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Edge states at an intersection of edges of a topological material
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We study an exotic state which is localized only at an intersection of edges of a topological material. This
“edge-of-edge” state is shown to exist generically. We construct explicitly generic edge-of-edge states in five-
dimensional Weyl semimetals and their dimensional reductions, such as four-dimensional topological insulators
of class A and three-dimensional chiral topological insulators of class AIII. The existence of the edge-of-edge
state is due to a topological charge of the edge states. The notion of the Berry connection is generalized to include
the space of all possible boundary conditions, where Chern-Simons forms are shown to be nontrivial.
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I. INTRODUCTION AND SUMMARY

Due to the bulk-edge correspondence [1–3] for topological
phases [4,5], edge states are used as a characterization of the
nontrivial topology of materials. The theoretical idea has led to
a tremendous success in condensed matter physics, and various
topological materials were discovered experimentally.

In this paper we introduce the notion of “edge-of-edge
states” which is a generalization of the edge states, and study
their existence and implications. In general, materials are
surrounded by many boundaries, and therefore, the boundaries
intersect with each other. If we call the original single boundary
as a codimension-1 surface, then the intersection of two distinct
boundaries define a codimension-2 surface. The question
is—are there any localized states on the intersection? The
answer we find is yes, and we call them edge-of-edge states.

The intuition comes from an analogy to D-branes in string
theory. K-theories have been used for the classification of the
D-branes [6], while they were also used for the classification
of the topological phases [7,8]. In fact, a D-brane on which
a gapless fermion lives can be regarded as a surface defect
in a higher-dimensional unstable D-brane. Now, in string
theory, when two D-branes intersect, there generically appear
localized modes at the intersection, when a certain set of
conditions for the species of the intersecting D-branes is met.
Therefore, naturally, we may expect such a localized state—
the edge-of-edge state—for topological materials. Clarifying
the existence condition of such a state provides a new
characterization of topological materials.

Of course, when the two boundaries are of the same type,
there should not exist such an edge-of-edge state, because
the intersection can always be smoothed out. Therefore the
two boundaries have to have different boundary conditions.
Various boundary conditions can be introduced in topological
materials experimentally, but here we concentrate on all
possible theoretical boundary conditions at the continuum
limit.

*koji@phys.sci.osaka-u.ac.jp
†wuxi@het.phys.sci.osaka-u.ac.jp
‡taro.kimura@keio.jp

For the three-dimensional (3D) Weyl semimetals, which
were recently observed in experiments [9–11] through the-
oretical predictions [12–18], generic boundary conditions in
the continuum theory were classified in our previous work [19]
(see [20,21] for generic boundary conditions for topological
insulators). The 3D Weyl semimetal has a simple Hamiltonian
of 2×2, but it will turn out that the structure is not large enough
to support the existence of the edge-of-edge state.

Recently, in the context of lattice gauge theories, intersec-
tion of two distinct boundaries in (1+5)-dimensional space-
time was studied [22,23] for realizing a regularization of chiral
gauge field theories. The Dirac operator in that dimension is
an 8×8 matrix, which was shown to accommodate localized
chiral mode at the intersection, under a particular set of the
boundary conditions at the boundaries. Encouraged by this
example, we are led to the present study which clarifies the
least spatial dimensions and the size of the Hamiltonian to
accommodate any possible edge-of-edge state.

In this paper we consider a minimal case which allows
the edge-of-edge states: Hamiltonians of the size of 4×4.
The simplest realization is a five-dimensional (5D) Weyl
fermion [24] and its dimensional reductions, in particular, a
3D chiral topological insulator of class AIII. The Hamiltonian
of the 5D Weyl semimetal is given by a generalization of that
of the 3D Weyl semimetals, H = ∑5

M=1 �MpM , where �M

is the 4×4 Gamma matrix. Its dimensional reduction with a
mass p4 = m and p5 = 0 leads to the 3D chiral topological
insulator of class AIII. (Two more concrete examples in a
3D topological insulator were studied in [25,26], in which
the boundary parameters appear as potential barriers.) For this
size of the Hamiltonians, typically there could appear two edge
states for a single boundary. And at the intersection of the two
boundaries, the edge-of-edge state can appear.

To derive the edge-of-edge states for the 3D chiral topolog-
ical insulators of class AIII, it is instructive to work first for
the 5D Weyl semimetals. So, in this paper first we work in the
5D case, and then make a dimensional reduction to the three
dimensions.

Our findings for the 3D chiral topological insulators of class
AIII (and for the continuum 5D Weyl semimetals) in this paper
are summarized below.
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FIG. 1. A schematic picture of the edge-of-edge state and the dimensional reduction from 5D Weyl semimetal to 3D chiral topological
insulator (class AIII). There are two boundaries which intersect each other.

(1) Generic boundary conditions are dictated by a U (2)
parameter.

(2) The edge-of-edge states can exist generically. (See
Fig. 1.)

(3) Existence condition of the edge-of-edge state is de-
rived.

(4) The edge-of-edge states is gapless, while the edge states
could be gapped.

(5) The edge states have topological charges characterized
by Chen-Simons integrals.

The organization of this paper is as follows. In Sec. II
we review the generic boundary conditions of the 3D Weyl
semimetals, following [19]. From Sec. III we study the 4×4
Hamiltonians: the simplest 5D Weyl semimetal is used for
the analyses to be transparent. In Sec. III we obtain generic
boundary conditions of the 5D Weyl semimetal and edge
states with their dispersions. In Sec. IV we discover the
edge-of-edge states and obtain the existence condition and the
generic dispersion relation of them. We study the mechanism
of the edge of edge states. In Sec. V we study the dimensional
reduction to the 3D chiral topological insulator of class AIII,
and see that all our arguments about the edge-of-edge states
apply similarly. In Sec. VI we analyze the topological charges
of the edge states. The final section is for various discussions,
and the Appendixes for detailed calculations.

