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Theory of the spin-Seebeck effect at a topological-insulator/ferromagnetic-insulator interface
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The spin-Seebeck effect refers to voltage signals induced in metals by thermally driven spin currents in
adjacent magnetic systems. We present a theory of the spin-Seebeck signal in the case where the conductor that
supports the voltage signal is the topologically protected two-dimensional surface-state system at the interface
between a ferromagnetic insulator (FI) and a topological insulator (TI). Our theory uses a Dirac model for
the TI surface states and assumes Heisenberg exchange coupling between the TI quasiparticles and the FI
magnetization. The spin-Seebeck voltage is induced by the TI surface states scattering off the nonequilibrium
magnon population at the surface of the semi-infinite thermally driven FI. Our theory is readily generalized
to spin-Seebeck voltages in any two-dimensional conductor that is exchange-coupled to the surface of a FI.
Surface-state carrier-density-dependent signal strengths calculated using Bi2Te3 and yttrium iron garnet material
parameters are consistent with recent experiments.
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I. INTRODUCTION

The spin-Seebeck effect (SSE) [1–5], in which the spin-
current response to a temperature gradient in a ferromagnet
gives rise to a voltage signal in an adjacent metal, has
emerged as a central issue of spin caloritronics [6,7]. In the
case of bilayers [2–5] formed by an insulating ferromagnet
and a nonmagnetic metal, for example Pt and yttrium iron
garnet (YIG), the signal is interpreted [2–4] as an inverse
spin Hall effect (ISHE) voltage associated with conversion
between magnon and electron spin currents at the normal-
metal/ferromagnetic-insulator (FI) interface. The FI is often
modeled as a magnon gas [8–11], with classical dynamics
described by the stochastic Landau-Lifshitz-Gilbert equation
[12]. Adachi et al. explained the SSE by a quantum theory
with a temperature difference between electrons in the normal
metal and magnons in the FI [8]. Semiclassical theories rest
on a description of the conversion of the magnon spin current
generated by a thermal gradient to the electron spin current
[9–11] at the FI-metal interface.

Recently [13] a spin-Seebeck signal has been measured at
the interface between the topological insulator (TI) Sb-doped
Bi2Te3 and YIG (see Fig. 1). This experiment provides an
example of a SSE voltage signal induced in a two-dimensional
conductor that is coupled to the surface of a FI. Since the bulk
of the TI does not support a spin current, it is clear that the
SSE voltage signal generation mechanism must differ from the
ISHE mechanism thought to act in a FI/non-magnetic-metal
bilayer. SSE experiments are normally interpreted in terms of
momentum-averaged quantities such as the total spin current
[9–11]. Because the TI surface states are coupled to the FI
via exchange interactions, the signal must [13–15] originate
from TI surface-state quasiparticles scattering off the nonequi-
librium magnon population at the FI surface. As we show,
the spin-Seebeck voltage then depends on the full momentum
nonequilibrium distribution of magnons evaluated at the FI
surface, and not just on the nonequilibrium magnon density.

*okuma@hosi.phys.s.u-tokyo.ac.jp

In this paper, we present a theory for the SSE observed
in a TI/FI bilayer that is based on the semiclassical transport
theory applied to the bulk of the FI and to the TI/FI interface.
We show that the nonequilibrium magnon population at the
FI surface drives a charge current at the TI surface. By
analyzing the magnon and electron Boltzmann equations,
which well describe nonequilibrium transport under the static
electromagnetic field and thermal gradient, we obtain an
expression of the electric field induced at the TI surface under
open circuit conditions. Our theory can be easily generalized
to any two-dimensional conductor at a surface of a magnetic
material, e.g., to graphene on YIG.

The paper is organized as follows. In Sec. II, we solve the
steady-state magnon Boltzmann equation of a semi-infinite FI
in the presence of a thermal gradient oriented perpendicular
to the surface, assuming specular scattering of magnons, and
extract results for the magnon distribution at the surface.
In Sec. III, we consider the spin-momentum-locked Dirac
electrons at the TI surface and account for exchange coupling
to the FI. Using the nonequilibrium magnon distribution
function obtained in Sec. II, we evaluate the nonzero net rate of
transitions in the TI surface-state system induced by scattering
off the FI’s nonequilibrium magnon population and use it to
obtain an expression for the electric field induced under open
circuit conditions. In Sec. IV, we estimate the typical size of the
SSE using material parameters appropriate for Bi2Te3 and YIG
and compare our results with experimental data. Some related
effects in other hybrid materials are discussed in Sec. V.

