄ + 2)/n̄ph < f − n̄ + 1.
Given that the left side of this inequality is positive-valued, the
left side cannot be negative and therefore the following lower
bound on net entropy flow holds: dS/dt � [n̄(EH/Th) −
1]EH χ̃h1.

The entropy flow we obtained here for this QHE can be
measured experimentally using its exact corresponding part-
ners in physical quantities. These physical quantities are the
full counting statistics of energy transfers. This interestingly
indicates that the entropy lower bound reveals the existence of a
corresponding constraint on energy fluctuations in the system.
This can be further developed and experimentally tested.
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IV. SUMMARY

We calculated the entropy flow of a four-level quantum heat
engine within a weak interaction limit. The results, obtained
from the full quantum formalism of multiple parallel worlds,
show that in addition to semiclassical results, entropy flow
has a nonlinear contribution of quantum coherence as the
result of coherent drive. The presence of this nonlinear term
significantly suppresses the semiclassical value for entropy;
however, this heavy suppression does not allow for entropy to
flow out of a cold bath at zero temperature. Thus the third
law is not violated in the weak-coupling regime. We also
explicitly determined that by reducing the environmentally
induced decoherence time the onset temperature does not
change but the flow can take place much faster. Lifting the
degeneracy will result in the suppression of quantum coher-
ence, which directly reduces the nonlinear term of entropy.
Finally, we argued that the quadratic dependence of entropy
flow on quantum decoherence, which is absent in semiclassical
analysis, determines a lower bound on entropy flow. Given
that there is an exact correspondence between entropy flow
and energy fluctuations, one can expect that the lower bound
on entropy flow can correspond to a constraint on energy
fluctuations, which can be the subject of future research.

Let us now discuss how to measure the entropy. The
entropy flow is not accessible in direct measurements as
they are nonlinear functions of the density matrix. Direct
measurements of the density matrix for a probe environment
requires characterization of a reduced density matrix of an
infinite system, which is a rather nontrivial procedure and
needs the complete and precise reinitialization of the initial
density matrix. Measuring entropy flow from their physical
correspondence requires that some generating functions be
extracted from determining statistical cumulants of transferred
energy in the experimental data. The measurement procedures
may be complex, yet they are doable and physical.

Our derivation was restricted to the second-order pertur-
bative dynamics. Let us briefly explain how this physics can
be extended to strong-coupling regimes. Here I describe two
approaches for the development: One can use the polaron
transformation [46] to incorporate the high-order system-bath
interaction into the system dynamics. This transformation will
change the generalized correlators of heat baths as well as the
Renyi entropies. Alternatively, one can define the generalize
density matrix R to include the density matrix of M worlds
and extend the dynamical equation for R(t). The solution is a
set of eigensolutions proportional to R(t) ≈ exp(−t). In the
strong-coupling limit there is no stationary solution with zero
; instead, the flow of Renyi entropy is FM = 0, with 0

being the closest eigenvalue to zero. This will help to identify
the entropy flow in the limit of M → 1 and is the subject of
ongoing research.

APPENDIX A: RENYI ENTROPY FLOW

Evaluating Renyi entropies requires the time evolution
of integer powers of the density matrix. Consider a closed
system with total density matrix ρ made of two interacting
systems A and B. The reduced density matrix for system A is
ρA = TrBρ. The Renyi entropy of degree M in the system A is

ln SA
M = ln TrA{(ρA)M}. If the two systems do not interact,

the entropies are conserved, d ln S
A,B
M /dt = 0; however, for

interacting heat baths in thermal equilibria, a steady flow
of entropy is expected from one heat bath to another one.
This is similar to the steady flow of charge in an electronic
junction that connects two leads kept at different chemical
potentials [43]. Defining the Renyi entropy flow of degree
M in system A as FA

M = d ln SA
M/dt , there is a conservation

law for FA+B
M ; however, due to the inherent nonlinearity,

FA
M + FB

M 	= 0, and the equality holds only approximately,
subject to volume-dependent terms [27].

For the evaluation of Renyi entropy flow of degree
M in the system A, i.e., d ln SA

M/dt , in the second-order
perturbation we need to compute d(ρA)M/dt . Let us drop
the index A from the equation for now. Considering the
initial density matrix is ρ0, it can be found later to take
the following value, ρ(t) = ρ0 + ρ(1)(t) + O(2), with ρ(1) =
ρ

(1)
I + ρ

(1)
II and ρ

(1)
I (t) = −i

∫ t

0 dt ′Ĥ (t ′)ρ̂(t) and ρ
(2)
II (t) =

i
∫ t

0 dt ′ρ̂(t)Ĥ (t ′). The superscripts of the parentheses indicate
perturbation order. Similarly, dρ/dt = ρ̇(1) + ρ̇(2) + O(3),
with ρ̇(1) = ρ̇

