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Majorana qubits in a topological insulator nanoribbon architecture
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We describe designs for the realization of topological Majorana qubits in terms of proximitized topological
insulator nanoribbons pierced by a uniform axial magnetic field. This platform holds promise for particularly
robust Majorana bound states, with easily manipulable interstate couplings. We propose proof-of-principle
experiments for initializing, manipulating, and reading out Majorana box qubits defined in floating devices
dominated by charging effects. We argue that the platform offers design advantages which make it particularly
suitable for extension to qubit network structures realizing a Majorana surface code.
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I. INTRODUCTION

Majorana fermions are currently becoming a reality as
emergent quasiparticles in topological superconductors (see
Refs. [1–8] for reviews). In topological superconductors, the
pairing of effectively spinless fermions implies that quasiparti-
cles at positive and negative energies are related by Hermitian
conjugation and, as a consequence, Majorana fermions emerge
at zero energy. If the ensuing states are localized in space,
they define Majorana bound states (MBSs). The operators
corresponding to MBSs are self-adjoint, γ = γ †, i.e., particle
and antiparticle are identical, and anticommute with all other
fermion operators. Two Majoranas γ1 and γ2 may be combined
to an ordinary fermion c = (γ1 + iγ2)/2. For spatially well-
separated MBSs, c describes a zero-energy fermion state
and the ground state of the topological superconductor will
be degenerate with respect to even/odd fermion parity. The
extension to 2N separated MBSs gives rise to a 2N -fold-
degenerate ground-state manifold. These ground states are
candidates for applications in quantum information processing
(QIP), where the spatial separation between MBSs provides a
topological protection mechanism against decoherence [9].

Most proposals for implementing Majorana-based QIP rely
on non-Abelian braiding operations in the degenerate ground-
state manifold [9–16]. A recent alternative approach suggests
the engineering of patterns of low-capacitance mesoscopic
superconducting islands harboring MBSs [17–21], where the
ensuing two-dimensional (2D) Majorana surface code [22–25]
defines a topologically ordered Abelian state of matter. The
fundamental design advantage of the surface code is that
only modest fidelities ≈0.99 are required for elementary gate
operations [26]. However, all approaches to Majorana-based
QIP have in common that they rely on the realizability of
robust and easily manipulable MBSs, which in turn define
the hardware qubits of the corresponding architecture. In
particular, one must be able to initialize, manipulate, and
read out the corresponding qubit states in a phase-coherent
environment while facing the challenge of scalability to 2D
extended structures.

Currently, two platforms are intensely studied and hold
promise to meet these criteria. The first builds on spin-orbit-
coupled semiconductor (InAs or InSb) nanowires proximitized
by s-wave superconductors (Al or NbTiN), where evidence for

MBS formation has already been seen in zero-bias conduc-
tance peaks [27,28] and in Coulomb blockade spectroscopy
[29,30]. The second platform employs 1D edge states of the
layered quantum spin Hall insulator HgTe proximitized by
Nb [31,32]. Both platforms offer specific advantages but also
face specific challenges. For instance, while the semiconductor
approach benefits from decades of experience in device
technology, it is confined to MBSs realized in narrowly defined
parameter regimes close to the bottom of a semiconductor
band [3].

In this paper, we propose an alternative Majorana qubit
architecture and outline how to implement basic QIP opera-
tions in it. Our setup employs nanoribbons of 3D topological
insulator (TI) materials, e.g., Bi2Se3 or Bi2Te3, proximitized
by conventional s-wave superconductors. Surface states of
proximitized TIs are expected to realize topological supercon-
ductors [10], and theoretical work has predicted the formation
of MBSs near the ends of such ribbons [33–38]. Since
these MBSs are built from protected surface states of a bulk
topological insulator, they are expected to show high levels of
robustness. Although no experimental evidence for MBSs in
this material class has been reported yet, we are positive that
there is no fundamental obstacle preventing success along that
direction. Below we will describe a tunable Majorana qubit
realization using this platform and outline how to perform
simple quantum operations with it.

The layered structure of most TIs implies that one-
dimensional (1D) nanowires formed from such materials grow
in a tapelike shape. For the ensuing nanoribbons, rather small
cross sections (≈40 × 100 nm2 [39,40]) are feasible, where
surface states located on opposite sides of the nanoribbon still
have a finite overlap. The corresponding surface-state bands
are inside the bulk TI energy gap of width 0.3 eV [1]. In general,
however, they exhibit a finite-size gap because of this overlap.
Remarkably, the presence of an axial magnetic flux � equal
to half a flux quantum, � = �0/2 ≡ h/2e, may close this
finite-size gap. In practice, the application of a magnetic field
of order 0.5 T is expected to generate a single gapless 1D mode
[41–46]. This helical 1D mode is insensitive to elastic impurity
scattering and experimental efforts towards the confirmation
of its existence have been made [39,40]. Once a TI nanoribbon
with � = �0/2 is proximitized by an s-wave superconductor,
a 1D topological superconductor phase with Majorana end
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FIG. 1. Schematic device with four Majorana states built from
a TI nanoribbon in a uniform axial magnetic field B. We assume
that B results in the flux � = �0/2 through the (thick) outer parts
which are proximitized by an s-wave superconductor (SC) layer. The
1D surface states in the nonproximitized narrow central part of the
device are gapped since here the magnetic flux � is well below �0/2.
The transparency of this junction can be tuned by an electrostatic top
gate. Majorana end states are indicated as red dots. Note that this
device is grounded.

states emerges [33–38]. Conceptually, these MBSs form under
conditions of symmetry class D, where spin SU(2) symmetry,
time-reversal symmetry, and particle number conservation are
all broken [47], and they are robust against both conventional
and pair-breaking disorder. Importantly, they also tolerate
arbitrary chemical potentials located in the bulk band gap.
The above features indicate that the TI nanoribbon platform
lends itself to robust Majorana qubit implementations and,
eventually, for QIP applications.