II. REVIEW: BOUNDARY CONDITION IN 3D

Let us briefly summarize generic boundary conditions of
3D Weyl semimetals in the continuum limit, following our
previous paper [19]. It guides us to find generic boundary
conditions of 5D Weyl semimetals in the next section.

The 3D Weyl semimetal Hamiltonian near the tip of the
Weyl cone is

H = piσi, (1)

and the Hamiltonian eigenequation is

piσiψ = εψ. (2)

Our metric convention is chosen as ημν = diag(+, − , − ,

−)μν . σμ = (12,σ1,σ2,σ3).
The total action is

S =
∫

x3�0
d4x

i

2
ψ†σμ(

−→
∂ μ − ←−

∂ μ)ψ + 1

2

∫
x3=0

d3x ψ†Nψ.

(3)

The first term is the Weyl Lagrangian. The second integral is
with a Hermitian matrix N . The boundary condition follows

from this Lagrangian as

(M + 12)ψ |x3=0 = 0, (4)

with N = iσ3M .
The Hermiticity N † = N and the vanishing determinant

condition det(M + 1) = 0 leads to a generic solution

M = A1σ1 + A2σ2 + iB3σ3, (5)

with A2
1 + A2

2 − B2
3 = 1. (6)

We can choose

A1 = cos θ cosh χ,

A2 = sin θ cosh χ, (7)

B3 = sinh χ,

for parametrizing the matrix. Defining cos θ ′ = sech χ and
sin θ ′ = tanh χ and changing variables:

θ ′ = θ+ + θ−,

θ = θ+ − θ−,

the boundary condition becomes(
eiθ ′

e−iθ

eiθ e−iθ ′

)
ψ

∣∣∣∣
x3=0

= 0. (8)

Noting a relation(
eiθ ′

e−iθ

eiθ e−iθ ′

)
=

(
eiθ ′

eiθ

)
(1 e−2iθ+ ), (9)

the boundary condition is recast to the following simple form:

(1 e−2iθ+ )ψ |x3=0 = 0. (10)

The dispersion relation of the edge mode is

ε = −p1 cos 2θ+ − p2 sin 2θ+. (11)

And the general edge mode wave function is

ψ(x3) = √
αexp(−αx3)

(
e−2iθ+

−1

)
, (12)

α = p1 sin 2θ+ − p2 cos 2θ+. (13)

The edge mode exists only in a limited region of the momentum
space α(p) > 0.

So, in summary, the generic boundary condition (10) is
dictated by a single real U (1) parameter θ+ ∈ S1. In the
following, we will find that the 5D generalization is dictated
by a U (2) parameter.
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III. 5D WEYL SEMIMETALS

A. Hamiltonian, Lagrangian, and surface term

The Weyl fermion in 1+5 space-time dimensions has the
Hamiltonian

H =
5∑

M=1

�MpM (14)

as in the same manner as the standard Weyl semimetal
Hamiltonian H = p1σ1 + p2σ2 + p3σ3 in 1+3 space-time
dimensions. Here �M (M = 1, . . . ,5) is the 4×4 Gamma
matrix satisfying the five-dimensional Euclidean Clifford
algebra

{�M,�N } = 2δMN (M,N = 1,2,3,4,5). (15)

Upon a dimensional reduction to 1+4 dimensions by
replacing p5 by a constant m, the system reduces to the class A
topological insulator in four dimensions with the Hamiltonian

H = pi�
i + m�5. (16)

To derive consistent boundary conditions, we go to a
Lagrangian formulation. The bulk Lagrangian is written in
the same manner as the (1+3)-dimensional case. Now with
the gamma matrices in 4+1 dimensions,

L = −ψ†iγ 0(γ μ∂μ − i∂5)ψ, (17)

with ψ̄ ≡ ψ†iγ 0. Here μ = 0,1,2,3,4 and the 4×4 gamma
matrices are a representation of the Clifford algebra {γ μ,γ ν} =
2ημν (μ,ν = 0,1,2,3,4). Note that the Gamma matrices γ μ are
a part of 8×8 Gamma matrices in 1+5 dimensions. The Dirac
equation is

(γ μ∂μ − i∂5)ψ = 0, (18)

which can be rewritten as

[i∂0 − iγ 0(γ i∂i − i∂5)]ψ = 0, (19)

where i = 1,2,3,4. So the Hamiltonian is i∂0 = H,

H ≡ −γ 0γ ipi + iγ 0p5. (20)

We have used pi = −i∂i and p5 = −i∂5. If we use a redefined
Gamma matrices

�5 ≡ iγ 0, �i ≡ −γ 0γ i, (21)

then they satisfy (15). And the Hamiltonian is conveniently
written as (14).

