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Plasmons at the LaAlO3/SrTiO3 interface and in the graphene-LaAlO3/SrTiO3 double layer
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We study plasmon modes of the two-dimensional electron gas residing at the interface of band insulators
LaAlO3 and SrTiO3 (LAO/STO) and the plasmon excitations of graphene-LAO/STO double layer as well.
Considering the electron-electron interaction within random phase approximation, we calculate the plasmon
dispersions of both systems numerically and in the long-wavelength limit analytical expressions for collective
modes are found. One optical mode and two (three) acoustic modes are predicted for the LAO/STO (graphene-
LAO/STO) system where only the uppermost acoustic mode of both systems can emerge above the electron-hole
continuum depending on the characteristics of each system. In the case of LAO/STO interface, thanks to the
spatial separation between t2g orbitals, the upper acoustic mode might be undamped at the long-wavelength
limit depending on the exact value of the dielectric constant of SrTiO3. Same as other double layer systems,
the interlayer distance for the graphene-LAO/STO system plays a crucial role in damping the upper acoustic
mode. Faster damping of all plasmon modes of the present double layer system in comparison with the ones
with conventional two-dimensional electron gas instead of t2g electron gas is also found due to heavier effective
masses of the gas and also stronger interlayer Coulomb interaction.
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I. INTRODUCTION

Plasmon modes represent a second kind of possible ele-
mentary excitation for the Fermi liquid [1,2]. Basically, they
involve a cooperative motion of the system, governed by the
global interaction between the electrons.

The collective modes differ in nature from the individual
excitations where an individual component acts to force
the motion of all the other particles. The innermost of the
excitation is a single quasiparticle where it is surrounded by
an appropriate polarization cloud. In a collective mode, by
contrast, all particles play an equal role in such a way that the
distribution function extends smoothly over the entire Fermi
surface. Plasmon modes can be observed by a variety of ex-
perimental tools including inelastic light scattering [3], which
has been widely used to probe plasmons in semiconductor
heterostructures [4–6], but also by surface-physics techniques
like high-resolution electron-energy-loss spectroscopy [7],
more indirectly, angle-resolved photoemission spectroscopy
[8], double-layer field-effect transistors with a grating gate
[9], and scattering-type scanning near-field optical microscopy
[10] can also be used to detect plasmons.

The physics of decoupled two-dimensional (2D) electron
systems has been a subject of theoretical and experimental
interest since it was recognized [11,12] that electron-electron
interactions allow the energy and momentum to be transferred
between layers while maintaining separate particle-number
conservation. The study of Coulomb-coupled 2D systems has
now been revitalized by advances which have made it possible
to prepare robust and ambipolar 2DEGs, based on graphene
[13], which are described by an ultrarelativistic wave equation
instead of the nonrelativistic Schrödinger equation.
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The discovery of two-dimensional electron gas (2DEG) at
the interface between two perovskite band insulators LaAlO3

(LAO) and SrTiO3 (STO) when more than three unit cells of
LAO are grown on a TiO2-terminated STO crystal has attracted
attention. Electrons at the interfaces with partially occupied d

orbitals interact with each other and with the lattice. This gives
rise to wide electronic properties, such as conductivity [14,15],
superconductivity, [16] and magnetism [17]. This 2DEG is
located only a few nanometers below the surface and its
properties are therefore sensitive to other materials deposited
on this surface. More interestingly, decoupled structures
combining graphene with LAO/STO junctions represent an
exciting platform in which novel phenomena may emerge
from the strong electronic coupling of the respective 2DEGs.
Recently, the transport properties of hybrid devices obtained
by depositing graphene on a LAO/STO oxide junction hosting
a 4-nm-deep 2DEG has been studied [18,19].

The existence of plasmon modes at the interface of LaAlO3

and SrTiO3 has been confirmed experimentally [20] and was
predicted theoretically [21]. In this work, we study collective
modes of the 2DEG residing at this interface and the plasmon
excitations of graphene-LAO/STO double layer as well by
using a simple three-band model Hamiltonian for 2DEG
at the oxide interface. Having considered electron-electron
interaction within random phase approximation, we calculate
the plasmon dispersions of both systems numerically. One
optical mode and two (three) acoustic modes are predicted for
the LAO/STO (graphene-LAO/STO) system where only the
uppermost acoustic mode of both systems can emerge above
the electron-hole continuum depending on the characteristics
of each system. We also derive analytical expressions for both
optical and acoustic (damped and undamped) collective modes
at the long-wavelength limit, which were in perfect agreement
with the numerical findings. In the case of LAO/STO system,
while the low-lying acoustic mode is always damped, the
emergence of the upper acoustic mode above the particle-hole
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excitations of the system depends on the dielectric constant
of surrounding medium as well as the carrier density at the
interface. More precisely, for a large dielectric constant of
the medium, not only the uppermost acoustic mode of the
system disappears, even at the long-wavelength limit, but
also the damping of the optical mode begins in a lower
energy and longer wavelength. Because the dielectric constant
of SrTiO3 increases with decreasing the carrier density at
the interface [22,23] and leads to a strong suppression of
the electron-electron interaction, it is believed that plasmon
modes can not emerge in such a system. This could be
the main reason why in a recent work, where a polaronic
metal state has been found, the plasmon modes were not
detected [24]. It is also interesting to know that the polaronic
state breaks down for large electron densities [25]. The
detection of the plasmon modes, on the other hand, depends
strongly on the cleanliness of the system, because defects and
impurities can accelerate plasmon damping. Apparently, the
experimental system in Ref. [24] can not be considered as a
clean system since the electron mobility reported in this paper
is of order of 1000 cm2 (Vs)−1 at low temperature, which
is almost ten times smaller than the typical mobility of this
system [14,26–28]. Therefore a high-quality sample with high
electron concentrations is needed to observe plasmon modes
for such a system.

In the case of graphene-LAO/STO, we also find an
expression for the critical value of the interlayer distance
above which the upper acoustic mode can emerge in the region
where the imaginary part of the dielectric function of the
system vanishes and the mode is undamped at least in the
long-wavelength limit.

This manuscript is organized as follows. In Sec. II, we
present the model and results we have used to introduce the
linear-response functions which describe collective electron
dynamics and to describe plasmon modes of 2DEG at the
transition metal oxide interface. In Sec. II, we present our main
analytical and numerical results for the dispersion of optical
and acoustic plasmons in the decoupled graphene-LAO/STO
system. Finally, Sec. IV contains a summary of our main
conclusions.