Below we will consider various MBS and qubit designs
building on the above construction. We first consider a
grounded setup comprising two proximitized wire segments
separated by a nonproximitized central region of narrower
geometric cross section (see Fig. 1 for a schematic illustration).
The narrowed central region might be fabricated by electron
beam lithography and wet etching in order to minimize defects.
Its reduced cross section implies that it is threaded by a
magnetic flux lower than �0/2, and therefore exhibits a
size quantization gap in its surface-state spectrum. Majorana
bound states then form at the interfaces between regions of
different (superconducting vs size quantization) spectral gap
type, where the gate-tunable weak link represents a Josephson
junction between two topologically superconducting wires.

As we will discuss in Sec. III, using either floating or
grounded versions of the device in Fig. 1, a variety of means
to access and manipulate quantum states encoded by the four
MBSs are available. The option to switch between floating
and grounded versions by means of electrostatic gating makes
it possible to employ the manipulation schemes proposed by
Aasen et al. [16]. In particular, one may detect the occupation
state of the fermion formed from the central MBS pair in
Fig. 1 by the parity-to-charge conversion technique described
in Ref. [16]. In most of this paper, however, we pursue an
alternative approach where floating devices and Coulomb
blockade effects are crucial [17–19,29,48–50]. In that case,
electron transfer between different parts of the device is
governed by nonlocal electron tunneling, and Majorana box
qubits can be defined along the lines of Refs. [20,21]. These
qubits may ultimately be arranged in a 2D TI nanoribbon
network in order to implement a Majorana surface code.
(We note in passing that the alternative TI-based Majorana
surface code proposal of Ref. [23] operates in a rather different

parameter regime, where the Josephson coupling between
different qubits is essential.) However, although we will briefly
sketch these long-term perspectives, the main emphasis of
this paper is on basic design aspects and suggesting proof-of-
principle experiments testing the proposed topological qubits.

Before entering a detailed discussion, let us summarize the
structure of the remainder of this paper and offer guidance to
the focused reader. In Sec. II, we provide a theoretical descrip-
tion of Majorana states for the grounded TI nanoribbon device
in Fig. 1. To keep the presentation self-contained, Secs. II A
and II B also summarize those results of Refs. [33–38] that
are relevant to our subsequent discussion. In Sec. II C, we
describe in detail how the hybridization energy corresponding
to the overlap between the two central MBSs in Fig. 1 can be
manipulated via suitable gate electrodes. A floating version
of the device in Fig. 1, where Coulomb charging effects
are important, is then addressed in Sec. III. In Sec. III A,
we analyze effects introduced by the presence of a charging
energy and/or Josephson couplings. When the charging energy
dominates, a device as sketched in Fig. 4(b) can encode a
Majorana box qubit. In Secs. III B and III C, we briefly review
key ideas of Refs. [20,24] concerning the device layout and
basic operation principles, and transfer those ideas to the TI
implementation. A detailed comparison between our proposal
and alternative platforms is then provided in Sec. III D. Finally,
Sec. IV concludes with an outlook, where we sketch how a
Majorana surface code could be implemented by arranging
such qubits in a network (cf. Refs. [24,25]). Technical details
concerning Sec. II have been relegated to the Appendix.

II. PROXIMITIZED NANORIBBON DEVICE

Let us now turn to a theoretical description of the basic de-
vice shown in Fig. 1. For this grounded device, it is sufficient to
study single-particle properties. However, Coulomb charging
effects are crucial for floating devices and will be taken into
account in Sec. III.

A. Model

The TI nanoribbon containing a bottleneck in the central
region is modeled in terms of a long cylindrical TI nanowire
along the z direction with spatially varying radius R(z).
For most TI materials, nanoribbons naturally grow with a
rectangular cross section. However, the low-energy band
structure turns out to be very similar to the one found for
cylindrical wires with the same cross section [34,45,46]. The
cylindrical geometry is technically easier to handle because of
azimuthal angular momentum conservation, where the angular
momentum quantum number j is quantized in half-integer
units.

We model the central region by a simple step-function
profile of width W centered around z = 0,

R(z) =
{
R0, |z| � W/2
R, |z| > W/2 (1)

where R0 < R. This step function modeling is motivated by
convenience as it allows for simple analytical solutions via
wave-function matching. It assumes that interfaces extend over
a few lattice spacings (which in turn are ≈3 nm [1]), since
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otherwise the low-energy approach used below is not applica-
ble and TI states above the bulk gap can become important.
Smooth interfaces, where R(z) changes over longer scales,
can be described via slightly more involved solution schemes.
However, since eigenstates show the same asymptotic behavior
far away from the interfaces as for the steplike profile (1), we
do not expect qualitatively different physics.