The boundary condition is imposed at x5 = 0,

Aψ = 0. (22)

Again defining A = M + 14, we have

Mψ = −ψ. (23)

One of the eigenvalues of A is vanishing. The Hamiltonian
self-conjugacy condition leads to

M†�5 + �5M = 0. (24)

For the Lagrangian formalism, we have an action with a
surface term

S = −
∫

d6x ψ̄

(
1

2
(γ μ−→

∂ μ−i
−→
∂ 5) − 1

2
(γ μ←−

∂ μ−i
←−
∂ 5)

)
ψ

+ 1

2

∫
x5=0

d5x ψ†Nψ. (25)

Here N is a Hermitian 4×4 matrix. Following the same logic
as in the (1+3)-dimensional case, we arrive at the boundary
condition derived from this action as

(14 − γ 0N )ψ(x5 = 0) = 0. (26)

With a definition N = γ 0M , we can reproduce the boundary
condition (23). By the Hermiticity of N , the matrix M needs
to satisfy (24).

B. Generic boundary conditions

The boundary condition (26) is

(14 + i�5N )ψ |x5=0 = 0. (27)

We want to know what is the generic solution ψ of this
equation. See also Appendix A for the boundary condition
imposed to other boundaries. Suppose there are two solutions,
ψ1 and ψ2. Then we can show for any ψ1 and ψ2,

ψ
†
1�

5ψ2 = 0. (28)

The reason is simple: using (27), we obtain

ψ
†
1�

5ψ2 = ψ
†
1(−iN )ψ2 = (iNψ1)†ψ2 = (−�5ψ1)†ψ2

= −ψ
†
1�

5ψ2, (29)

which means (28). In this paper we use the following
representation of the Clifford algebra:

�i =
(

0 −iσi

iσi 0

)
, (30a)

�4 =
(

0 12

12 0

)
, �5 =

(
12 0
0 −12

)
. (30b)

Then, decomposing ψ1 = (ξ1,η1)T and ψ2 = (ξ2,η2)T , (28)
is equivalent to

ξ
†
1ξ2 − η

†
1η2 = 0. (31)

This equation is satisfied only if

η1 = U5ξ1, η2 = U5ξ2, (32)

for an arbitrary U (2) matrix U5. So, we conclude that the
consistent generic solution of the boundary condition (27) is

ψ ∝
(
12

U5

)
ξ, (33)

for a normalized two-spinor ξ . We remark that it can be
reparametrized using U (2) rotation, ξ → V ξ with V ∈ U (2).
In other words, the boundary condition is rephrased to

(12 −U
†
5 )ψ |x5=0 = 0. (34)

This condition is analogous to the (1+3)-dimensional
case (10). We notice that the previous e2iθ+ is replaced by
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the U (2) unitary matrix −U
†
5 . We have four real parameters to

parametrize the generic boundary condition specified by U5.
The condition (34) can be written in an alternative manner.

Notice that it is equivalent to(
12 −U

†
5

U5 −12

)
ψ

∣∣∣∣
x5=0

= 0. (35)

In view of the original boundary condition (27), we find the
relation between the Lagrangian boundary term specified by
the Hermitian matrix N and the boundary condition specified
by the U (2) matrix U5 as

N = N5 ≡
(

0 iU
†
5−iU5 0

)
. (36)

This is just one way to relate (34) and (27). There may be other
expressions for N which reproduces (34), as in the case of the
3D Weyl semimetals.

C. Edge state

The bulk Hamiltonian eigenequation for ψ = (ξ,η)T is

(−i∂5 − ε)ξ + (−iσipi + p4)η = 0, (37)

(iσipi + p4)ξ − (−i∂5 + ε)η = 0, (38)

with i = 1,2,3. The edge state solution to the bulk Hamiltonian
eigenequation is

ψ =
(

ξ (pi,p4)
η(pi,p4)

)
exp[−α5x

5], α5 ≡
√

−ε2 + p2
i + p2

4.

(39)

Let us substitute the boundary condition (33). Then Eqs. (37)
and (38) are written as

[(iα5 − ε) + (−iσipi + p4)U5]ξ = 0 , (40)

[−(iα5 + ε)U5 + (iσipi + p4)]ξ = 0 . (41)

Noting that the unitary matrix U5 determining the boundary
condition can be decomposed as

U5 = eiθ5U ′
5, (42)

where U ′
5 is an SU(2) matrix, and this acts as a rotation in the

four-dimensional momentum space,

(−iσipi + p4)U ′
5 = −iσip̃i + p̃4, (43)

with

p2
i + p2

4 = p̃2
i + p̃2

4. (44)

Then Eqs. (40) and (41) are

[e−iθ5 (iα5 − ε) + p̃4 − iσip̃i]ξ = 0, (45)

[−eiθ5 (iα5 + ε) + p̃4 + iσip̃i]ξ = 0. (46)

Equivalently,

[α5 sin θ5 − ε cos θ5 + p̃4]ξ = 0, (47)

[α5 cos θ5 + ε sin θ5 − σip̃i]ξ = 0. (48)

This has a solution only when

α5 sin θ5 − ε cos θ5 + p̃4 = 0, (49)

det[α5 cos θ5 + ε sin θ5 − σip̃i] = 0. (50)

The second equation implies

α5 cos θ5 + ε sin θ5 = ±
√

p̃2
i . (51)

So we finally obtain the dispersion relation of the edge state,

ε = p̃4 cos θ5 ±
√

p̃2
i sin θ5, (52)

α5 = −p̃4 sin θ5 ±
√

p̃2
i cos θ5. (53)

The normalizability condition is α5 > 0 which constrains the
momentum region for the existence of the edge state.

One may notice the similarity to the (1+3)-dimensional
case of the standard Weyl semimetals, (11) and (13). In
fact, identifying 2θ+ = θ5 + π and putting p2 = p3 = 0 with
U ′

5 = 12 means a consistent reduction from 1+5 dimensions
to 1+3 dimensions, reproducing all the results of the three-
dimensional Weyl semimetals.