II. PLASMON MODES OF LAO/STO

It has been illustrated that t2g orbitals (dxy,dxz,dyz) of Ti
atom host the 2DEG at the interface of SrTiO3 and LaAlO3

[29,30]. The larger spatial extension of the dxy (dyz/dxz) orbital
in x̂ (ŷ/x̂) and ŷ (ẑ/ẑ) directions with respect to ẑ (x̂/ŷ) results
in the formation of an isotropic dxy band with the same large
hopping t and light effective mass mL in both x̂ and ŷ directions
and two anisotropic dyz and dxz bands with a large hopping
t and light effective mass mL in ŷ(x̂) direction and small
hopping t ′ and heavy effective mass mH in x̂(ŷ) direction at
the interface. Furthermore, the confinement of 2DEG along ẑ

lowers the energy of dxy band by the off-set energy � with
respect to the other two bands. These considerations lead to
a tight-binding Hamiltonian, diagonal in orbital space with
elements [Ĥ0]ij = (tx,i cos kx + ty,i cos ky)δij , where tx,2 =
ty,3 = t ′ and tx,1 = ty,1 = ty,2 = tx,3 = t [31–33]. Expanding
the tight-binding Hamiltonian around the � point, a minimal
model Hamiltonian of the carriers at the interface of LaAlO3

and SrTiO3 can be written as [34–37]

Ĥ =
∑
k,θ,i

(
h̄2k2 cos2(θ )

2mx,i

+ h̄2k2 sin2(θ )

2my,i

+ �i

)
φ̂
†
k,i φ̂k,i

+ 1

2S

∑
q �=0,i,j

Vij (q)ρ̂(i)
q ρ̂

(j )
−q . (1)

The first term of the Hamiltonian is the kinetic part where
i = 1, 2, and 3 corresponds to dxy, dyz, and dxz bands, �1 = 0,
�2 = �3 = �, and φ̂

†
k,i(φ̂k,i) creation (annihilation) operator

of an electron with momentum k in band i. We also emphasize
that mx,1 = my,1 = my,2 = mx,3 = mL and mx,2 = my,3 =
mH . The second term indicates the long-range Coulomb inter-
action in the system, where Vij (q) = v(q)e−qaij = 2πe2

ε̄q
e−qaij

is the 2D Coulomb electron-electron interaction and ε̄ is the
average dielectric constant of the surrounding medium, S is the
sample area, and ρ̂

(i)
q = ∑

k φ̂
†
k−q,i φ̂k,i is the density operator

of band i. Because of the larger effective mass of dxy orbital in
ẑ direction, it is more confined to the interface, which results in
an orbital dependence of the Coulomb interaction [31,35]. This
effect, which plays a crucial role in determining the second
collective mode of the system, is captured by introducing
an effective distance aij between orbital i and orbital j and
vanishes except for a1,2 = a2,1 = a1,3 = a3,1 = a.

It is important to mention that the spin-orbit interaction
also plays a role in this system. Furthermore, the inversion
symmetry breaking along ẑ at the interface leads to the Rashba
interaction as well [32–34,38]. The most significant effects
of these terms on the band dispersion emerge near the band
degeneracy points (in the form of orbital mixing and also band
splitting). Since in this paper, we work with a density regime
high enough to stay far from these points, accordingly, the
tight-binding Hamiltonian of Eq. (1) can properly describe the
system [35–37].

In order to find the plasmon modes, we need to find the poles
of the linear-response function of the system, which within the
random phase approximation (RPA) is given by [2]

χ̂−1(q,ω) = χ̂0−1(q,ω) − V̂q, (2)

where χ̂0(q,ω) is the noninteracting density-density response
matrix of the system, which is diagonal with elements χ0

1 (q,ω),
the well-known noninteracting density-density response func-
tion of the conventional 2DEG [2], χ0

2 (q,ω) and χ0
3 (q,ω)

the noninteracting density-density response functions of a
two-dimensional electron gas with elliptical band dispersion.
While the first element χ0

1 (q,ω) is already known, the response
function of elliptical band dispersion can be easily found by ap-
plying a Herring-Vogt transformation [39] kx → kx

√
mx/mD

and ky → ky

√
my/mD with mD = √

mxmy and so we will
have [35,37]

χ0
2 (q,ω) = χ0

1 (q ′,ω; mD)
∣∣
q ′→(q2

x

√
ξ+q2

y

√
1
ξ

)1/2 (3)

and

χ0
3 (q,ω) = χ0

1 (q ′,ω; mD)
∣∣
q ′→(q2

x

√
1
ξ
+q2

y

√
ξ )1/2 , (4)

where ξ = mL/mH . Also making use of this transformation
one can define an identical parameter kF,2 = √

2mDεF/h̄

165419-2



PLASMONS AT THE LaAlO3/SrTiO3 INTERFACE . . . PHYSICAL REVIEW B 95, 165419 (2017)

related to the Fermi wave vector average for both elliptical
bands. Note that the density-density response function of the
circular band, χ0

1 (q,ω), depends only on |q| ≡ q.
The collective modes of the system can be achieved by the

poles of the response function (2) or equivalently the zeros of
the dielectric function,

ε(q,ω) = (1 − v(q)χ0
1 (q,ω))

[
1 − v(q)

(
χ0

2 (q,ω) + χ0
3 (q,ω)

)]
− v2(q)e−2qaχ0

1 (q,ω)
[
χ0

2 (q,ω) + χ0
3 (q,ω)

]
. (5)

Since in this system the Fermi surface is crossed by three
bands with different Fermi velocities, we expect to have three
collective modes [40]; one optical plasmon mode with the
square root dispersion relation, which can be interpreted as
the in-phase oscillations of the electrons of all bands and two
acoustic plasmon modes, which are the oscillations of the
slower electrons of the system screened and damped by single-
particle excitations of the faster carriers. The optical plasmon
mode always occurs above the electron-hole continuum of the
fastest carriers of the system where the imaginary part of the
dielectric function is zero. We note that in a 2DEG system
the upper boundary of the electron-hole excitation region is
defined as ω+ = vF|q| in the long-wavelength limit [2], where
vF is the electron Fermi velocity. The same expression can
be used to describe the upper boundary of the electron-hole
continuum of the elliptical bands using the transformations of
Eqs. (3) and (4) for |q|. In this way, we can define a direction-
dependent upper electron-hole continuum boundary for the
elliptical bands of the form

ω+,yz(θ ) = (h̄kF,2/mD)(cos2(θ )
√

ξ + sin2(θ )
√

1/ξ )1/2|q|
(6)

and

ω+,xz(θ ) = (h̄kF,2/mD)(cos2(θ )
√

1/ξ + sin2(θ )
√

ξ )1/2|q|.
(7)

Showing the direction independent part of the above
boundaries with vF2 = h̄kF,2/mD and the angle dependent
parts as z1(θ ) and z2(θ ), we can briefly write ω+,yz(θ ) =
vF2z1(θ )|q| and ω+,xz(θ ) = vF2z2(θ )|q|. Note that the Fermi
velocity of the circular band is simply vF,xy = vF1 = h̄kF1/mL

and its electron-hole continuum boundary is ω+,xy = vF1|q|.
For all electron densities used in this paper and all orientations
of q, the velocity of the electrons of the circular band is larger
than the other two bands.