In the presence of a constant axial magnetic field B, the z

dependence of the nanowire radius implies a reduced magnetic
flux through the central region. Defining the dimensionless
magnetic flux ϕ(z) = �(z)/�0, and assuming that the field
strength B has been adjusted to give ϕ = 1

2 in the outer regions,
we obtain

ϕ(z) = �(z)

�0
=

{
ϕ0 ≡ (R0/R)2/2, |z| � W/2
1/2, |z| > W/2

(2)

with ϕ0 < 1
2 . Equation (2) neglects magnetic screening (flux

channeling) in the central region. Such effects are expected to
be tiny due to the smallness of the magnetic susceptibility, in
particular in the central region where size quantization implies
a gap in the surface-state spectrum (see below).

We next assume the presence of a complex-valued super-
conducting gap parameter �(z) introduced via the proximity to
s-wave superconductors in the outer regions of the device (see
Fig. 1). For simplicity, we assume that the absolute value of the
proximity-induced gap is identical on both sides, |�(z)| = �

for |z| > W/2. With the phase difference φ across the weak
link, we have

�(z) =
⎧⎨
⎩

0, |z| � W/2
�eiφ/2, z < −W/2
�e−iφ/2, z > W/2.

(3)

For a floating device, φ will be a dynamical quantity. We note
that Eq. (3) does not take into account rotational symmetry
breaking by the s-wave superconductors. Such effects have
been considered in Ref. [35].

Finally, the top gate electrode in Fig. 1 induces an
electrochemical potential μ(z) in the central region, where
we have no s-wave superconductor and gating is possible.
Assuming a constant but tunable value for this potential, we
obtain

μ(z) =
{
μ, |z| � W/2
0, |z| > W/2.

(4)

As detailed in Sec. III D, a finite value of μ in the region
|z| > W/2 is not expected to cause qualitative changes.

Under the conditions defined above, the surface states of this
TI nanowire may be computed via different methods, including
microscopic tight-binding calculations or k · p theory supple-
mented with Dirichlet boundary conditions on the surface (see,
e.g., Ref. [44]). However, as detailed in Refs. [34,41–46],
the results of such calculations are well reproduced by a
simple description in terms of effectively 2D massless Dirac
fermions wrapped onto the surface of the device, subject to
the constraint that spin is oriented tangentially to the surface
and perpendicularly to the momentum at any point. The full
surface-state solution includes a radial part describing a rapid
exponential decay into the bulk of the nanowire. However, this
radial dependence of the wave functions will be left implicit
throughout.

For fixed half-integer conserved angular momentum j , the
structure of a surface state in spin space is then given by

ψj (z,θ ) = eijθ

√
2π

(
e−iθ/2fj (z)
eiθ/2gj (z)

)
, (5)

where the angle θ parametrizes the circumference of the
nanowire and the z-dependent functions fj and gj obey the
normalization

∫
dz(|fj |2 + |gj |2) = 1. We thus arrive at a

reduced 1D formulation, where the Hamiltonian effectively
acts on spinor states (fj (z),gj (z))T . In the presence of a
superconducting gap �(z), surface states inside the bulk TI
energy gap are then obtained as eigenstates of the Bogoliubov–
de Gennes (BdG) Hamiltonian

HBdG =
(

H0(z) iσy�(z)
−iσy�

∗(z) −H0(z)

)
,

H0 = −ih̄v1σy∂z − h̄v2

R(z)
[j + ϕ(z)]σz − μ(z)σ0. (6)

For a detailed derivation, see Ref. [34]. Here, Pauli matrices
σx,y,z (and identity σ0) act in spin space, and the explicit
2 × 2 structure in Eq. (6) refers to particle-hole (Nambu)
space. Moreover, v1 and v2 are Fermi velocities along the
axial and circumferential direction, respectively, which depend
on TI material parameters. Note that the magnetic flux
effectively shifts the quantized angular momentum number
j → j + ϕ(z).

In the absence of the constriction (W = φ = 0), and
assuming an infinitely long wire, the system is translationally
invariant and BdG eigenstates are plane waves with longitu-
dinal momentum k. The piercing of the system by a uniform
flux ϕ leads to the dispersion relation [34]

Ek,j,σ,σ ′ = σ

√
(h̄v1k)2 + (Mj + σ ′�)2, (7)

with σ,σ ′ = ± and the size quantization gap parameters
Mj = h̄v2|j + ϕ|/R. In general, the spectrum in Eq. (7)
is gapped either by the size quantization gap (Mj ) or by
the superconducting gap (�). However, a gapless branch
exists for Mj = � and σ ′ = −1, and a topological phase
transition is expected at this gap-closing point [3]. On general
grounds, this signals the formation of Jackiw-Rossi zero modes
corresponding to localized Majorana fermions at interfaces
between two regions dominated by different gap types.