II. MAGNON DISTRIBUTION AT THE SURFACE
OF A FERROMAGNETIC INSULATOR

WITH A PERPENDICULAR
TEMPERATURE GRADIENT

In this section, we use the magnon Boltzmann equation
with a specular-reflection boundary condition to calculate
the magnon distribution function at the surface of a FI with
a perpendicular temperature gradient. Henceforth, we set
h̄ = kB = 1.
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FIG. 1. Schematic illustration of the spin-Seebeck effect in
a topological-insulator/ferromagnetic-insulator (FI) bilayer. M̂ ‖ ŷ

indicates the FI ground-state magnetization direction. A finite voltage
in the x direction is generated by a vertical thermal gradient ∂zT .

A. Model of a ferromagnetic insulator

We consider a FI with magnetization in the y direction
as illustrated in Fig. 1. The low-energy spin excitations of
the FI can be described by magnon creation and annihila-
tion operators [a(x),a†(x)]. In the case of a quantum spin
model with spin S0 degrees of freedom on each lattice
site, creation and annihilation operators can be introduced
by the Holstein-Primakoff transformation: Sy = S0 − a†a,
Sz + iSx � √

2S0a, and Sz − iSx � √
2S0a

†, where Si is
a spin-operator component. In the following, we neglect
magnetic anisotropy. The Holstein-Primakoff transformation
then leads to a three-dimensional magnon gas with isotropic
quadratic dispersion ωq = D|q|2 at long wavelengths. Here D

is the spin stiffness, and q is the three-dimensional magnon
momentum. In terms of magnon operators, the low-energy
effective Hamiltonian for the FI is given by

Hm = V

∫
d3q

(2π )3
ωqa

†
qaq, (1)

where V is volume. At low energies, this magnon-gas model
applies equally well to ferrimagnetic insulators like YIG with
a net magnetization due to incomplete cancellation between
antiferromagnetically aligned spins.

B. Magnon Boltzmann equation

We now consider the magnon Boltzmann equation in the
presence of a thermal gradient:

∂nq

∂t
+ vqz

∂znq = ∂nq

∂t

∣∣∣∣
scatt

, (2)

where nq is the momentum-dependent magnon distribution
function, vqz

= ∂qz
ωq is the magnon velocity, and the right-

hand-side term is the scattering term. In the following,
we adopt the relaxation-time approximation in which the
scattering term is given by

∂nq

∂t

∣∣∣∣
scatt

= −nq − n
(0)
q (T (z))

τm

, (3)

where n
(0)
q = (exp(ωq/T (x)) − 1)−1 is the Bose distribution

function with local temperature T (z), and τm is a magnon
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FIG. 2. (a) Schematic illustration of specular reflection of
magnons at the FI/TI interface. (b) Total excess magnon population
δn as a function of the ratio of the distance from the interface |z| to
the magnon mean free path lm.

relaxation time. The validity of the relaxation-time approxi-
mation for the scattering term (3) is discussed in Sec. V.

For linear response to a temperature gradient, the Boltz-
mann equation becomes

vqz

[
∂z(δnq) + ∂zT

∂n
(0)
q

∂T

]
= −δnq

τm

, (4)

where δnq ≡ nq − n
(0)
q is the magnon distribution response. In

the following, we solve Eq. (4) assuming specular reflection
of magnons at the surface of the FI z = 0; i.e., we assume
that a magnon that approaches the surface from below with
momentum (q‖,qz) is scattered by the interface into a state
with momentum (q‖,−qz) [Fig. 2(a)]. This approximation
neglects diffuse scattering effects due to surface roughness
and does not account for interactions between the magnon
system and the TI surface quasiparticles. We show later that the
presence of the TI has a negligible influence on the FI magnon
distribution. Equation (4) is an inhomogeneous first-order
linear differential equation which we solve by integrating
backward along the path followed by the magnon to reach
a given position. For magnons at position z < 0 that have
positive (toward the surface) group velocity, this path does not
include reflection, whereas for magnons that have negative
(away from the surface) group velocity, the path includes
specular reflection at an earlier time. In this way we obtain
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that for qz � 0

δnq‖,qz
(z) = −τm|vqz

|∂zT
∂n

(0)
q

∂T
,

δnq‖,−qz
(z) = τm|vqz

|∂zT
∂n

(0)
q

∂T

[
1 − 2 exp

(
− |z|

|vqz
|τm

)]
.