A. Analytical results at long-wavelength limit

At the long-wavelength limit q → 0, we would have an
undamped optical collective mode of the form ωop(q → 0) ∝√

q. To derive an analytic expression for the long-wavelength
limit of the optical plasmon dispersion of the system, we make
use of the expansion of the noninteracting density-density
response function of the 2DEG for q → 0 and ω � qvF1 (vF1

is the largest Fermi velocity among the carriers of all bands
which as mentioned before, belongs to circular band here),
which to the leading order in q is [2]

χ0
i (q,ω) 	 ni |q|2

miω2
, (8)

where ni and mi are the density and effective mass of the band
i. We note that for elliptical bands m2,3 = mD we should apply
the rescaling of Eqs. (3) and (4) as well. Substituting Eq. (8)
for each band in Eq. (5), the frequency of the optical mode of
the system in the long-wavelength limit will be

ω2
op(q → 0) = 2πe2

ε̄

[
n1

mL

+ n2

(
1

mL

+ 1

mH

)]
q. (9)

It can be seen that the optical mode of the system is the
combination of optical mode of each band if treated separately.

The long-wavelength behavior of the other two acoustic
modes is of the type ωac(q → 0) = csq, where cs is the
acoustic mode group velocity. The first acoustic mode of
the system occurs naturally in the region qvF2zm(θ ) < ω <

qvF1(zm = max{z1,z2}) where the acoustic plasmons of the
second and third bands are completely Landau damped by the
electrons of the first band (by the first band we mean the band
with the fastest electrons and the second and third bands are the
bands with intermediate and low velocities) [41]. In order to
calculate the damped plasmon modes, we let the frequencies to
have an imaginary part and solve ε(q,ω + iδ) = 0. Following
Ref. [42], we are going to find an analytical expression for the
oscillation velocity of the first acoustic mode of the system in
the long-wavelength limit (q → 0). We introduce the power
expansion

ωac = (cs + iδ)q + c2q
2 + c3q

3 + · · · , (10)

where coefficients ci can also be complex.
Substituting this expansion in Eq. (5) and also in analytical

expressions of the density-density response functions of the
bands, we arrive at a Laurent-Taylor expansion for Eq. (5):

ε(q,(cs + iδ)q + c2q
2 + · · · ) = f−1q

−1 + f0 + f1q + · · ·.
(11)

To find the zeros of the above equation, all the coefficients fi

should vanish independently, which in our case are complex
expressions. The only complex equation we need to solve for
finding cs and δ is f−1 = 0 (because f−1 depends only on
cs and δ). Therefore we get two nonlinear equations to solve
in δ and cs . We arrive after some algebra to the following
expression for δ:

δ = − (BC)[
√

BC(1+4k2a) − 2k2acs(
√

B+√
C)]

(
√

AvF2cs)(mD/mL+2k2a)(z1C3/2+z2B3/2)
, (12)

where k2 = 2mDe2/ε̄h̄2 is the Thomas-Fermi wave vector of
the second and third bands. We also define A = (v2

F1 − c2
s ),

B = (c2
s − z2

1v
2
F2), and C = (c2

s − z2
2v

2
F2).

Substituting expression (12) in

(2k2aδ)[BCvF1(
√

B +
√

C) − AvF2(z1C
3/2 + z2B

3/2)]c3
s

− (BC)3/2(vF1δ)(1 + 4k2a)c2
s

− (A3/2BC)

(
mD

mL

+ 2k2a

)
(
√

B +
√

C)cs

+ (ABC)3/2

(
1 + 2

mD

mL

+ 4k2a

)
= 0, (13)
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we end up with an equation only in cs to be solved. Finding
cs via this equation and putting it back in expression (12), we
will find δ as well. Notice that cs and δ are θ -dependent and
thus we expect that the plasmon modes change along different
q directions. In order to have a physical plasmon mode, δ has
to be very small.

It is also worthwhile to note that depending on the
characteristics of the system, the first acoustic plasmon can
also occur in the region ω > qvF1, so that it will be undamped
unless it touches the boundary of the particle-hole continuum
of the fastest electrons (ω = qvF1). In this case, the acoustic
plasmon group velocity can be obtained by the same procedure
described before, except that the solutions of Eq. (5) are
real, δ = 0. Again, we find the following equation whose
solution gives us the group velocity of the undamped acoustic
plasmon:

(2k2a)(
√

B +
√

C)c2
s −

√
A′(

√
B +

√
C)

(
mD

mL

+ 2k2a

)
cs

−
√

BC(1 + 4k2a)cs +
√

A′BC

(
1 + 2

mD

mL

+ 4k2a

)
= 0.

(14)

With A′ = (c2
s − v2

F1). The threshold of cs above which the
undamped acoustic plasmon emerges is cs = vF1. Using this
value in either Eq. (13) or (14), we find a critical value for
(ak2)cr:

(ak2)cr = 1

2

√
BC

(
√

B + √
C)vF1 − 2

√
BC

. (15)

For larger values of ak2, the acoustic plasmon occurs above
the particle-hole continuum of all bands and for smaller values,
the acoustic plasmon acquires a finite lifetime even at a large
wavelength limit. For bilayer systems in which the distance
between layers is arbitrary and all the characteristics of
the system such as dielectric constant and effective masses are
well-known, (ak2)cr reduces to acr, which means that we
can adopt the distance between layers so that the acoustic
plasmon becomes an undamped mode. However, in the system
in question, the effective distance between dxy orbital and
the other two orbitals are set by the density of carriers and
as we increase the electron density at the interface, this
effective distance reduces. Furthermore, the dielectric constant
of SrTiO3 is not yet well-known. Although it has a large
value of about εs = 25 000 at low temperatures, it strongly
depends on the electric field and the density of electrons at the
interface. While scientists have proposed some expressions
which can express the overall behavior of εs [22,23], its exact
value, especially at low temperatures, is still under debate.
Therefore, to cover all possible situations in which collective
modes can occur, we solve the problem for different values
of εs .