IV. EDGE-OF-EDGE STATES

A. Introducing another edge

To realize an intersection of the edges, we need a set
of edges. In addition to the generic edge considered in the
previous section at x5 = 0, let us introduce another one
at x4 = 0. The construction of the generic edge state at
x4 = 0 is completely parallel to that of the previous section.
Nevertheless, it would be instructive to construct the generic
edge state explicitly, for the later purpose of finding the
edge-of-edge state.

We look for a generic solution to the equation at the
boundary

ψ
†
1�

4ψ2|x4=0 = 0, (54)

which is analogous to (28). Its component expression is

ξ
†
1η2 + η

†
1ξ2 = 0. (55)

A generic solution of this equation is obtained by a rotation in
the 4–5 space from the previous one at x5 = 0,

ψ =
(
12 − U4

12 + U4

)
χ (pi,p5) exp[−α4x

4], (56)

with an arbitrary two-spinor η and a U (2) matrix U4. This
U4 parametrizes the boundary condition at x4 = 0. See
Appendix A for more details on the edge state for xa = 0 (a =
1,2,3,4).

The boundary condition at x4 = 0 can be written also as(
1
2 (U †

4 − U4) 12 − 1
2 (U †

4 + U4)

12 + 1
2 (U †

4 + U4) − 1
2 (U †

4 − U4)

)
ψ

∣∣∣∣
x4=0

= 0. (57)

This is interpreted as the contribution from the boundary term
in the Lagrangian,

(1 + i�4N4)ψ
∣∣
x4=0 = 0. (58)
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So the boundary term consists of the following Hermitian
matrix N4,

N4 = −i

2

(
U

†
4 − U4 −U

†
4 − U4

U
†
4 + U4 −U

†
4 + U4

)
. (59)

B. Generic edge-of-edge states

Let us consider both the boundary conditions at the same
time. The expected wave function should be of the form (56)
but at the same time satisfying (33). Therefore we demand,
with a two-spinor χ (which needs not to be normalized for our
purpose here),

ψ =
(
12 − U4

12 + U4

)
χ (pi) exp[−α4x

4 − α5x
5], (60)

with

[U5(12 − U4) − (12 + U4)]χ = 0. (61)

The latter is the compatibility condition (34). For that to have
a nontrivial solution, we need

det[12 + U4 − U5 + U5U4] = 0. (62)

This is a necessary condition for the existence of the edge-
of-edge state. We remark that the condition (61) is covariant
under the rotation

(U4,U5,χ ) → (WU4W
†,WU5W

†,Wχ ), (63)

with W ∈ U (2). So there is an equivalence class of the edge-of-
edge states related by this W . Later we will see that the edge-
of-edge state is parametrized by a five-dimensional manifold
which is a fibration of S1×S1.

The Hamiltonian eigenequation leads to

[(iα4 − ε) + (−iσipi − iα5)U4]χ = 0, (64)

[−(iα4 + ε)U4 + (iσipi − iα5)]χ = 0. (65)

Together with

ε2 = p2
i − α2

4 − α2
5 (66)

we have three equations with three unknowns (ε,α4,α5) so they
are solved and determine the edge-of-edge state dispersion, as
follows.

We first solve the existence condition (62) for the boundary
conditions. We define

U5 = eiθ5 (a012 + iaiσ
i) = A012 + Aiσ

i, (67a)

U4 = eiθ4 (b012 + ibiσ
i) = B012 + Biσ

i. (67b)

The unitarity of U4 and U5 means

a2
0 + a2

i = b2
0 + b2

i = 1. (67c)

After some computations, we obtain a consistency relation
for the dispersion ε(p) of the generic edge-of-edge state to
satisfy

Aε2 − 2Bε + C = 0, (68)

where the coefficients are defined as

A ≡ 1 − cos2 θ4 cos2 θ5, (69a)

B ≡ aipi cos θ5 sin2 θ4 + bipi cos θ4 sin2 θ5, (69b)

C ≡ (aipi)
2 sin2 θ4 + (bipi)

2 sin2 θ5 − p2
i sin2 θ5 sin2 θ4.

(69c)

See Appendix B for details of the derivation.
If we want to obtain gapless edge-of-edge states, we need

to require C = 0, which is

(aipi)
2 sin2 θ4 + (bipi)

2 sin2 θ5 − p2
i sin2 θ5 sin2 θ4 = 0.

It is obvious that this is gapless for the 5D Weyl semimetals,
since this is solved by pi = 0. On the other hand, for the
dimensionally reduced case, the gapless condition for the
edge-of-edge states cannot always be met. We will discuss
the dimensional reduction from 5D Weyl semimetal to 3D
chiral topological insulator (class AIII) in Sec. V.

In deriving (68), we need a relation (see Appendix B)

a0 = b0 = 0, a2
i = b2

i = 1,

aibi = − cos θ4 cos θ5. (70)

This defines the parameter space of the edge-of-edge state. It
is a five-dimensional manifold which is a fibration over S1×S1

of (θ4,θ5).

C. Mechanism of edge-of-edge localization

To clarify how the edge-of-edge states are possible, we
present a typical example. Let us take, as an example,

U4 = σ3, U5 = σ2, (71)

which satisfies (62). Then (61) is solved by

χ =
(

1
i

)
. (72)

Substituting these to (64) and (65), we obtain

[(iα4 − ε) + (−iσipi − iα5)σ3]

(
1
i

)
= 0, (73)

[−(iα4 + ε)σ3 + (iσipi − iα5)]

(
1
i

)
= 0. (74)

This is explicitly solved as

ε = −p1, α4 = p3, α5 = p2. (75)

So we obtain an edge-of-edge state with a linear (chiral)
dispersion. The edge-of-edge state exists for p3 > 0 and
p2 > 0.