(5)

Note that

nq‖,qz
(z = 0) = nq‖,−qz

(z = 0). (6)

Far from the surface, the temperature gradient induces a
magnon current, but because of cancellation between qz > 0
and qz < 0 response, it does not change the magnon density.
Close to the surface, the cancellation is imperfect. Using
Eq. (5), we obtain an expression for the total nonequilibrium
magnon density:

δn(z) ≡
∫

qz�0

d3q

(2π )3
[δnq‖,qz

+ δnq‖,−qz
]

∼ −τm∂zT

π2

∫ 1

0
dt

∫ qT

0
dq qt exp

(
− |z|

2Dτmqt

)
. (7)

In the second approximate version of this integrand, we have
set ∂n

(0)
q /∂T → 1/ωq for |q| � qT ≡ √

T/D, and set it to zero
for |q| > qT . Although this approximate expression can be
integrated analytically, the result is not particularly transparent.
We have plotted the total nonequilibrium magnon distribution
obtained by accurately integrating Eq. (7) in Fig. 2(b), where
we see that a nonequilibrium magnon population builds up at
the surface, where lm ≡ 2DqT τm is a characteristic magnon
mean free path. In the following sections, we consider the
interaction between the nonequilibrium magnons accumulated
at the interface and the electrons on the TI surface states.
We see that the spin-Seebeck voltage signal depends not only
on the total nonequilibrium magnon density, but also on its
momentum distribution in relation to the Fermi surface of the
TI surface states.

III. TOPOLOGICAL-INSULATOR DIRAC CONE
RESPONSE TO NONEQUILIBRIUM MAGNONS

In this section, we formulate a semiclassical theory of
the TI’s Dirac cone surface-state response to nonequilibrium
magnons. Using an electron Boltzmann equation with an
electron-magnon-scattering collision term, we are able to
obtain an expression of the electric field generated in the TI
surface-state system by the temperature gradient across the FI.

A. Model of the interface

We model [14,15] the TI surface states by a spin-
momentum-locked Dirac Hamiltonian:

He = A

∫
d2k

(2π )2
ψ

†
kĤe(k)ψk,

Ĥe(k) = vkxσ̂y − vkyσ̂x − μ1̂

=
∑
α=±

ξα
k |k,α 〉〈k,α|, (8)

where A is the system area, (ψ,ψ†) are two-component cre-
ation and annihilation spinors for the surface-state electrons,
k = (kx,ky) is the two-dimensional electron momentum, v is
the Fermi velocity, μ is the chemical potential, and σ̂i are Pauli
matrices that act in spin space. In the second line, we define
projection operators |k,±〉〈k,±| = (1̂ ± d(k) · σ̂ )/2 for the
upper and lower Dirac bands with energies ξ±

k = ±v|k| − μ.
Here d(k) = (−sin θk, cos θk,0), and θk is the momentum k
orientation angle.

We assume that the surface-state quasiparticles are
exchange-coupled to the surface magnetization of the TI:

Hexc = −Ja

2

∫
d3xδ(z)ψ†(x,y)σ̂ψ(x,y) · S(x), (9)

where a is the lattice constant of the FI, and J characterizes
the strength of the exchange coupling. The mean-field coupling
between the TI quasiparticles and the y-direction ground-state
magnetization yields only an irrelevant shift in the kx direction
in momentum space, which has no consequence. For small
fluctuations in magnetization direction, the remaining inter-
action Hamiltonian can be rewritten as an electron-magnon
interaction:

Hem = −JaA3

2

∑
i=x,z

∫
d2kd2q‖

(2π )2(2π )2
ψ

†
kσ̂iψk+q‖S

i
q‖(z = 0)

= g
A3

a2

∫
d2kd2q‖

(2π )2(2π )2
ψ

†
kσ̂

+ψk+q‖a
†
q‖ (z = 0) + H.c.,

(10)

where q‖ is the in-plane component of the magnon momentum,
g = −√

2S0J/4, and σ̂± = σ̂z ± iσ̂x .

B. Electron Boltzmann equation

We concentrate on physics near the Fermi surface and
ignore interband scattering. As mentioned in Ref. [13] and
explicitly proven in the Appendix, the spin-Seebeck electric
field is invariant under a particle-hole transformation μ → −μ

in the simple Dirac model (see for the exact proof). In
the following, we therefore assume that μ > 0, drop band
indices and include only the conduction band (|k〉 ≡ |k,+〉,
and ξk ≡ ξ+

k ), and measure momenta relative to the new Dirac
point after the shift produced by the interaction with the
ground-state magnetization has been applied.