As we stated before, we have two acoustic plasmon
modes in this system. The second acoustic mode lies in the
region qvF2zs(θ ) < ω < qvF2zm(θ ) with zs = min{z1,z2}. In
a similar way we obtained Eqs. (12) and (13), we have found
analytical expressions for the plasmon group velocity of the
second acoustic mode and its damping in Appendix. This
plasmon mode is always damped, even at the long-wavelength

limit. To find critical characteristics of the system above
which the plasmon mode enters the second region, we get
the condition (ak2)cr = − 1

2
mD

mL
, which is obviously impossible,

therefore the second plasmon always occurs in the third region
and it is strongly damped. This mode also disappears for
θ = π/4. In this case, vF,xz = vF,yz and the electron-hole
continua of dxz and dyz bands coincide, which means that
the carriers of these bands behave completely the same and we
have effectively a two-carrier system.

B. Numerical results and discussions

In this section, we present our numerical findings of
plasmon modes at the LAO/STO interface. To obtain the
collective modes of the interface of LAO/STO, we set ns =
7×1013 cm−2, mL = 0.68me, and mH = 7.56me [23], where
ns is the total electron density of the interface and me is the
electron mass. The energy gap between dxy orbital and other
orbitals is � = 50 meV and the effective distance between
them is assumed to be a = 10a0 with a0 = 3.9 Å, the lattice
constant of SrTiO3 [35]. Here, we use kF,1 as a unit of
momentum in such a way that q = kF,1q̄ and we use the
Fermi energy in the circular band εF,1 = h̄2k2

F,1/2mL as a unit
of energy where h̄ω = εF,1ω̄. In all figures, we set θ = π/2,
otherwise we specify its value.

To begin with, in Fig. 1(a), the analytical results obtained
for optical and acoustic plasmon dispersions in the long-
wavelength limit q → 0 are compared with the numerical
calculations for ε̄ = 300. The perfect agreement between the
analytical results and the numerical calculations of the plasmon
modes is confirmed in these figures. The same agreement
between analytical and numerical findings holds for other
values of dielectric constant as well. In Fig. 1(b), we illustrate
our numerical results of the Landau damping of the first and
second acoustic plasmon modes of the system as a function
of |q̄| for ε̄ = 300. For the plasmon mode to be physical,
the damping should be small in comparison to the plasmon
frequency, which can be verified according to Fig. 1(b).
The δ̄ tends to zero for larger |q̄| when the corresponding
plasmon modes attain to one of the electron-hole continuum
boundaries.

In Fig. 2, we show the three branches of collective modes
of the system for different values of the dielectric constant of
SrTiO3, namely, εs = 15, 75, 175, and 575 for which the aver-
age dielectric constant of the system would be ε̄ = 20, 50, 100,
and 300, respectively (the dielectric constant of LaAlO3 is
εl = 25). The dotted red line shows the optical plasmon of the
system while the dashed dotted blue line and the solid pink
line illustrate the first and second acoustic plasmon modes.
The dashed green lines show the boundary of the electron-hole
continuum of the bands, the region in which 
mχ0

i (q,ω) differs
from zero. The line with the larger slope is the upper boundary
of the particle excitations of the band with the fastest carriers
below which the imaginary part of the dielectric function
has a finite value and the plasmon modes become damped.
As seen in this figure, the optical mode emerges always
in the undamped region but it becomes damped for higher
frequencies. In general, if the quasiparticle goes slightly faster
than the wave, it will be slowed down, and will thus give energy
to the collective mode [2]. On the contrary, if it is slightly
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FIG. 1. (a) First (top) and second (bottom) acoustic plasmon
dispersion ω̄(q̄) vs |q̄| for ε̄ = 300. The analytical results (solid
lines) of the first acoustic mode are obtained from Eqs. (12) and
(13) and for the second acoustic mode we have used Eqs. (A1) and
(A2). Numerical results are also shown for comparison (squares). The
dashed green line shows the boundary of the electron-hole continuum
of the first band. (Inset) The same comparison for the optical mode
of the system, ω̄op(q̄). The long-wavelength analytical solid line is
obtained from Eq. (9). (b) The Landau damping of the first and
second acoustic modes, −δ̄(q̄) as a function of |q̄|.

slower, it will receive energy from the collective mode. Under
equilibrium conditions, the distribution of quasiparticles is a
decreasing function of their velocity. The net balance of energy
corresponds to an energy transfer from the collective mode to
the individual quasiparticles. In general, once Landau damping
becomes possible, the collective mode has such a short lifetime
that it no longer represents a well-defined excitation of the
system. Moreover, for larger values of the dielectric constant
of SrTiO3, εs decreases the critical energy in which this mode
becomes damped. The damping of the first and uppermost
acoustic mode depends strongly on the value of εs , while it is
undamped at lower energies for lower values of εs , it becomes
completely damped at all energies for high enough values of
the dielectric constant. Using Eq. (15), we can find the critical
value for the dielectric constant of the system for the specific
value of a, above which the first acoustic mode becomes

FIG. 2. Plasmon modes of the system, ω̄(q̄), for different values
of the average dielectric constant as a function of |q̄| (a) ε̄ = 20, (b)
50, (c) 100, and (d) 300. Dotted red line shows the optical plasmon,
the dashed dotted blue line and the solid pink line illustrate the first
and second acoustic plasmon modes. The dashed green lines show
the boundary of the electron-hole continuum of the bands. For larger
values of the dielectric constant of SrTiO3, the critical energy in which
the mode becomes damped decreases.

damped at all frequencies, ε̄cr = 164, which corresponds to
εs = 303.

As seen in Fig. 2, for ε̄ > ε̄cr [Fig. 2(d)], the first acoustic
plasmon is entirely damped, but for ε̄ < ε̄cr, we can find a
region in the limit q → 0 where the first acoustic mode is
undamped. In the case ε̄ = 300, the critical effective distance
a above which the undamped first acoustic plasmon emerges
is 7.1×10−7 cm−2 that is almost twice larger than the effective
distance we employed. The second acoustic plasmon mode, as
we mentioned before, is strongly damped in all cases.