We next note that for the angular momentum mode j = − 1
2 ,

the size quantization gap

M−1/2 ≡ M(ϕ) = h̄v2

R
|ϕ − 1/2| (8)

vanishes when the flux equals half a flux quantum ϕ = 1
2 . In

that case, the wire supports a gapless helical 1D mode for
� = 0 (cf. Refs. [41–44]). Below we will assume that the
cross section of the TI nanowire is small such that h̄v2/R

represents a large energy scale. In that case, all modes with
angular momentum j �= − 1

2 can be neglected. We therefore
retain only the j = − 1

2 mode in what follows. The effects of
flux mismatch away from ϕ = 1

2 and physical mechanisms
which may cause it are addressed in Sec. III D below.
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B. Majorana states

Turning back to the device in Fig. 1, let us still assume
an infinitely long TI nanowire but now with a finite size
W of the central region with narrowed cross section. The
above discussion shows that the outer parts are dominated
by a superconducting gap (M = 0, � �= 0). On the other
hand, in the central part, the superconducting gap vanishes
but we have a size quantization gap (M0 �= 0, � = 0). Here,
we define M0 ≡ M(ϕ0) with R → R0 in Eq. (8), where ϕ0

has been introduced in Eq. (2). The points z = ±W/2 thus
define interfaces where gaps of different nature meet each
other. As a consequence, the solution of the BdG equation,
HBdG� = E�, must include MBSs localized near these two
interface points.

In general, the leakage of Majorana wave functions into the
central region will then result in a finite hybridization energy
ε, where the two MBSs correspond to a zero-energy fermion
state only for ε → 0 while the degeneracy of both parity states
is lifted otherwise. We will quantitatively determine ε and
show that it can be efficiently tuned, e.g., by varying the
electrochemical potential μ. Only moderate values μ < M0

are considered below since otherwise also higher-energy
modes with j �= − 1

2 have to be taken into account.
Away from the interfaces, z �= ±W/2, the problem is

effectively uniform. The 1D BdG equation is then either solved
by a plane-wave ansatz (for high energies) or by an evanescent
state ansatz (for small |E|). The solutions in the subgap regime
|E| < � are detailed in the Appendix. The requirement of
continuity of the spinor wave function �(z) at the interface
points implies that a corresponding determinant vanishes,

D(E) = 0, (9)

where D(E) is specified in Eq. (A3) for |E| < min(�,M0) but
otherwise arbitrary parameters. The condition (9) determines
the low-energy spectrum of the system, which for generic
parameter sets is established by numerical solution.

C. Hybridization between Majorana states

A robust feature found by solving Eq. (9) is the exis-
tence of subgap states at E = ±ε, representing the expected
pair of MBSs. Under the self-consistent assumption |ε| 	
min(�,M0), the value of ε can be obtained from Eq. (9) by
second-order expansion of D(E) in E. We find

ε(φ) = ε(0) cos(φ/2), (10)

where the result at phase difference φ = 0 is

ε(0) = 2�

M0

(h̄v1/ξ )2

� + h̄v1/ξ
e−W/ξ (11)

with the length scale

ξ = h̄v1√
M2

0 − μ2
. (12)

Notice the 4π -periodic behavior of ε(φ) in Eq. (10), which
is the periodicity shown by topological Josephson junctions
[3] where contact between two superconductors is established
by MBSs. We mention in passing that small 2π -periodic
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FIG. 2. Majorana hybridization energy ε (in units of μeV) vs
constriction length W (in nm) for the device in Fig. 1. Taking
parameters for Bi2Se3 with � = 0.18 meV, M0 
 7.14 meV, and
φ = 0, results are shown for several values of μ. The quoted values for
ξ follow from Eq. (12). For W � ξ , these semilogarithmic plots are
consistent with ε ∼ e−W/ξ [see Eq. (11)], while ε → � for W → 0.

admixtures add to Eq. (10) if higher-lying surface states with
j �= − 1

2 are included.
For W � ξ , the energy ε in Eq. (11) becomes exponentially

small, ε ∼ e−W/ξ , as expected for the hybridization energy of
far separated MBSs. The explicit solution in the Appendix
shows that �(z) has an exponential decay away from the
interface points into the proximitized parts (|z| > W/2) on
the length scale h̄v1/� [see Eq. (A1)]. Similarly, the length
scale ξ in Eq. (12) governs the decay of �(z) into the central
part [see Eq. (A2). For a constriction of length W � ξ , the
Majorana overlap thus becomes exponentially small and we
encounter a pair of Majorana zero modes.

We next discuss the dependence of the Majorana hybridiza-
tion energy ε on various parameters in realistic settings.
By way of example, we consider a Bi2Se3 nanowire, with
Fermi velocities v2 = 1.47v1 and h̄v1 = 226 meV × nm [44].
Choosing the nanowire radius R = 35 nm in the outer regions
and a constriction of radius R0 = R/2, a large size quantization
gap M0 
 7.14 meV opens up in the central region. Assuming
a proximity gap � = 0.18 meV in the outer regions, Fig. 2
shows ε = ε(0) as function of the constriction length W for
several values of the electrochemical potential μ. The shown
results, which have been obtained by numerical solution of
Eq. (9), are consistent with the exponential scaling ε ∼ e−W/ξ

for W � ξ [see Eq. (11)]. Moreover, the length scale ξ = ξ (μ)
extracted from Fig. 2 also agrees with the prediction in
Eq. (12). We observe from Fig. 2 that for a short constriction,
the Majorana states move to high energies and eventually
approach the continuum part of the spectrum ε → � for
W → 0.