Let us consider the meaning of this edge-of-edge state.
Note that this example with the boundary unitary matrices (71)
corresponds to

N4 = −�3, N5 = −�2. (76)

In other words, the boundary conditions are

(�4 − i�3)ψ |x4=0 = 0, (�5 − i�2)ψ |x5=0 = 0. (77)

In view of the total Hamiltonian is (14), these equations
mean that the term p4�

4 could be canceled by p3�
3, and
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the term p5�
5 can be canceled by p2�

2. In fact, the boundary
condition (77) can be trivially consistent with the structure of
the Hamiltonian when

ip4 + p3 = 0, ip5 + p2 = 0. (78)

Then the remaining Hamiltonian is simply H = p1�
1, and its

dispersion is E = p1. And the condition (78) is nothing but the
relation about α4 and α5, Eq. (75). We remark that the relation
between pi and αi corresponds to that between Fourier and
Laplace transforms with the kernels eipx and e−αx .

Therefore, the mechanism of the edge-of-edge localization
is quite simple: In the Hamiltonian (14), the gamma matrices
are paired to be annihilated. (In the case above, for the
boundary x5 = 0, �5 is paired with �2 and annihilated in
the Hamiltonian.) This annihilation gives a localized wave
function at the edge. When we have two pairs, the localization
is independent and we obtain an edge-of-edge state.

V. REDUCTION TO 3D CHIRAL TOPOLOGICAL
INSULATOR (CLASS AIII)

In this section we discuss the dimensionally reduced model,
which is a three-dimensional chiral topological insulator (class
AIII) towards an experimental realization of the edge-of-edge
state. See, for example, [27] for a setup of the class AIII system
using ultracold atoms.

A. Edge-of-edge state at x2,3 = 0

In order to study the edge-of-edge state in the 3D model,
let us first study the edge states of the 5D Weyl fermion (14) at
the boundaries x2 = 0 and x3 = 0. We impose the boundary
condition

ψ†�aψ |xa=0 = 0 (a = 2,3). (79)

The edge state and the corresponding spectrum for this
boundary condition is discussed in Appendix A in detail. The
edge-of-edge state localized at the corner x2 = x3 = 0 is

ψ = e−α2x
2−α3x

3

(
12 + iσ3U3

iσ3(12 − iσ3U3)

)
ξ, (80)

with the compatibility condition

det(12 + iU
†
2σ2 + iσ3U3 − U

†
2 (iσ1)U3

+ iσ1 − iσ2U3 − iU
†
2σ3 − U

†
2U3) = 0, (81)

since the boundary conditions (79) are rephrased as (A3).
A solution to the compatibility condition (81) is

U2 = σ2, U3 = i12, (82)

which leads to(
p̃

(a)
1 ,p̃

(a)
2 ,p̃

(a)
3 ,p̃

(a)
4

) =
{

(−p3,p4,p1,p5) (a = 2),
(p1,p2,−p5,p4) (a = 3), (83)

with θ2 = θ3 = π/2. Thus the edge state spectrum is given by

ε2(p) = ±
√

p2
1 + p2

3 + p2
4, (84a)

ε3(p) = ±
√

p2
1 + p2

2 + p2
5, (84b)

and the corresponding edge-of-edge state spectrum is gapless
and also chiral,

ε = −p1. (85)

B. 3D class AIII topological insulator

We consider the Hamiltonian for the class AIII topological
insulator

H( 	p) = 	p · 	� + m�4, (86)

which is obtained from the 5D Weyl Hamiltonian (14) through
the dimensional reduction (p4,p5) → (m,0). We remark that
the � matrices (30) are expressed as

�i = τ2 ⊗ σi, �4 = τ1 ⊗ 12, �5 = τ3 ⊗ 12, (87)

where the Pauli matrices σ ’s and τ ’s act on the spin (↑ ,↓) and
sublattice (A,B) degrees of freedom. Since the Hamiltonian
anticommutes with �5 as

{H( 	p),�5} = 0, (88)

it has the chiral (sublattice) symmetry.
We can apply the same boundary analysis to the dimension-

ally reduced model. Given a two-spinor denoted by |ξ 〉, and
choosing the boundary condition (82), we obtain

ψ(x2 = 0) ∝
(
12

σ2

)
|ξ 〉, ψ(x3 = 0) ∝

(
12 − σ3

i(12 + σ3)

)
|ξ 〉.

(89)

Since the operator 12 ± σ3 is a projector onto ↑ and ↓ spin
state, we obtain the edge state ψ(x3 = 0) by applying ↓-spin
projection to A sites, and ↑-spin projection to B sites at the
x3 = 0 plane. On the other hand, another edge state ψ(x2 = 0)
is obtained by applying the spin rotation generated by σ2 only
to B site (nothing for A site) at the x2 = 0 plane. The spectra of
these boundary conditions are immediately obtained from (84)
with the reduction

ε2(p) = ±
√

p2
1 + p2

3 + m2, ε3(p) = ±
√

p2
1 + p2

2, (90)

and the gapless edge-of-edge spectrum (85). We now have the
edge-of-edge state, but it seems difficult to detect its spectrum
at this moment, because the spectrum ε3(p) is also gapless in
addition to the edge-of-edge state. In order to distinguish the
edge-of-edge state from the edge states, we need to consider
the situation such that only the edge-of-edge state is gapless,
while the other edge states are gapped.