In Fig. 3(a), we compare the optical modes of the system for
different values of ε̄. In Fig. 3(b), the same comparison is made
for the first acoustic mode. The damped part of the modes is
not illustrated in this figure. For larger dielectric constant of the
medium, the system has a shorter Thomas-Fermi wavelength
and therefore both optical and acoustic modes touch the
particle-hole continuum boundary in a smaller wavelength and
become damped. Having mentioned before, for ε̄ = 300, the
first acoustic mode is entirely damped, so it is not shown in
Fig. 3(b).

Since the band dispersion of LAO/STO is anisotropic, the
response function is a function of both the absolute value of
the wave vector q and its angle θ . To compare the results
of the plasmon modes for different orientations of the wave
vector q, in Fig. 4, we show the first acoustic plasmon for
two different angles θ = π/2 and θ = π/4. In the inset, once
again we see the first acoustic mode frequency of the system
as a function of θ for q̄ = 0.45. The figures are plotted for
ε̄ = 20 and the dashed green lines show the boundary of the
electron-hole continuum for θ = π/2. The anisotropy of the
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FIG. 3. (a) Optical ω̄op(q̄) and (b) first acoustic mode ω̄ac1 (q̄) of
2DEG at interface LAO/STO for different values of ε̄ as a function
of |q̄|. For larger dielectric constant of the medium, the system
has a shorter Thomas-Fermi wavelength and therefore both optical
and acoustic modes touch the particle-hole continuum boundary
in a smaller wavelength and become damped. The dashed green
lines show the boundary of the electron-hole continuum of the first
band.

band dispersion has a small effect on plasmon modes and the
modes for wave vectors in different direction are exactly the
same, except for larger wave vectors where small deviations
appear. It is interesting to note that the optical mode is the
same for all angles of q. In the long-wavelength limit, this can
be approved analytically considering Eq. (9).

To better understand this almost unexpected behavior, in
Fig. 5, we plot the real and imaginary parts of the dielectric
function of the system as a function of q̄x and q̄y for ω̄ = 1.
It is clear from the figures that the dielectric function of the
system becomes more and more isotropic as we move into
smaller wave vectors. Therefore the optical mode, which for
a specified frequency occurs at the smaller wave vector, is

FIG. 4. First acoustic plasmon dispersion of the system as a
function of |q̄|, ω̄ac1 (q̄), for θ = π/2 (solid line) and θ = π/4 (dashed
dotted line). (Inset) Polar plot of the first acoustic mode frequency
vs θ , the radial orientation of wave vector for q̄ = 0.45 (ε̄ = 20).
The anisotropy of the band dispersion has a small effect on plasmon
modes and the modes for wave vectors in different directions are
the same, except for larger wave vectors where small deviations
appear.

completely isotropic and the acoustic mode is only weakly
anisotropic. On the other hand, for all the values of electron
density we can assume, the fastest carriers of the system are
those of circular band dxy. These electrons form an isotropic
electron-hole continuum boundary (ω = vF1q) above which
the undamped plasmon modes appear. In order to see more
explicitly the effect of the anisotropic bands on plasmon
modes, the slope of the electron-hole continuum boundary of at
least one of the elliptical bands should be larger than that of the
circular band. In this case, the boundary of the electron-hole
continuum of the fastest carriers become anisotropic [Eqs. (6)
and (7)] and a more anisotropic behavior for the collective
modes is expected. But for this condition to be fulfilled, at least
we should have n2 > mH

mL
n1, the condition is never satisfied for

any value of the band offset.
In order to understand the impact of weak disorder on

the plasmon modes, we modify slightly the noninteracting
response function to capture that effect at the long-wavelength
limit. To do so, the noninteracting density-density response
functions in Eq. (5) should be replaced by the disorder averaged
response functions of each band [2], which for the isotropic
2DEG has the following form:

χ0
imp(q,ω) ≈ −N (0)

⎛
⎝1 − ω√

(ω + i/τ )2 − v2
F q2 − i/τ

⎞
⎠,

(16)

where τ is the elastic lifetime of the momentum eigenstates
in a disordered system and N (0) = m/πh̄2 with m being the
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FIG. 5. Cross section of (a) real and (b) imaginary parts of the
RPA dielectric function ε(q̄,ω̄) Eq. (5) vs q̄x and q̄y for ω̄ = 1 (ε̄ =
20). The dielectric function becomes more isotropic for smaller wave
vectors. Therefore the optical mode is completely isotropic and the
acoustic mode is only weakly anisotropic.

effective mass. Note that for the elliptical bands, transforma-
tions similar to Eqs. (3) and (4) should be applied. In Fig. 6,
we illustrate the effect of weak disorder on the plasmon modes
of the system. It is clear from the figure that the influence of
disorder on the acoustic mode is considerable and this mode
disappears completely for |q| < 0.04 at the given density. The
same effect can be seen for the optical mode in the inset, but in
this case the plasmon mode vanishes for a longer wavelength
|q| < 0.002. In both cases, disorder also decreases the plasmon
energy. Consequently, in the presence of disorder, it is difficult
to access plasmon modes experimentally, especially at the
long-wavelength limit. It is also worthwhile to note that in the
low electron densities and hence the large dielectric constant of
the medium, the modes are closer to the electron-hole boundary
and therefore it would be even more difficult to observe the
plasmon modes in the presence of disorder in the system. The
precise influence of defects and impurities on the plasmon

FIG. 6. First acoustic plasmon dispersion, ω̄ac1 (q̄), as a function
of |q̄| in the presence of disorder (dashed dotted line) for τ−1 =
0.2εF,1. The plasmon mode for the pure system is also shown for
comparison (solid line). The dashed green line is the boundary of
the electron-hole continuum and the results are obtained for ε̄ = 20.
(Inset) Optical plamon mode, ω̄op(q̄), in the presence of disorder
(dashed dotted line) and for a pure system (solid line).

modes has not been explored and it remains an open question
in the system.