With increasing local electrochemical potential μ of the
central region, the transparency of the weak link, and hence
the hybridization ε, will also increase. This trend is visible in
Fig. 2 and suggests that ε may be changed in a convenient
manner by gating the constriction and thereby tuning μ. (The
minimal hybridization for given W is reached for μ = 0.)
Figure 3 shows in more detail how changes in μ will affect
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FIG. 3. Hybridization energy ε (in μeV) vs electrochemical
potential μ (in meV) for several values of the constriction length
W . Parameters are as in Fig. 2, i.e., for Bi2Se3 with � = 0.18 meV,
M0 
 7.14 meV, and φ = 0.

the hybridization (see also Sec. III D). These numerical results
nicely match the analytical predictions in Eqs. (11) and (12).

III. MAJORANA BOX QUBITS

The finite-length TI nanoribbon device in Fig. 1 supports
four MBSs near the ends of the proximitized regions. These
states correspond to Majorana fermion operators, γj = γ

†
j ,

which obey the Clifford anticommutator algebra {γj ,γk} =
2δjk [3]. Provided the proximitized parts are much longer than
the length scale h̄v1/�, the outer MBSs (γ1 and γ4) effectively
represent zero modes, and the low-energy physics is governed
by the Hamiltonian

Heff = iεγ2γ3 + HC, (13)

containing the hybridization energy ε between γ2 and γ3.
The additional term HC describes charging and/or Josephson
energies, which may be engineered on top of the basic setup
discussed above. This generalization is introduced in Sec. III A
before we show in Sec. III B how it is key to the encoding of
topologically protected qubits in the Majorana Hilbert space.
Inspired by recent Majorana box qubit proposals (tailor made
for the semiconductor-based architecture) [20,21], we outline
in Sec. III C the design of proof-of-principle experiments
testing the usefulness of the TI nanoribbon platform for el-
ementary QIP operations. [An alternative approach suggested
in Ref. [16] is to implement the basic anyon fusion protocols
required for Majorana braiding operations (see Sec. III A).] We
then discuss the TI-based Majorana box qubit and compare it
to other implementations in Sec. III D. Long-term perspectives
of the current design include realizations of Majorana surface
codes [24,25] via arrays of Majorana box qubits. We briefly
discuss layouts of this type in Sec. IV.

A. Floating vs grounded device

Braiding protocols for MBSs require switchable grounding
of the host device [16], i.e., the option to isolate the system
against ground such that its finite capacitance defines an
effective charging energy EC . The principle is illustrated in
Fig. 4(a), which differs from Fig. 1 in that the connector to
ground is replaced by a superconducting reservoir coupled to
the system via a narrow TI wire segment. As with the weak

bulk SC reservoir

(a)

(b)

FIG. 4. Grounded vs floating devices. (a) Switchable grounding
of TI nanoribbon devices: By tuning the gate voltage applied to a
local top gate at the narrowed section, the Josephson coupling energy
EJ between the TI nanoribbon and a grounded superconducting
reservoir can be changed. As a consequence, one can switch between
a grounded and a floating device. (b) Floating version of the device
in Fig. 1. The two s-wave superconductors are connected by a
superconducting bridge, i.e., the Majorana box is characterized
by a single charging energy. Normal leads (vertical black lines)
are tunnel-coupled to individual MBSs and amongst themselves
by interference links to allow for interferometric readout of Pauli
operators. The external boxes are symbolic for quantum dots or
single-electron transistors which can be used to pump single electrons
through the device and manipulate or read out qubit states. For details,
see main text.

link in Sec. II, the geometric confinement implies that the
connecting section is gapped and effectively realizes a tunnel
junction. A top gate may be installed to tune the tunneling
strength and, thereby, the Josephson energy EJ between the
superconducting regions connected by the junction. In this
way, changes in the gate voltage effect a switch between
floating (small EJ ) and grounded (large EJ ) configurations
(see Ref. [16] for details).

The energy balance of a topological superconductor gener-
ally contains a charging energy EC and a dimensionless back-
gate parameter ng [17–19,48] controlling the energetically
preferred charge on it. Here, EC relates to the electrostatic
capacitance of those regions of the device that are in good
electrical contact with each other. For instance, the floating
device shown in Fig. 4(b) contains a superconducting bridge
connecting its left and right halves, and this leads to a
“Majorana box” characterized by a single charging energy.
In general, the energy balance is influenced by both Josephson
coupling EJ to a bulk superconductor [as in Fig. 4(a)] and a
charging energy EC and the sum of these contributions,

HC = EC(2N̂s + n̂γ − ng)2 − EJ cos φ̂s (14)

adds to the Hamiltonian Heff in Eq. (13) [17–19,48]. The
number operator N̂s is canonically conjugate to the phase
difference between the superconductors φ̂s and counts the
number of Cooper pairs on the island, while n̂γ = (i/2)[γ1γ2 +
γ3γ4] measures the fermion number in the Majorana sector.
The Hamiltonian Heff describes the low-energy sector of the
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system in that above-gap quasiparticles and surface states with
j �= − 1

2 are not taken into account.
Externally imposed changes in the ratio EJ /EC may be

applied to access Majorana fermion occupancies, e.g., via
the parity-to-charge conversion protocol of Ref. [16]. For
few-μm-long nanowires, a typical charging energy is EC ≈
0.1 K. We then expect a tunable parameter range of order
0.1 � EJ /EC � 10. This tunability is of key importance to
QIP protocols relying on the non-Abelian braiding statistics of
MBSs [16].