Before studying such a situation, let us discuss the reason
why either of the edge spectra (90) is gapless, while the other
is gapped. For the class AIII topological insulator, the gapless
edge state is protected by the chiral symmetry (88), which
is indeed the sublattice symmetry. However, if the boundary
condition is not compatible with the symmetry which protects
the topological property, the edge state cannot be gapless any
longer. This is essentially similar to the (class AII) topological
insulator/ferromagnet junction [28]. The class AII topological
insulator is protected by the time-reversal symmetry, but this
symmetry can be weakly broken at the surface due to the
junction with the ferromagnet. The role of ferromagnet can
be replaced by the chiral superconductor, which breaks the
time-reversal symmetry [29].
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From this point of view, the edge state at x2 = 0 shown
in (89) breaks the sublattice symmetry because the σ2 rotation
acts only on the B site, while the spin-projection applied to the
edge state at x3 = 0 could be consistent with the sublattice
symmetry. Thus, to gap out the spectrum ε3(p), we need
to explicitly break the chiral (sublattice) symmetry for the
edge state at x3 = 0. For this purpose, we apply a rotated
configuration

U2 = σ2 cos φ + i12 sin φ, U3 = i12 cos φ − σ3 sin φ, (91)

which satisfies the compatibility condition (81). Then we
obtain the gapped edge spectra

ε2(p) = ±
√

p2
1 + p2

3 + (m cos φ)2, (92)

ε3(p) = ±
√

p2
1 + p2

2 + (m sin φ)2, (93)

with the edge-of-edge state (85). Now only the edge-of-edge
state is gapless, while the two edge states are gapped. This
could be a suitable situation for experimental detection of the
edge-of-edge state.

VI. TOPOLOGICAL CHARGE OF EDGE STATES

We show in Sec. VI A that the edge states of the 5D Weyl
semimetal have a topological charge identical to that of the
bulks states of the 3D Weyl semimetals. This makes sure of
the existence of the edge-of-edge state, since the edge-of-
edge is seen as a boundary of the edge surface which has a
topological charge. Applying the bulk-edge correspondence to
the boundary (which is now interpreted as a bulk) provides the
existence of the edge-of-edge state.

In Sec. VI B we point out that the Berry connection
associated with the edge state can be generalized to the space of
the boundary conditions, not only the space of the momentum.
The Berry connection of the boundary condition space is
shown to have a nontrivial Chern-Simons integral. The content
of the subsection is not directly related to the edge-of-edge
states in the previous section.

A. Topological charge in the momentum space

In [30] a certain edge state appearing in a class A
topological insulator in 1+4 dimensions was shown to possess
a topological charge. As argued earlier, we note here that the
5D Weyl semimetal Hamiltonian reduces to a 4D class A
topological insulator by a trivial dimensional reduction. So it
is natural that our generic edge state explored in the previous
section has the same topological charge that was argued in [30].

In fact, it is easy to see the topological charge of the edge
state. The topological charge is defined by a Berry connection
of the wave function of the edge state. Recall that the edge state
wave function is subject to Eqs. (47) and (48). In particular the
second equation (48) is recast to the form

σip̃iξ = [α5 cos θ5 + ε sin θ5]ξ. (94)

This is nothing but the Hamiltonian eigenequation for the 3D
Weyl semimetal, Eq. (2). Therefore, the Berry connection of
the edge state has a topological charge. It is identical to the

chirality of the corresponding Weyl semimetal, in the rotated
momentum frame spanned by p̃1,2,3.

The topological charge in the momentum space for the
edge state immediately means that there should appear an
edge-of-edge state once a boundary of the edge is introduced
properly.

B. Topological charge in the boundary condition space

It was shown in our previous paper [19] that the Berry
connection of the edge state of the 3D Weyl semimetals has
a nontrivial topological structure. Since the parameters of the
edge states consist not only of the momenta but also of the
parameter of the boundary condition, the Berry connection
associated with the boundary condition space can be defined
as well. For the edge state (12) with (13), its Berry connection
is calculated as

Aθ+ = 1, Ap1 = Ap2 = 0. (95)

Therefore the edge state has a nontrivial winding number along
the space θ+ which parametrizes the boundary condition,∫ π

0
dθ+Aθ+ = π. (96)

This is a Wilson line, or in other words, a one-dimensional
Chern-Simons action.

Let us see what will happen to our current case. The edge
state wave function is now given as

ψ = √
α5 e−α5x

5

(
12

eiθ5U ′
5

)
ξ, (97)

with the two-spinor satisfying (47) and (48), which means

[±√
p̃2

i − σip̃i

]
ξ = 0, (98)

where p̃i’s are defined by (43) through U ′
5. There are two edge

states, specified by the ± sign. Explicitly, they are given by

ξ± = 1√
2|p̃|(|p̃| ± p̃3)

(±|p̃| + p̃3

p̃1 + ip̃2

)
. (99)

The depth parameter α5 is given in (53), and the wave function
is normalized as

1 =
∫ ∞

0
dx5 ψ†ψ, (100)

which is equivalent to ξ †ξ = 1. First, noting the relation to the
3D case, we easily find

Aθ5 ≡ i

∫ ∞

0
dx5 ψ† ∂

∂θ5
ψ = −1

2
, (101)

for each solutions corresponding to ξ±. So, again the edge
state has a nontrivial topological structure in the U (1) space
of the boundary conditions spanned by θ5. The Wilson line,
or the one-dimensional Chern-Simons term, is the same as the
three-dimensional case,∫ 2π

0
dθ5Aθ5 = π. (102)
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For example, in the presence of a vortex surrounded by S1,
the Wilson line phase is given by 2π . So, compared with that,
the present value π is a half of a single winding. Therefore
the wave function earns a phase −1 when θ5 is rotated once
around the boundary condition space.