III. PLASMON MODES OF GRAPHENE-LAO/STO
DOUBLE LAYER

In this section, we would like to consider a structure
combining a doped graphene layer deposited on the top of
LaAlO3. Therefore we have a double layer structure with
graphene on the top and a three-band 2DEG at the interface of
LAO/STO, separated from each other by a distance d, which
in this case it would be the thickness of LaAlO3 with dielectric
constant ε2 as shown in Fig. 7. Assuming the subsystems are
unhybridized, the interlayer tunneling can be neglected and
Coulomb interaction is the only source of coupling between

FIG. 7. A schematic of the double layer system constructed from
graphene at the top layer and a two-dimensional t2g electron gas at
the interface of LaAlO3 and SrTiO3 as the bottom layer.
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layers. The Hamiltonian of the system then reads

Ĥ = h̄vD

∑
k,α,β

ψ̂
†
k,α(σ αβ · k)ψ̂k,β + 1

2S

∑
q �=0

Vgg(q)ρ̂(g)
q ρ̂

(g)
−q

+
∑
k,θ,i

(
h̄2k2 cos2(θ )

2mx,i

+ h̄2k2 sin2(θ )

2my,i

+ �i

)
φ̂
†
k,i φ̂k,i

+ 1

2S

∑
q �=0,i,j

Vij (q)ρ̂(i)
q ρ̂

(j )
−q

+ 1

2S

∑
q,i

Vgi(q)
(
ρ̂(g)

q ρ̂
(i)
−q + ρ̂(i)

q ρ̂
(g)
−q

)
, (17)

where vD ≈ 106 m/s is the Dirac velocity, σ is a vector whose
components are the Pauli matrices σx and σy , α and β are
sublattice indices in graphene, ψ̂

†
k,α and ψ̂k,α are creation

and annihilation operators in graphene, S is the sample area,
Vgg(q) is the Fourier transform of the bare Coulomb interaction
between electrons in graphene, and ρ̂

(g)
q = ∑

k,α ψ̂
†
k−q,αψ̂k,α is

the density operator in graphene. The terms in the second and
third lines are the Hamiltonian of the 2DEG at the interface
described in previous section and finally Vgi(q) in the last line
is the Coulomb interaction between electrons in graphene and
the electrons of band i at the interface. In this case, since the
distance between layers, d, is a few nanometers, we can neglect
a, the effective distance between t2g orbitals that we assumed
in the previous section.

Following some simple and straightforward electrostatic
calculations [43], it has been shown that for multilayer
structures the Coulomb interaction is changed such that in
our case, we have

Vgg(q) = 4πe2

qD(q)
[(ε2 + ε3)eqd + (ε2 − ε3)e−qd ] (18)

and

Vgi(q) = Vig(q) = 8πe2

qD(q)
ε2 (19)

with

D(q) = [(ε1 + ε2)(ε2 + ε3)eqd + (ε1 − ε2)(ε2 − ε3)e−qd ]

(20)

and Vij (q) = Vgg(q)|ε3↔ε1 . Note that as we neglect the effec-
tive distance between circular and elliptical bands here, Vij

is the same for all values of i and j . To find the collective
modes of the system within RPA, once more, we should
employ Eq. (2). In this case, χ̂0(q,ω) is the 4×4 diagonal
noninteracting density-density response matrix of the system
with elements χ0

g (q,ω), the noninteracting density-density
response function of graphene [44], and χ0

1 (q,ω), χ0
2 (q,ω), and

χ0
3 (q,ω), which we have introduced before. Inverting Eq. (2),

the dielectric function of the system reads

ε(q,ω) = [
1 − Vgg(q)χ0

g (q,ω)
][

1 − Vij (q)
(
χ0

1 (q,ω)

+χ2(q,ω) + χ3(q,ω)
)] − V 2

gi(q)χ0
g (q,ω)

× [
χ0

1 (q,ω) + χ0
2 (q,ω) + χ0

3 (q,ω)
]
. (21)

The zeros of the dielectric function are the collective modes
of the system. Here again we can find an optical higher
frequency plasmon mode [ωop(q → 0) ∝ √

q], which can be
found in both monolayer and double layer systems and as
discussed before, emerges from the in-phase oscillations of
the electrons of two layers. In double layer systems, there
is also a lower frequency acoustic mode [ωac(q → 0) ∝ q]
whose occurrence above the particle-hole continuum of the
system depends on characteristics of the system such as the
distance between two layers and the carrier density of each
layer [42,45–48]. In the system under consideration, since we
have a three-band electron gas at the bottom layer, we expect
to have three acoustic branches, two of which are located
below the electron-hole continuum and hard to detect but as
the previous case, the uppermost acoustic mode can emerge
above the boundary of the single-particle excitation region.

A. Analytical results at long-wavelength limit

At the long-wavelength limit q → 0, we can find an
analytical expression for both optical and acoustic collective
modes of the system. In this region and for ω � qvD (since
for all acceptable density values vD is larger than the largest
Fermi velocity of t2g bands), we can again make use of Eq. (8)
for the density-density response functions of the 2DEG at
the interface and also the limiting form of the density-density
response function of graphene [44]:

χ0
g (q,ω) 	

√
Ngng

π

vDq2

2h̄ω2

[
1 −

(
ω

2vDkF,g

)2
]

(22)

with ng the electron density in graphene layer, Ng = 4 (spin
and valley flavors in graphene layer) and the Fermi wave
vector of graphene defined as kF,g = √

4πng/Ng . Substituting
these expressions in Eq. (21), the long-wavelength limit of the
optical plasmon mode of the system leads to

ω2
op(q → 0)

= 2πe2

ε̄

[√
Ngng

π

vD

2h̄
+ n1

mL

+ n2

(
1

mL

+ 1

mH

)]
q (23)

with ε̄ = (ε1 + ε3)/2 (ε1 and ε3 are the top and bottom dielec-
tric constants). Note that similar to other double layer systems,
the optical plasmon mode is independent of the dielectric
material between layers and it is found as the combination
of plasmon modes of each subsystem individually.