To describe the topological SSE, we consider the linearized
Boltzmann equation

∂fk

∂t
− eEem · vk

∂f
(0)
k

∂ξk
= ∂fk

∂t

∣∣∣∣
imp

+ ∂fk

∂t

∣∣∣∣
em

, (11)

where Eem is the induced electric field, vk = (vx,vy) =
v(cos θk, sin θk), fk is the momentum-dependent electron
distribution function, and f

(0)
k = (exp(ξk/T ) + 1)−1 is the

Fermi distribution function at temperature T . The terms on
the right-hand side are the electron-impurity and electron-
magnon-scattering collision terms, respectively. The electron-
magnon-scattering term can be calculated by using the
quantum Fokker-Planck equation [16] and is given to second
order
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in the electron-magnon interaction by

∂fk

∂t

∣∣∣∣
em

= 2πg2a3
∫

d2q‖dqz

(2π )3
[|〈k + q‖|σ̂−|k〉|2 δ(ωq + ξk − ξk+q‖)[(1 − fk)fk+q‖(1 + nq‖,qz

(z = 0))

− fk(1 − fk+q‖ )nq‖,qz
(z = 0)] + |〈k − q‖|σ̂+|k〉|2δ(ωq − ξk + ξk−q‖)[(1 − fk)fk−q‖nq‖,qz

(z = 0)

− fk(1 − fk−q‖ )(1 + nq‖,qz
(z = 0))]], (12)

where the |〈k′|σ̂±|k〉|2 factors account for the influence of
spin-momentum locking in the Dirac cone on the electronic
transition probabilities associated with magnon emission
and absorption (Fig. 3). These electronic matrix elements
can be calculated by observing that the projection operator
|k〉〈k| = (1̂ + d(k) · σ̂ )/2:

|〈k′|σ̂±|k〉|2 = Tr[σ̂±|k〉〈k|σ̂∓|k′〉〈k′|]
= (1 ∓ dy(k))(1 ± dy(k′)). (13)

The nonequilibrium nature of the SSE is captured by the
statistical factors in small square brackets in Eq. (12), which
can be further simplified. In linear response we can replace
fk by f

(0)
k in the electron-magnon-scattering term. Since the

right-hand side of Eq. (12) is zero by detailed balance, when
the magnons are also in equilibrium, the two square-bracket

statistical factors can be replaced by the following two factors:(
f

(0)
k+q‖ − f

(0)
k

)
δnq‖,qz

(z = 0),(
f

(0)
k−q‖ − f

(0)
k

)
δnq‖,qz

(z = 0). (14)

With this replacement the electron-magnon-scattering term is
replaced explicitly in terms of the nonequilibrium correction
to the magnon distribution function at the interface δnq‖,qz

(z = 0). Next, the integral over qz in Eq. (5) can be evaluated
using the energy conservation δ functions,∫ ∞

−∞
dqz|vqz

|δ(ωq − X) = 2
∫ ∞

0
dqz(2Dqz)δ(ωq − X),

= 2�(X − D|q‖|2), (15)

to obtain

∂fk

∂t

∣∣∣∣
em

= g2a3(−2τm∂zT )
∫

d2q‖
(2π )2

[
|〈k + q‖|σ̂−|k〉|2�(ξk+q‖ − ξk − D|q‖|2)

(
f

(0)
k+q‖ − f

(0)
k

)∂n(0)(ξk+q‖ − ξk)

∂T

+ |〈k − q‖|σ̂+|k〉|2�(ξk − ξk−q‖ − D|q‖|2)
(
f

(0)
k−q‖ − f

(0)
k

)∂n(0)(ξk − ξk−q‖)

∂T

]
. (16)

Note that the free integral over qz, present because the three-
dimensional magnon system is driving a two-dimensional
electronic system, replaces the usual Fermi-golden-rule δ

function by a step function.
Since we do not assume any particular property of the TI

surface states in Eq. (16), our theory applies to any single-band
two-dimensional electron system that is exchange-coupled to
the surface magnetism of a ferromagnetic insulator and is
simply generalized to multiband two-dimensional materials
by adding band indices.