Let us consider the Berry connection for the SU(2) part
U ′

5. The SU(2) space is intertwined with the momentum
space {pi,p4} through (43). However, in the new basis with
{p̃i ,p̃4} they are decoupled with each other. In this new basis
{U ′

5,p̃i ,p̃4}, the Berry connection is calculated more easily.
For the basis of the SU(2) matrix U ′

5, we choose

U ′
5 = x012 + i(xiσi), (103)

with x2
0 + x2

i = 1. This is a three sphere, so a canonical basis
is the spherical coordinate system,

x0 = cos θ, x1 = sin θ cos φ,

x2 = sin θ sin φ cos χ, x3 = sin θ sin φ sin χ, (104)

with 0 � θ � π , 0 � φ � π , and 0 � χ � 2π . Using these
coordinates, we can explicitly calculate the Berry connection
(Aθ,Aφ,Aχ ). The result is

Aa = i

2
ξ
†
±[(U ′

5)†∂aU
′
5]ξ±. (105)

Here the index a runs for the spherical coordinates (θ,φ,χ ).
Although this Berry connection Aa still depends on the SU(2)-
rotated momentum p̃ through ξ±, the topological charge does
not depend in the end, as shown below. The typical topological
charge on three-dimensional space is the Chern-Simons form

1

4π

∫
dθdφdχ εabc(Aa∂bAc) = π

4
. (106)

So we find that the SU(2) part of the boundary condition space
has a nontrivial topological structure.

The value π/4 of the Chern-Simons action in (106) is 1/8
of that for the single winding connection. The single winding
connection of S3 is provided by an asymptotic connection of
a BPST instanton, and is given by

Aa = iU †∂aU, (107)

with U = U ′
5 given by (103). It gives SCS = 2π . Notice that our

Berry connection (105) is essentially 1/8 of this single-charge
gauge connection (107). This is the origin of the fact that our
Chern-Simons action (106) is 1/8 of 2π .

VII. DISCUSSIONS

In this paper we studied the five-dimensional gapless
Weyl fermion with the Hamiltonian (14), so the system
looks nonrealistic. However, a dimensional reduction leads
to a three-dimensional chiral topological insulator of class
AIII [31]. For that case we have found an illuminating example
where the edge states are gapped while the edge-of-edge state
is gapless. The relation between gapped bulk, gapped edge,
and gapless edge-of-edge states is also discussed in [32],
where explicit experimental realization is proposed. These
edge-of-edge states are different from the edge states localized
on the intersection between two 2D bulks with different
topological number in the following sense: in the first case the

topological number of two edge states depend on boundary
conditions, under the change of the boundary conditions, the
topological number may be zero such that on the intersection
of two boundaries edge-of-edge state disappear; while in
the second case the topological number of 2D topological
insulators are fixed in the Hamiltonian.

The table of the classification of the topological phases
has been studied through dimensional reductions [31]. We
here introduced another way to have a dimensional hierarchy:
the intersection of the boundary surfaces. In this paper we
have just studied the two boundaries meet at a right angle for
simplicity, but in general, they need not be. The point is that
when two boundaries with different boundary conditions meet
at a codimension-2 surface, there could exist localized edge-of-
edge states. The topological charge in the boundary condition
space studied in Sec. VI B may characterize the existence
condition, and we leave that question to our future problem.
Furthermore, instead of considering boundary conditions for
the studying of edge states, we may also interpret the surface
term of the Lagrangian as a mass term depending position.
Then our study of boundary conditions may be related to the
topological defects discussed in [33] and this may give the
origin of the existence condition of edge-of-edge states.

It is important to mention the absence of the edge-of-edge
state for the three-dimensional Weyl semimetals. As seen in the
generic boundary conditions of the 3D Weyl semimetals (10),
they are given just by a single parameter θ+, so a consistency
condition (62) for the case of 5D cannot be constructed for 3D.
This follows from the fact that the Hamiltonian of the 3D case is
made of 2×2 sigma matrices, while that of the 5D case is made
of 4×4 Dirac matrices. So, in order to have the edge-of-edge
state, we needed to enhance the size of the Dirac operator by
2; the edge-of-edge state can exist when the Hamiltonian is
given by 4×4 matrix, basically the Dirac matrices in four or
five dimensions. From this argument, it is obvious that our
argument could be generalized to (2n + 1)-dimensional Weyl
semimetals (n > 2), with a Hamiltonian of 2n×2n gamma
matrices. For that case, further possible localization, such
as an edge-of-edge-of-edge, is possible. In general, we can
introduce n edges with a completely localized state at the
intersection of all the edges. The construction is similar to
the Atiyah-Bott-Shapiro construction [34] of D-branes as
a tachyon condensation of higher dimensional unstable D-
branes [6,35,36]. We have just discussed class A and AIII ex-
amples, but its generalization to the system with time-reversal
and particle-hole symmetries would be also possible [37].
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APPENDIX A: EDGE STATE AT xa = 0 (a �= 5)

In this Appendix we discuss the boundary conditions
imposed to the 5D Weyl fermion (14) at the boundary xa = 0
for a = 1,2,3,4 in detail. The boundary condition which we
consider is