B. Majorana box qubit

We next consider the floating device (“box”) shown in
Fig. 4(b), where EJ = 0 and a Majorana box qubit can be
realized. For a long TI nanoribbon with exponentially small
hybridization energy, ε, the four MBSs in Fig. 4(b) effectively
represent zero-energy modes. On energy scales small against
both EC and the proximity gap �, and assuming that the
back-gate parameter ng is close to an integer value, charge
quantization on the box implies that fermion parity is a good
quantum number, γ1γ2γ3γ4 = P = ±1. As a consequence,
the Majorana box has a twofold-degenerate ground state.
The different components of the corresponding emergent
spin- 1

2 operator are encoded by spatially separated Majorana
operators. Specifically, we choose Pauli operators as [17–19]

σx = iγ3γ1, σy = iγ2γ3, σz = iγ1γ2. (15)

Equivalent representations follow from the parity constraint,
e.g., σz = −iPγ3γ4 [see Fig. 4(b)].

The degenerate two-level system defined in Eq. (15) can
effectively encode arbitrary qubit states |ψ〉 = α|0〉 + β|1〉
(with σz|0〉 = |0〉 and σz|1〉 = −|1〉). The option to address
different Pauli operators via spatially nonlocal access op-
erations in a topologically protected setting (cf. Sec. III C)
holds promise for a versatile and robust hardware qubit for
QIP applications (see Refs. [20,21,24,25]). We expect that at
temperatures of a few millikelvin, above-gap quasiparticles
will limit the qubit lifetime. Although further work would
be required to quantify the expected time scales, we note
that the mechanisms for decoherence (quasiparticle poisoning,
in the first place) are similar to those in other topological
Majorana qubits [16,20,21,25]. In what follows, we consider
protocols operating on shorter time scales where such detri-
mental effects can be neglected.

C. Basic quantum operations

By suitably designing the device, Pauli operators can
be read out via interferometric conductance measurements
[20,25]. For the Majorana box qubit in Fig. 4(b), these
measurements would require the coupling of a pair of MBSs
to tunnel electrodes. For instance, the coupling to γ1 and γ2

would amount to addressing the Pauli operator σz of Eq. (15).
Consider these two access leads connected by an additional
interference link of tunnel strength t0 away from the device
(“reference arm”). Electron transport from lead 1 → 2 can then
either be (i) through the box, where the cotunneling amplitude
is given by itzγ1γ2 = tzσz with tz 
 λ2/EC for elementary
tunnel amplitude λ, or (ii) through the reference arm with

amplitude t0. The tunnel conductance between leads 1 and 2
is thus given by

G12 = e2

h
ν1ν2|t0 + tzσ |2, (16)

where σ = ± refers to the eigenvalues of σz and ν1,2

denotes the respective density of states in the normal leads.
The outcome of the measurement depends on σ , and this
means that the conductance measurement projects the original
qubit state |ψ〉 = α|0〉 + β|1〉 to the respective σz eigenstate.
With probability |α|2 (|β|2 = 1 − |α|2) the qubit assumes the
state |0〉 (|1〉) after the measurement. Projective conductance
measurements of this type may be applied to read out arbitrary
Pauli operators or to initialize the qubit in a Pauli eigenstate. It
is worth mentioning that for the device in Fig. 4(b), the Pauli
operator σy = iγ2γ3 can be measured without an additional
reference link shared by leads 2 and 3 since the central
superconducting bridge already provides this link [21].

The controlled manipulation of qubit states |ψ〉, however,
requires additional access elements. Specifically, the appli-
cation of a given Pauli operator (15) to a state |ψ〉 can be
realized through the pumping of a single electron between
a pair of quantum dots (or single-electron transistors) tunnel-
coupled to the MBSs corresponding to the operator [20,24,25].
Here, the dots are assumed to be in the single-occupancy
regime, where the respective energy levels can be changed
by means of gate voltages. The pumping of a single electron
from dot 1 → 2 then implies a unitary state transformation
|ψ〉 → U |ψ〉, where U corresponds to the respective Pauli
operator. This transformation law is topologically robust in
the sense that it is independent of details of the protocol
[20]. For instance, it does not depend on the values of the
tunnel couplings nor on the precise time dependence of gate
voltages. However, it has to be made sure that the electron
ends up in the desired final state, either by a confirmation
measurement of the dot charge or by running the protocol
in an adiabatically slow fashion. Finally, also pairs of dots
may be connected by additional phase-coherent reference
arms to effectively realize arbitrary single-qubit phase gates.
However, in contrast to the Pauli operators discussed above,
such phase gates generally are not topologically protected
anymore due to measurement-induced dephasing processes
(see Ref. [20] for details). The latter processes are essential
for projective readout and/or initialization but are detrimental
to manipulations of the qubit state.

Alternative proposals to read out, manipulate, or initialize
Majorana box qubit states can be found in Refs. [20,21].
For example, quantum dots may be applied as an alternative
to leads for readout purposes. Furthermore, by measuring
products of Pauli operators on different boxes, one may
entangle the states of the corresponding qubits. In particular, a
measurement-based protocol for generating a controlled-NOT
gate can be found in Ref. [20].