To find the group velocity of the acoustic plasmon lying
above the electron-hole continuum, we follow the same
procedure described in the previous section. After some
algebra, we end up with the following equation for x = cs/vD:

R(x)[ε2

√
x2 − 1 + 2NgdkF,gαeef (x)]

+ 2Ngε2αeeh1(x)h2(x)h3(x)f (x) = 0, (24)

where

R(x) = �1g1(x)h2(x)h3(x)

+�2h1(x)[g2(x)h3(x) + g3(x)h2(x)] (25)
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FIG. 8. Variation of interlayer critical separation, dcr with electron
density, ns at the interface for t2g electron gas (solid line) and isotropic
one band 2DEG (dashed line). The acoustic plasmon of the isotropic
one-band 2DEG emerges in a smaller interlayer separation. This can
be owing to the stronger Coulomb coupling between layers when we
have t2g electron gas at the interface. Thus the acoustic mode begins
to appear in a larger interlayer separation.

and �i = 2Ns/(aB,ikF,g) [with Ns = 2 the spin flavor in
2DEG, aB,1 = h̄2/(mLe2) and aB,2 = h̄2/(mDe2)], hi(x) =√
x2Nsr

2
s,i−4α2

ee, gi(x)=hi(x)−x
√

Nsrs,i , f (x)=√
x2−1−x,

and αee = e2/h̄vD , and we define rs,i = 1/(aB,i

√
πni) with ni

the electron density of band i of 2DEG at the interface.
cs = vD or x = 1 is the minimum value of the sound

velocity above which the acoustic plasmon is undamped at
the long-wavelength limit. In this case, we define a critical
value for the distance between layers dcr as

dcr = −ε2h1(1)h2(1)h3(1)

kF,gR(1)
. (26)

When the distance between layers is larger than dcr, the
acoustic mode is lying out of the electron-hole continuum
and is undamped unless it touches the boundary of the
continuum, but for distances less than dcr the acoustic mode is
completely damped. That is because for smaller distances the
out-of-phase oscillations of the electrons is not easy owing to
the interlayer Coulomb interaction. The expressions (24)–(26)
are also generalization of the results of Ref. [47] (obtained for
graphene-2DEG double layer) for multiband and anisotropic
2DEG.

In Fig. 8, we show how dcr varies with increasing the
electron density at the interface. We also illustrate the same
results when an isotropic one band 2DEG with m∗ = mL

replaces t2g 2DEG. This can be the case when the elliptical
bands at the interface are not populated. It can be seen that the
critical value of the interlayer distance decreases as we increase
the electron density of the interface but it is independent of
the density of graphene [the latter can be concluded from
Eqs. (25) and (26)]. The reason is that the interaction of
2DEG and hence dcr decreases as the density increases, but
the interaction parameter (αee) of graphene is independent of

FIG. 9. First acoustic plasmon dispersion, ω̄ac1 (q̄) vs |q̄| for two
values of electron density at the interface. Numerical results (squares
and triangles) are obtained solving Eq. (21) and long-wavelength
analytical results (solid lines) are obtained from Eq. (24). (Inset)
Optical mode dispersion of the system, ω̄op(q̄) for ns = 5×1013 cm−2.
The long-wavelength analytical solid line is obtained from Eq. (23).

the density. Comparing the case of 2DEG and that of t2g, we can
see that for the whole range of electron density at the bottom
layer, the acoustic plasmon of the isotropic 2DEG emerges
in a smaller interlayer separation. This can be owing to the
stronger Coulomb coupling between layers when we have t2g

electron gas at the interface, so that the acoustic mode begins
to appear in a larger interlayer separation.

We can also see that similar to other double layer structures,
the emergence of an acoustic mode only depends on the
dielectric material between two layers (LaAlO3 in this case).
Note that although emerging the acoustic mode at the long-
wavelength limit depends only on ε2, the dielectric constant
of SrTiO3 still has a role, as for smaller values of ε3, the
damping of the acoustic plasmon mode occurs in larger wave
vectors.

B. Numerical results and discussion

In this part we find the behavior of the collective modes
of the system in the whole (q,ω) plane. All figures are
plotted assuming ng = 1012 cm−2, ε1 = 1 for the air, ε2 = 25
for LaAlO3 and ε3 = 20 for SrTiO3 and d = 40 nm. Note
that in this section we use kF,g as unit of the momentum
where q = kF,gq̄ and Fermi energy in the graphene layer
εF,g = h̄vDkF,g as unit of energy where h̄ω = εF,gω̄. In all
figures, we consider θ = π/2.

In Fig. 9, we illustrate the acoustic mode of the system
at the long-wavelength limit. We plot the acoustic mode
for two values of interface densities ns = 5×1013 cm−2 and
ns = 1×1014 cm−2. The squares and triangles are acoustic
modes of the system obtained solving Eq. (21) numerically
and the solid lines show the analytical result obtained from
Eq. (24) for long-wavelength limit. In the inset, we compare
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FIG. 10. Optical plasmon (upper graphs) and first acoustic plas-
mon (lower graphs) dispersions vs |q̄| for three values of electron
density at the interface. The dashed green line is also the boundary
of the electron-hole continuum of graphene. (Inset) Two solid lines
in this figure belong to the second and third damped acoustic modes
for ns = 7×1013 cm−2. Here again the dashed green lines refer to the
upper boundary of electron-hole continuum of each d band.

the long-wavelength analytical optical plasmon of the system
[obtained from Eq. (23)] with numerical results. Note that as
the analytical expressions are valid for qd � 1, for smaller
interlayer separations the agreement between analytical and
numerical results holds in larger wave vectors.

In Fig. 10, we illustrate all collective modes of the system
for different values of electron density at the interface. The
lower graphs in the figure show the acoustic modes and
the upper graphs belong to optical modes of the system.
The dashed line also shows the electron-hole continuum of
graphene layer (which has the fastest carriers in the system).
As seen from the figure, by lowering the electron density of
the interface, the damping of acoustic plasmon starts in a
smaller wave vector. The lower density of the interface results
in weaker screening of the electrons of the bottom layer, so the
Coulomb interaction between layers increases and in this case
it is hard for the carriers of the layers to oscillate out of phase.
In the inset, there are two other damped acoustic plasmons
of the system for ns = 7×1013 cm−2 with green dashed lines
specifying the electron-hole continuum of the three bands of
the 2DEG at the interface.

In Fig. 11, we compare the collective modes of the
decoupled system with the one with a simple one band 2DEG
at the interface with m∗ = mL and equal electron density as
t2g 2DEG case. The figure is plotted for two interface electron
densities ns = 7×1013 cm−2 and ns = 2×1014 cm−2. We see
that for the smaller electron density at the interface the optical
plasmon dose not change significantly, but the acoustic mode
starts damping in a smaller wave vector in the case of t2g

2DEG. Increasing the electron density to ns = 2×1014 cm−2,
not only we see the same behavior of the acoustic mode as the
previous case, but also a considerable change in optical mode

FIG. 11. (a) Optical mode dispersion of the system, ω̄op(q̄) vs
|q̄| with the electron density ns = 7×1013 cm−2 at the interface(solid
line) in comparison with the optical mode of a system with isotropic
2DEG at the interface with the same electron density (dashed dotted
line). (Inset) Comparison between acoustic modes of the systems,
ω̄ac1 (q̄). (b) Same as in panel (a) but for ns = 2×1014 cm−2.

can be seen as well. As we increase the density of carriers at
the interface, the dxz and dyz bands begin to be populated. In
lower interface density regime, the ratio of the carriers in these
heavier bands is less than the isotropic and light dxy band,
therefore the behavior of the optical mode does not change
significantly. However, in higher interface densities the role
of these bands becomes more and more important and their
heavier effective mass causes damping in lower wave vectors.
On the other hand, as the acoustic mode is a lower energy
collective mode it is more sensitive to the characteristics of
the system and even for lower densities at the interface, the
less populated dxz and dyz bands can affect the acoustic mode
considerably.