(1)
1 + ρ̇

(1)
2 and ρ̇

(1)
1 (t) = −iĤ (t)ρ̂ and ρ̇

(1)
2 (t) =

iρ̂Ĥ (t) and ρ̇(2) = i[ρ̇(1),H ]. The flow of nonlinear measure
can be expanded as follows: d(ρ)M/dt = (dρ/dt)(ρ)M−1 +
ρ(dρ/dt)(ρ)M−2 + · · · + (ρ)M−1(dρ/dt). Using these defini-
tions we can evaluate dρM/dt in the second order as follows:

dρM

dt
= {

ρ̇(2)ρM−1
0 + ρ0ρ̇

(2)ρM−2
0 + · · · + ρM−1

0 ρ̇(2)
}

+ {
ρ̇(1)[ρ(1)ρM−2

0 + ρ0ρ
(1)ρM−3

0 + · · · ]
+ ρ0ρ̇

(1)
[
ρ(1)ρM−3

0 ρ0ρ
(1)ρM−4

0 + · · · ]
+ · · · + ρM−2

0 ρ̇(1)ρ(1)
}
, (A1)

where the first line of Eq. (A1) represents photon exchanges
taking place only within one world, and the remaining terms
represent the exchange of photons between different copies of
world density matrices.

We implement the extended Keldysh formalism for the
analysis of Renyi entropy flow. Detailed analysis with all
diagrams can be seen in Appendix B of [29]. Rigorous analysis
shows that the Renyi entropy flow is

FM =
∑
yy ′

Mn̄(Mωyy ′ )

n̄((M − 1)ωyy ′ )n̄(ωyy ′ )ωyy ′

{
Qi

yy ′ − Qc
yy ′

}

Qi
yy ′ =

∑
x ′

ρx ′yχ̃y ′x ′,yy ′ (ωyy ′ )(n̄(ωyy ′ ) + 1)ωyy ′

Qc
yy ′ =

∑
xx ′

ρx ′xρy ′yχ̃xx ′,yy ′ (ωyy ′ )ωyy ′ , (A2)

with h̄ωyy ′ ≡ Ey − Ey ′ .
In Eq. (A2) there are two types of flows contributing: (i) the

incoherent flow Qi for quantum leaps on energy levels, and
(ii) the coherent flow Qc for the exchange of energy through
the quantum coherence. Qi does, in fact, represent the first line
of Eq. (A1) and Qc corresponds to the rest of them.
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APPENDIX B: FULL COUNTING STATISTICS OF
ENERGY DISSIPATIONS

This correspondence makes evaluation of the Renyi en-
tropy flows possible using full counting statistics of energy
exchanges [28]. Previously, similar correspondence was found
in charge transport in Refs. [47] and [48].

Let us briefly recall what is the full counting statistics
(FCS) of energy transfers between a small quantum system
weakly coupled to a classical environment kept at temperature
T [49]. It concentrates on the probability P (T )(Etr ,T ) to
have energy Etr transferred between two systems during time
interval T [49]. The superscript (T ) refers to the temperature
of environment. In the long T limit all statistical cumulants
of the energy transfers can be determined from the gener-
ating function G(T )(ξ ) = ∫ T

0 dEtrP (T )(Etr ,T ) exp(iξEtr ) ≈
exp[−T f (T )(ξ )]. The parameter ξ is a characteristic param-
eter, and cumulants are given by expansion of f (ξ ) in ξ

at ξ = 0.
The correspondence between Renyi entropy and FCS of

energy transfers can be further simplified to evaluate directly
the flow of von Neumann entropy between a small quantum
system weakly coupled to a classical environment kept at

temperature T using the following formula:

dS

dt
= lim

M→1
M

{
f

(
T
M

)(
1 − M

iT

)
− f

(
T
M

)(
1 − M

iT

)}
.

(B1)

In the right side of Eq. (B1) there are two generating
functions that should be evaluated at rescaled temperature
T/M and the nonzero parameter ξ = (1 − M)/iT ; f is
the generating function by means of interaction between
the quantum system and the environment, where f̄ is an
auxiliary generating function statistics that carries only the
coherent exchange of energy between the environment and
the quantum system. To understand f̄ let us consider that
the interaction Hamiltonian is Ĥ = X̂Ŷ , with X̂ acting on the
classical environment and Ŷ on the quantum system. This FCS
generating function is associated to a Hamiltonian in which
averaging takes place over the system part, i.e., Ŷ → 〈Ŷ 〉. This
will be the Hamiltonian of the equilibrium system subject to
time-dependent external forces. In Ref. [30] we discussed the
physical realization of the scheme. We showed that Eq. (B1)
can provides the textbook second law of thermodynamics in
the absence of quantum coherence.
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