D. Discussion

We now turn to a critical discussion of the proposed plat-
form. Since MBSs in the TI setup are formed from topological
surface states, they can be expected to enjoy an intrinsic
protection mechanism against both elastic impurity scattering
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and pair-breaking disorder. At the same time, presently
available TI materials are not as clean as the corresponding
semiconductor nanowire systems, and significant experimental
progress will be needed to verify the practical usefulness of
this platform. In what follows, we address the robustness of
MBSs in TI nanoribbon devices against possibly detrimental
mechanisms in view of the above results, and compare the TI
implementation to alternative realizations.

First, it may be difficult to precisely tune the magnetic flux
to ϕ = 1

2 in the proximitized regions, even though one can
adjust magnetic fields to high accuracy. Such a flux mismatch
could arise because of (i) inhomogeneities in the cross-section
area, (ii) misalignment between the magnetic field and the TI
nanoribbon axis which, in addition, weakly breaks rotation
symmetry and therefore mixes j = − 1

2 states with j �= − 1
2

high-energy states, and/or (iii) because different nanowire
parts may not be exactly parallel to each other. For small flux
mismatch, the topological energy gap appearing in Eq. (7)
will change only slightly due to the corresponding change in
M(ϕ) [see Eq. (8)], without affecting the robustness of MBSs.
However, one then needs a finite electrochemical potential
μS = μ(|z| > W/2) in the proximitized regions, in contrast
to our assumption in Eq. (4). In particular, M(ϕ) < |μS | <

h̄v2/R is required for well-defined helical 1D states when
� = 0 (which then yield MBSs for � �= 0). We conclude that
flux mismatch is not expected to create serious problems for
the robustness of MBSs.

Second, we address what happens for finite electrochemical
potential μS in the proximitized regions, where we focus on the
case ϕ = 1

2 . Recalling that the � = 0 states with j = − 1
2 have

linear dispersion, we expect that a shift of μS enters physical
quantities mainly through the difference μ − μS . In effect, the
above μS = 0 results thus apply again.

Next, we consider the localization length of MBSs in our
setup and compare the result to other platforms. For the
device in Fig. 1, different length scales govern the MBS decay
into the inner and the outer parts. Taking the proximity gap
as � = 0.18 meV, one gets ξ� = h̄v1/� = 1.25 μm on the
superconducting side, while the decay into the inner segment
is governed by the much shorter length ξ in Eq. (12). (The
precise value of ξ depends on the parameters W, R0/R,

and μ.) The MBS localization length is longer than ξ� in
semiconductor nanowires, where a typical spin-orbit coupling
energy h̄α ≈ 20 eV × nm translates into the length scale
125 nm [51]. The above estimates indicate that one may need
rather long proximitized TI nanowires (exceeding at least
5 μm) in order to have negligible MBS overlap, e.g., between
γ1 and γ2 in Fig. 4(b). While this requirement constitutes a
slight disadvantage against semiconductor nanowires, we note
that sufficiently long TI nanoribbons are already available
[39,40]. Similar values for the MBS localization length as
found for the TI case above have also been estimated for the
HgTe platform [31,32].

We continue by studying the maximum time scale t0 on
which the simplest type of Majorana qubit could be operated
without dephasing for different platforms, using a device as
in Fig. 1. In our TI setting, this scale is defined by t−1

0 = ε(0)
[see Eq. (11)]. Indeed, for times t > t0, the hybridization of
the inner MBSs in Fig. 1 will inevitably dephase the qubit
state. Clearly, it is then desirable to access time scales t0

A

B

FIG. 5. 2D network of Majorana box qubits using proximitized TI
nanoribbons for implementing a Majorana surface code. Stabilizers
of type A or B correspond to products of eight Majorana operators
around a minimal plaquette as indicated. Access elements for
initialization, manipulation, and readout of stabilizers are not shown
but described in the main text.

as long as possible. We observe from Eq. (12) that this
condition is reached by choosing μ = 0 and a large width
W of the central segment (see Figs. 2 and 3). For instance,
choosing W = 300 nm and |μ| < 0.2 meV, we find ε(0) <

0.027 μeV, and hence t0 > 2.4 μs. This time scale exceeds
the one estimated for semiconductor nanowires [16]. However,
in practice an important additional limitation on operation
times for Majorana qubits may come from quasiparticle
poisoning. The poisoning time is known to be �1 μs for
semiconductor Majorana devices [30] but remains to be studied
for proximitized TI systems.

As elaborated in Sec. I, semiconductor nanowires define
the experimentally most advanced platform for Majorana
states at present, and detailed proposals for Majorana qubits
in that platform have appeared [15,16,20,21]. Nonetheless,
this implementation also has some drawbacks. As remarked
before, the chemical potential has to be chosen close to the
band bottom, which in turn renders states susceptible to the
effects of disorder. Such problems could probably be avoided
in a 2D architecture, where a 2D electron gas (2DEG) with
strong spin-orbit coupling is proximitized by a lithographically
patterned superconducting top layer [52–54]. Nonetheless,
the chemical potential window allowing for robust MBSs is
arguably bigger for the TI nanoribbon case. Moreover, the
implementation of Majorana box qubits in a semiconductor
nanowire setting has encountered difficulties due to the need
for separate reference links [55]. Using our TI nanoribbon
setup (and similarly for 2DEG implementations), this problem
can be avoided by designing reference links from the TI itself
(see Figs. 4 and 5).