C. Induced electric field in the steady state

We are now in a position to derive an expression for
the electric field induced by the electron-magnon interaction
in the steady state. The nonequilibrium transport of the
topological-insulator surface state can be also described by the
Boltzmann equation [17]. For simplicity, we use a relaxation-
time approximation for the electron-impurity collision term in
the steady-state electron Boltzmann equation:

−eEem · vk
∂f

(0)
k

∂ξk
= −δfk

τe

+ ∂fk

∂t

∣∣∣∣
em

, (17)

where δfk = fk − f
(0)
k , and τe is the relaxation time. Since

the spin-Seebeck voltage is measured under open circuit

conditions, it can be evaluated by finding the electric field
strength at which the electric current vanishes:

∫
d2k

(2π )2
vkδfk = 0. (18)

FIG. 3. Schematic illustration of magnon emission and absorp-
tion. The solid and dotted circles are constant-energy surfaces for
the conduction band and the arrows indicate the importance of
spin-momentum locking in the Dirac cone. Magnon emission lowers
energy and is accompanied by a σ̂+ electronic operator, whereas
magnon absorption increases energy and is accompanied by a σ̂−

electronic operator.
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FIG. 4. (a) Schematic illustration of the band structure of a Bi2Te3 film. The shaded regions labeled VB and CB are the bulk valence and
conduction bands, respectively. The surface-state Dirac point is much closer to the valence band than to the conduction band. The thermally
electric field at T = 300 K is plotted in (b) vs chemical potential and in (c) vs electron density. In the green region (μ � T ), the results are not
accurate since we neglect the interband effect. (d) The integrand of Eq. (16) in arbitrary units for k = (kF ,0) as a function of k′ for chemical
potential μ = 100 and 200 meV relative to the Dirac point. The electron-magnon interaction vertex tends to be strongest for transitions between
electronic states with opposite momentum.

Using Eqs. (17) and (18), we find that

Eem
i =

[∫
d2k

(2π )2
vi

∂fk

∂t

∣∣∣∣
em

]/[
−e

∫
d2k

(2π )2
v2

i

∂f
(0)
k

∂ξk

]
.

(19)

In deriving Eq. (19), we have appealed to isotropy in asserting
that

∫
d2kvxvy = 0. Note that Eem

i is independent of the
electron-disorder scattering time τe.

In the topological SSE for magnetization in the y direction,
the induced electric field is in the x direction: Eem = (Eem

x ,0).
To see this, we rewrite Eq. (13) as

|〈k′|σ̂±|k〉|2 = ± cos θk(cos θk,k′ − 1)

− sin θk(cos θk ∓ 1) sin θk,k′

+ (1 − cos2 θk cos θk,k′ ), (20)

where θk,k′ ≡ θk − θk′ . The second line on the right-hand
side of Eq. (20) does not contribute to Eq. (16) because the
other factors in the integrand are even functions of θk,k′ . The
term on the third line does not contribute to the numerator
in Eq. (19) because its contribution to the integrand is odd
in sin θk or cos θk. Similarly the first line contributes to Eem

x

(vx ∝ cos θk), but not to Eem
y (vy ∝ sin θk). The electric-field

direction predicted by our theory is consistent with the
experimental result [13].

In the following sections, we retain only the first line on
the right-hand side of Eq. (20) since the other terms do not
contribute to the final result. For notational convenience, we
therefore rewrite Eq. (16) as

∂δfk

∂t

∣∣∣∣
em

= g2a3(−2τm∂zT ) cos θkA(vk), (21)

where A is a θk-independent function.

IV. NUMERICAL RESULTS

To compare our theory with experiment [13], we compute
the integrals in the numerator and denominator of Eq. (19).
For numerical estimates, we use v = 3.0 × 105 m/s for
the surface-state Dirac velocity of Bi2Te3 [18] and D =
5.0 × 10−21 eV m2 for the spin stiffness of YIG [19,20]. The
momentum cutoff � of the TI surface states is fixed by setting
v� equal to the bulk band gap [18] ∼300 meV, which yields
� ∼ 1.5 × 109 m−1 [see Fig. 4(a)]. The spin-Seebeck signal
is proportional to η ≡ 2g2a3τm∂zT /e.
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A. Trend versus carrier density

Since the motivating experiment is performed at room
temperature, we first set T = 300 K and examine in Fig. 4(b)
the dependence of the spin-Seebeck signal on the position
of the Fermi level. We find a nonmonotonic dependence
that is illustrated by plotting the thermally induced elec-
tric field Eem