Finally, we compare the optical plasmon mode of the
decoupled double layer system with that of graphene and t2g

2DEG systems and the results are shown in Fig. 12. The impact

165419-10



PLASMONS AT THE LaAlO3/SrTiO3 INTERFACE . . . PHYSICAL REVIEW B 95, 165419 (2017)

FIG. 12. Optical modes of the decoupled double layer structure,
ω̄(q̄) in comparison with that of graphene and t2g 2DEG systems as
a function of |q̄| with the electron density ns = 7×1013 cm−2 at the
interface.

of correlations in the decoupled system is significantly large
at the small and mid wave vector values. Although the optical
mode of the t2g 2DEG system grows slowly, the optical mode
of graphene attains to the optical mode of the decoupled system
at larger q values. Accordingly, graphene and t2g 2DEG are
sensitive to their environment and their physical properties
change by other materials surrounding them.

IV. SUMMARY AND CONCLUSIONS

In the first part of this paper, we have investigated the
electronic collective modes of the 2DEG residing at the
interface of LaAlO3 and SrTiO3. Working in a carrier density
regime high enough to be able to forget the spin-orbit
interaction, we have used a simple three-band Hamiltonian.
Therefore we expect to have three collective modes in this
system, namely one optical mode and two acoustic modes.

We have demonstrated that while the low-lying acoustic
mode is always damped, the emergence of the upper acoustic
mode above the particle-hole excitations of the system,
depends on the dielectric constant of the surrounding medium
as well as the carrier density at the interface. We want to
emphasize that considering the effective distance between
circular and elliptical bands, is the key point in order to have an
undamped acoustic mode at the long-wavelength limit. Note
that lowering the electron density of the system, so that the
electrons only occupy the states of the circular dxy band, the
system transforms to a simple 2DEG, which has no more than
the ordinary optical plasmon. Therefore the acoustic modes
are expected to emerge in higher carrier density.

We have also discussed that because the fastest carriers of
the system belong to the isotropic dxy band, the anisotropy
of the other two bands can not affect the collective modes of
the system considerably and for any practical carrier density
and band offset energy between dxy and elliptical bands, the

carriers of the former are the fastest carriers in the system.
In addition, we have derived analytical expressions for both
optical and acoustic (damped and undamped) collective modes
at the long-wavelength limit, which were in perfect agreement
with the numerical findings.

The second part of this paper was devoted to the behavior
of the collective modes of graphene-LAO/STO double layer
separated by a distance d in ẑ direction, which is the thickness
of LaAlO3 layer in this case. In general, in a double layer
system, we have two collective modes, but the multiband
nature of t2g 2DEG increases the number of the plasmons, so
that in this double layer structure there are one optical mode
and three acoustic modes two of which are completely damped
as we have illustrated numerically.

Here again we have derived analytical expressions in the
limit of small qd for both optical and the top outermost acoustic
plasmons. We have found an expression for the critical value of
the interlayer distance above which the upper acoustic mode
can emerge in the region where the imaginary part of the
dielectric part of the dielectric function of the system vanishes
and the mode is undamped, at least in the long-wavelength
limit.

We have compared our results with the case in which only
the lowest band of the t2g 2DEG is occupied. The faster
damping of both optical and acoustic modes is concluded
especially for higher electron density at the interface, where
the elliptical band contribution in the dielectric function and
its effect on the plasmon modes of the system is increased.

The critical distance for the t2g electron gas in com-
parison with the conventional 2DEG can have interesting
consequences as well. If we have a double layer system
with interlayer distance between the critical distance of the
conventional 2DEG and that of t2g electron gas, going from
a one-band to a multiband phase by increasing the electron
density at the interface (neglecting the spin-orbit interaction),
the acoustic plasmon is expected to disappear or at least
weaken for electron densities larger than a critical value (where
dxz and dyz orbitals begin populating) and then again increasing
the electron density results in a shaper acoustic mode.

We should note that there are still some other intrinsic
damping mechanisms such as phonons and impurities, which
were not considered in our analysis. As we were working in a
very low temperature regime, neglecting the lattice phonon
scattering is a good approximation, but the influence of
impurities on the plasmon modes especially in the case of
not very clean interfaces can be of importance.
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APPENDIX: LONG-WAVELENGTH ANALYTICAL
EXPRESSIONS FOR THE SECOND ACOUSTIC

PLASMON OF LAO/STO SYSTEM

To find analytical expressions for the group velocity and
damping of the second acoustic mode of LAO/STO, we follow
the same procedure described to get Eqs. (12) and (13) but as
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mentioned in the text, in this case the acoustic mode lies in the region qvF2zs(θ ) < ω < qvF2zm(θ ) with zs = min{z1,z2} and
zm = max{z1,z2}. After some lengthy but straightforward calculations, we arrive at

δ = − ABC[
√

BC(1 + 4k2a) + √
AC(mD/mL + 2k2a) − 2k2a

√
Bcs]

(AB)3/2z2vF2(mD/mL + 2k2a)cs − 2k2aC3/2(z1vF2A + vF1B)c2
s

(A1)

and

(2k2aδB3/2)[vF1C − z2vF2A]c3
s −

[
(BC)3/2δvF1(1 + 4k2a) + AC3/2

(
δz1vF2

mD

mL

√
A + 2k2aB

)]
c2
s

− (AB)3/2C

(
mD

mL

+ 2k2a

)
cs + (ABC)3/2

(
1 + 2

mD

mL

+ 4k2a

)
= 0. (A2)

Substituting Eq. (A1) in Eq. (A2) and solving this equation for cs , the group velocity of the second acoustic plasmon is found.
Now putting cs back in expression (A1), we will have the Landau damping of this mode as well. Note that the definitions of A,
B, C, and k2 are given after Eq. (12).
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