ψ†�aψ
∣∣
xa=0 = 0 (a = 1,2,3,4). (A1)

We use the notation of the � matrices shown in (30). Applying
the same argument discussed in Sec. III, we obtain the
corresponding localized edge state

(a = 1,2,3) : ψ = e−αax
a

(
12 + iσaUa

iσa(12 − iσaUa)

)
ξa,

(a = 4) : ψ = e−α4x
4

(
12 − U4

12 + U4

)
ξ4, (A2)

with Ua ∈ U (2) and a two-spinor ξa . We remark that the
boundary conditions (A1) are rephrased as

(12 + iU †
aσa(12 − iU †

aσa)(−iσa))ψ |xa=0 = 0, (A3)

for a = 1,2,3, and

(12 + U
†
412 − U

†
4 )ψ |x4=0 = 0, (A4)

for a = 4.
Let us then solve the spectrum of the edge state localized

at xa = 0. The eigenequation Hψ = εψ for the Hamilto-
nian (14) with the boundary condition (A1) for a = 1 leads
to

((iα1 − ε) + (ip5σ1 − ip2σ2 − ip3σ3 + p4)U1)ξ1 = 0,

(A5a)

(−(iα1 + ε)U1 + (−ip5σ1 + ip2σ2 + ip3σ3 + p4))ξ1 = 0.

(A5b)

We can similarly discuss the edge state localized at x2 = 0,
x3 = 0, and also for x4 = 0, which lead to the condition
identical to that studied in Sec. III if we replace

(αa,p5) −→ (α5,−pa) (a = 1,2,3,4). (A6)

Thus we obtain

εa(p) = p
(a)
4 cos θa ±

√∣∣p(a)
i

∣∣2
sin θa, (A7)

αa(p) = −p
(a)
4 sin θa ±

√∣∣p(a)
i

∣∣2
cos θa, (A8)

where we decompose Ua = eiθaU ′
a with U ′

a ∈ SU(2), and
define

(
p

(a)
1 ,p

(a)
2 ,p

(a)
3 ,p

(a)
4

) =

⎧⎪⎨
⎪⎩

(−p5,p2,p3,p4) (a = 1),
(p1,−p5,p3,p4) (a = 2),
(p1,p2,−p5,p4) (a = 3),
(p1,p2,p3,−p5) (a = 4),

(A9)

with the SU(2)-rotated momentum for a = 1,2,3,4,(−ip
(a)
i σi + p

(a)
4

)
U ′

a = −ip̃
(a)
i σi + p̃

(a)
4 . (A10)

The normalization condition of the edge state is αa > 0.

APPENDIX B: DERIVATION OF GENERIC
EDGE-OF-EDGE DISPERSION RELATION

We show the derivation of the dispersion relation of generic
edge-of-edge state localized at x4 = x5 = 0. Parametrizing
the boundary condition matrices (67), the compatibility con-
dition (62) becomes

det[12 + B0 − A0 + AμBμ

+ (Bi − Ai + AiB0 + A0Bi + iεijkAjBk)σ i] = 0, (B1)

which can be further written as

12 + 2(B0 − A0) + A2
0 − A2

i + B2
0 − B2

i + 2A0
(
B2

0 − B2
i

)
− 2B0

(
A2

0 − A2
i

) + (
A2

0 − A2
i

)(
B2

0 − B2
i

) + 4AiBi = 0.

(B2)

Using the fact that A2
0 − A2

i = e2iθ5 and B2
0 − B2

i = e2iθ4 , this
is shown to be equivalent to

aibi = − cos θ4 cos θ5 − ia0 sin θ4 + ib0 sin θ5, (B3)

and we arrive at the following two equations:

aibi = − cos θ4 cos θ5, (B4)

a0 sin θ4 = b0 sin θ5. (B5)

This is the generic constraint for the two boundary conditions,
for the existence of the edge-of-edge states.

Next let us solve the energy eigenequations (64) and (65).
Denoting

p5 := iα5 (B6)

and also

(iσjpj + p5)(b0 + ibiσi) = iσi
˜̃pi + ˜̃p5, (B7)

we have

˜̃p5 = b0p5 − bipi, (B8)

˜̃pi = b0pi + bip5 + εijkbjpk. (B9)

Then Eqs. (64) and (65) become

ε cos θ4 − α4 sin θ4 + ˜̃p5 = 0, (B10)

(ε sin θ4 + α4 cos θ4)2 − ˜̃p2
i = 0. (B11)

These two equations are related by ε2 = ˜̃p2
i + ˜̃p2

5 − α2
4, so

instead, we shall use the following equivalent set of equations:

ε cos θ4 − α4 sin θ4 = bipi − b0p5, (B12)

ε2 = p2
i − α2

4 − α2
5, (B13)
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for convenience. Since (B6) means that p5 is pure imaginary,
above two equations are actually three real equations including
b0p5 = 0, which means

b0 = 0 (B14)

and

ε cos θ4 − α4 sin θ4 = bipi. (B15)

Similarly, consider the boundary condition on the x5

direction. Substitute Eq. (33) into the energy eigenequation

and repeat the procedures starting from Eqs. (64) and (65).
Then we obtain

ε cos θ5 − α5 sin θ5 = aipi, (B16)

a0 = 0. (B17)

Combining Eqs. (B15), (B16), and (B13) to eliminate α4 and
α5, we obtain

Aε2 − 2Bε + C = 0, (B18)

which is (68) with the coefficients defined in (69).
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