x as a function of the chemical potential μ

in Fig. 4(b) and as a function of electron density n ≡∫
d2k/(2π )2f

(0)
k in Fig. 4(c). The nonmonotonic behavior

arises from the momentum distribution of the nonequilibrium
magnons combined with the increase with μ in the electronic
density of states, which enhances the phase space available
for electron-magnon scattering. To illustrate this anomalous
behavior, we plot in Fig. 4(d) the integrand of Eq. (16) for
fixed k = (kF ,0), where kF = μ/v is the Fermi momentum,
as a function of k′ = k ± q. Because the electron-magnon
interaction vertex reverses spins relative to the magnetization
direction, the integrand tends to be stronger for transitions
between electronic states with opposite momentum directions.
At the larger chemical potential (μ = 200 meV) value, large
angle scattering is suppressed due to the lack of available
magnons, which is captured by the step functions and the
other part of the integrand. Suppression by the step function
is weaker at smaller chemical potential (μ = 100 meV). Our
use of a momentum cutoff, which crudely captures the less
stark spin-momentum coupling in bulk and higher-energy
surface-state bands, also competes with the density-of-states
effect to produce a maximum spin-Seebeck signal at a finite
chemical potential. Because we neglect the role of valence-
band states, our calculations are not accurate at very small
carrier densities (μ � T ). In our calculations Eem

x has its
maximum value at n = 6 × 1012 cm−2. In experiment, the
electric field at n = 4 × 1012 cm−2 is found to be ∼50 times
greater than that at n = 2 × 1013 cm−2. Our numerical result
explains the electric field enhancement at relatively small
electron densities, although our simplified model does not
achieve quantitative agreement.

B. Order-of-magnitude estimate

In order to estimate the numerical size of the spin-Seebeck
signal at room temperature, we use the following typical
values for YIG [11]: S0 ∼ 10 and a ∼ 1 × 10−9 m. Assuming
that the dominant magnon relaxation mechanism is related
to Gilbert damping of the macroscopic magnetization at
room temperature (see Sec. V A), we use τm ∼ h̄/αGkBT ∼
1 × 10−9 s [11,21,22], where αG ∼ 1 × 10−4. Finally we set
the interface exchange coupling to J ∼ 1 meV, the same order
as for a Pt/YIG interface. From Fig. 4(b), the maximum value
of Eem

x /η at room temperature is ∼3 × 1011 s/m3. Using the
above values to estimate η, we obtain Eem

x ∼ 0.9 V/m for
∂zT ∼ 5 × 103 K/m, which is of the same order of magnitude
as the experimental value of ∼0.2 V/m.

C. Temperature dependence of induced electric field

The μ dependence of Eem
x is plotted for various tempera-

tures in Fig. 5(a). The overall trend is that Eem
x increases with

temperature because of the increase in magnon population.
The chemical potential at which Eem

x reaches its maximum,

0

1

2

3

0 100 200 300

FIG. 5. (a) Spin-Seebeck electric field Eem
x as a function of μ for

various temperatures. The cross marks denote the largest electric field
points for each temperature. (b) Schematic illustration of electron-
magnon backscattering k = (kF ,0) → k′ = (−|k′|,0) at μ = μest

max.

μmax, decreases with decreasing temperature for T � 200 K.
μmax can be roughly estimated by considering backscattering
contributions, e.g., k = (kF ,0) → k′ = (−|k′|,0). For each
kF , we define q± such that

Dq2
± = ±(v(q± − kF ) − vkF ). (22)

Because of the magnon contribution to the final-state energy,
the step functions in the integrand of Eq. (16) both vanish for
q− − kF < |k′| < q+ − kF [see Fig. 5(b)]. For |q± − 2kF | 
kF , q± � 2kF ± 4Dk2

F /v. In this approximation, the step
functions are zero for

kF − 4Dk2
F

v
� |k′| � kF + 4Dk2

F

v
. (23)

Since the magnon statistical factors have large values for kF −
T/v � |k′| � kF + T/v, the overlap with the step functions is
large when kF <

√
T/4D. Roughly speaking, μmax is expected

to be given by

μest
max = v

2

√
T

D
. (24)

According to Eq. (24), μset
max = 100, 140, 170, 200, 220,

and 240 meV for T = 50, 100, 150, 200, 250, and 300 K,
respectively, in good agreement with the more accurate values
in Fig. 5(a) for T � 200 K. Equation (24) cannot explain the
maximum values for T = 250 and 300 K, where μest

max is close
to v� ∼ 300 meV, because these considerations do not account
for the Dirac surface-state cutoff.