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have outlined how Majorana qubits can
be defined and operated in a proximitized TI nanoribbon
architecture. The key elements of the construction are gate-
tunable internal tunnel junctions realized through narrowed
regions of lowered axial magnetic flux in TI nanoribbons.
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This allows us to tune the hybridization of MBSs emerging
from a topologically protected helical 1D surface-state mode,
and thereby makes it possible to manipulate the quantum
information. The linear dispersion of the 1D modes in this
platform is expected to give the MBSs a high level of
robustness. (In this regard, the situation may be better than
in semiconductor wire platforms, where one is operating close
to the bottom of a parabolic band.) We are confident that this
platform is sufficiently versatile and flexible to implement the
quantum information processing protocols outlined above.

Once proof-of-principle experiments have confirmed this
expectation, one may envisage the extension of the system
to 2D networks containing many Majorana box qubits.
Specifically, the blueprint sketched in Fig. 5 indicates the
extension to a network realizing a two-dimensional surface
code (cf. Refs. [22–25]). The surface-code approach builds
on so-called stabilizer operators corresponding to products of
eight Majorana operators surrounding the minimal plaquettes
of Fig. 5. There are two types (A and B) of such operators, and
the essence of the surface code is that all of them commute.
The binary eigenvalues ±1 of the stabilizers then define the
physical qubits of the system. During each operational cycle
of the system, the majority of these qubits are measured
(“stabilized”), and projection onto the highly entangled de-
generate ground states of the system takes place. The few
qubits exempt from the measurement process serve as logical
qubits and can be manipulated along the lines of the discussion
above.

In contrast to the “unfolded” linearly arranged box qubit
in Fig. 4(b), Fig. 5 suggests an alternative construction, where
pairs of adjacent proximitized TI nanowires are connected
through superconducting bridges to form 90◦ rotated “H”-type
structures. Each of these structures represents a Majorana

box with its own charging energy. Pairs of adjacent MBSs
on neighboring boxes are connected by tunnel links as
shown in Fig. 5. Since the TI nanoribbon network is most
likely fabricated by lithographic and/or wet etching means,
the present platform would naturally employ tunable TI
nanoribbon parts for those tunnel links as well. In this way,
the need for separate wires and/or other materials required
by the corresponding semiconductor architecture [20,21,25]
might be avoided. Since the proximitized TI nanoribbon parts
in Fig. 5 are arranged parallel to each other, the MBSs can be
generated simultaneously under a uniform applied magnetic
field, provided the nanoribbon cross section can be accurately
controlled in the fabrication process.
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APPENDIX: SPINOR WAVE FUNCTIONS

Here, we provide the explicit form of the BdG eigenstates
�(z) for the device in Fig. 1. For notational simplicity, we
employ units with h̄v1 = 1. Putting j = − 1

2 , since we are
interested in constructing Majorana bound states, we consider
only energies below the superconducting gap |E| < �. With
HBdG in Eq. (6), we shall first write general solutions of the
BdG equation in each of the three regions. These solutions are
subsequently matched at the interface points z = ±W/2 by
continuity. Using parameters A

(±)
1,2 , the solution for |z| > W/2

decaying at |z| → ∞ reads as

�(z)||z|>W/2 = e−√
�2−E2|z|

⎡
⎢⎢⎣A

(s)
1

⎛
⎜⎜⎝

E

−s
√

�2 − E2

0
�eisφ/2

⎞
⎟⎟⎠ + A

(s)
2

⎛
⎜⎜⎝

−s
√

�2 − E2

−E

�eisφ/2

0

⎞
⎟⎟⎠

⎤
⎥⎥⎦, s = sgn(z) = ± (A1)

where the first and second (third and fourth) components refer to the spin structure of the particle (hole) part of the Nambu spinor.
In the central region |z| < W/2, with coefficients B

(±)
1,2 the solution is given by

�(z)||z|<W/2 =
∑
±

⎡
⎢⎢⎣B

(±)
1 e±

√
M2

0 −(E+μ)2z

⎛
⎜⎜⎝

±(M0 + E + μ)√
M2

0 − (E + μ)2

0
0

⎞
⎟⎟⎠ + B

(±)
2 e±

√
M2

0 −(E−μ)2z

⎛
⎜⎜⎝

0
0

±(M0 − E + μ)√
M2

0 − (E − μ)2

⎞
⎟⎟⎠

⎤
⎥⎥⎦. (A2)

Imposing continuity at z = ±W/2, we find that eigenenergies with |E| < min(�,M0) follow from the zero-determinant condition
in Eq. (9). The determinant D(E) is a symmetric function of E and given by

D(E) = −2�2a+a− cos φ +
∑
±

[
(2E2 − �2)(a+a− ± μ2 ∓ E2) ± M2

0 �2
]

cosh[(a− ± a+)W ]

+ 2E
√

�2 − E2
∑
±

[(E − μ)a+ ± (E + μ)a−] sinh[(a− ± a+)W ], a±(E) ≡
√

M2
0 − (E ± μ)2. (A3)
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