165418-6



THEORY OF THE SPIN-SEEBECK EFFECT AT A . . . PHYSICAL REVIEW B 95, 165418 (2017)

V. DISCUSSIONS

A. The magnon collision integral

We now return to discuss our use of a relaxation-time
approximation in the magnon Boltzmann equation [Eq. (3)].
At room temperature, magnon-phonon-scattering processes
dominate relaxation of the magnon distribution function. Our
assumption of a characteristic time over which any nonequi-
librium magnon population will approach equilibrium when
undriven is consistent with stochastic Landau-Lifshitz-Gilbert
equations [12] in which magnetization relaxation appears in
the Gilbert damping term (see Sec. IV B). It is nevertheless
important to distinguish the roles of processes that conserve
magnon number, for example, processes in which a magnon
and a phonon exchange energy and momentum, from processes
that do not conserve magnon number, for example, ones in
which magnons are converted into phonons and vice versa. If
the former processes are strongly dominant, a possibility pro-
posed by Cornelissen et al. [11], the nonequilibrium magnon
distribution can assume a different form characterized by a
local chemical potential. The change in distribution might have
a quantitative influence on the relationship between the excess
magnon population at the magnetic-insulator/topological-
insulator interface, and hence the topological SEE, and the
Gilbert damping parameter used for our quantitative estimates.
The magnon-phonon conversion processes that we have in
mind in using the relaxation-time approximation correspond
to changes in the ground-state magnetization configuration,
in response to changes in the lattice. The momentum de-
pendence of the relaxation time for these processes was
investigated in Ref. [23]. Although we ignored momentum
dependence in our simple relaxation-time approximation, its
inclusion would not change our results drastically because
the dominant processes for the spin-Seebeck effect have
|q| ∼ qT .

A less important issue in our theory is our as-
sumption of specular reflection. Because the magnetic-
insulator/topological-insulator interface is often rough, it
would be more realistic to use boundary conditions that allow
for a mixture of specular and diffuse boundary scattering.
We make the simpler assumption mainly to avoid introducing
another model parameter whose value is not accurately known.
Because the excess magnon population, δnq‖,qz

, does not
depend on the direction of q‖, we do not expect much of
an influence of diffuse surface scattering.

We have also assumed that the influence of electron-
magnon scattering at the surface on the magnon distribution
function is negligible. To justify this approximation, we now
compare the rate of change of total spin due to magnon-
electron scattering with the total magnon relaxation rate. The
spin injection rate is given by

∂sy

∂t

∣∣∣∣
em

≡
∫

d2k

(2π )2

dy(k)

2

∂fk

∂t

∣∣∣∣
em

. (25)

For an order-of-magnitude estimate, we use the following
approximations:

�(|ξk′ − ξk| − D|k − k′|2) ∼ 1, (26)

kF − T

v
� |k′| � kF + T

v
, (27)

(
f

(0)
k′ − f

(0)
k

)∂n(0)(ξk′ − ξk)

∂T
∼ ∂f

(0)
k

∂ξk
. (28)

Using Eqs. (26)–(28), and ∂f
(0)
k /∂ξk ∼ −δ(ξk), we can rewrite

Eqs. (16) and (25) as

∂fk

∂t

∣∣∣∣
em

∼ 8πg2a3kF (τmT ∂zT )

v
δ(ξk) cos θk, (29)

∂sy

∂t

∣∣∣∣
em

∼ g2a3k2
F (τmT ∂zT )

v2
. (30)

In comparison, the total magnon relaxation rate is given by∫ 0

−∞
dz

δn(z)

τm

∼ −∂zT

π2

∫ 0

−∞
dz

∫ 1

0
dt

∫ qT

0
dq qt exp

(
− |z|

2Dτmqt

)

= −2qT (τmT ∂zT )

9π2
, (31)

where we have used Eq. (7) in the second line. Thus, the ratio
of the spin injection rate to the total magnon relaxation rate is
approximately given by

∂sy

∂t

∣∣∣∣
em

/∣∣∣∣
∫ 0

−∞
dz

δn(z)

τm

∣∣∣∣ ∼ 9π2g2a3k2
F

2v2qT

. (32)

The value of the right-hand side of Eq. (32) is ∼1 × 10−3 for
kF ,qT ∼ 1 × 109 m−1. It follows that the influence of the TI
on the magnon distribution in the FI is indeed negligible. Note
that the ratio does not depend on the relaxation time τm or,
equivalently, the Gilbert damping constant αG.

B. Corrections to our simplified model

Although our theory explains the topological SSE qualita-
tively, estimating the correct order of magnitude of the effect
and its carrier-density dependence, it does overestimate Eem

x

in comparison to experiment, especially for large μ. There
are mainly two possible reasons. First, both the magnitude and
surface-state energy dependence of the exchange coupling J is
uncertain. Second, the surface state in experimentally realized
topological insulators is not very accurately described by the
simple Dirac electron model. The leading correction [24] in
Bi2Te3 is a hexagonal warping [25,26] correction:

Ĥ(k) ∝ (
k3
x − 3kxk

2
y

)
σ̂z. (33)

This term implies that d(k) has a large out-of-plane component
for large chemical potentials, which would have the effect of
reducing the SSE strength.

C. Thermal gradient generation in the x direction

Since the origin of the electron-magnon scattering term
is a temperature gradient, we expect that energy currents
will also flow in the topological insulator. In Fig. 6, we
plot A(vk) for various chemical potentials. Because A(vk) is
an asymmetric function with respect to vk = μ, it follows
that electron-magnon scattering drives not only electrical
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FIG. 6. Energy dependence of the factor A which captures the
energy dependence of the Dirac state population response at a given
orientation, as a function of vk for several μ values. These results
were calculated at room temperature.

signal but also heat flow. We therefore predict that the ∂zT ,
applied temperature gradient of the experimental spin-Seebeck
geometry, will induce an x-direction temperature gradient ∂xT .

D. SSE in a magnetically doped TI

We now generalize our discussion to magnetically doped
TIs like Cr-doped (BiSb)2Te3 [27–30], Cr-doped Bi2Se3 [31],
and Mn-doped Bi2(TeSe)3 [32,33]. The anomalous Hall effect
in these systems demonstrates robust magnetic order, at least at
very low temperatures. Under these conditions a magnetic TI
under a vertical temperature gradient (Fig. 7) can be described
by a model similar to that discussed elsewhere in this paper.
If the film is uniformly magnetized, the two surface-state
systems will be coupled to the same magnon gas. Because
the effective Hamiltonians of the top and bottom surface states
have different chiralities,

Ĥtop(bottom)(k) = ±[−vkxσ̂y + vkyσ̂x] − μ1̂, (34)

where top (bottom) corresponds to + (−), the signs of the
magnon accumulation at two surfaces are opposite, and the
charge currents generated at top and bottom surfaces will
have the same sign. We therefore predict that a transverse
voltage will be induced by a vertical temperature gradient in
magnetically doped TI thin films.

FIG. 7. Schematic illustration of the SSE in a magnetically doped
TI thin film.
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APPENDIX: DIRAC-SPINOR PARTICLE-HOLE
TRANSFORMATION

We prove here that for an ideal symmetric Dirac cone, the
thermally induced electric field is unchanged under μ → −μ.
For convenience, we introduce the hole Dirac spinors (φ,φ†)
defined in terms of (ψ,ψ†) as

φk = σ̂yψ
†
−k,

φ
†
k = ψ−kσ̂y, (A1)

or, equivalently,

φ(x) = σ̂yψ
†(x),

φ†(x) = ψ(x)σ̂y . (A2)

This particle-hole transformation is defined such that the ma-
trix representation of the spin-density operator is unchanged:

s(x) ≡ ψ†(x)

[
σ̂

2

]
ψ(x) = φ†(x)

[
σ̂

2

]
φ(x). (A3)

The electron Dirac Hamiltonian (8) can be rewritten in terms
of (φ,φ†) as

He =
∫

d2k

(2π )2
ψ

†
kĤe(k)ψk

= (const) +
∫

d2k

(2π )2
ψ−k,i[−Ĥ∗

e (−k)]i,jψ
†
−k,j

= (const) +
∫

d2k

(2π )2
φ
†
k[−σ̂yĤ∗

e (−k)σ̂y]φk

= (const) +
∫

d2k

(2π )2
φ
†
k[−(vkxσ̂y − vkyσ̂x) + μ1̂]φk.

(A4)

Equation (A4) shows that the particle-hole transformation
changes the sign of μ and the chirality of the Dirac Hamil-
tonian. The form of the electron-magnon Hamiltonian (10),
on the other hand, does not change under the particle-hole
transformation:

Hem = g

∫
d2kd2q‖

(2π )2(2π )2
φ
†
kσ̂

+φk+q‖a
†
q‖ (z = 0) + H.c.,

(A5)

since the magnon operators couple not to the charge density but
to the hole spin density that has the same matrix representation
as the electron spin density.

In the following, we consider the electron Dirac Hamilto-
nian with μ = −|μ0|. This Hamiltonian is equivalent to the
hole Dirac Hamiltonian with μ = |μ0|. The scattering term
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(16) for this hole Dirac Hamiltonian has the same magnitude
but the opposite sign as that for the electron Dirac Hamiltonian
with μ = |μ0| due to its opposite chirality, while the definition
of the electric field (19) for the hole Dirac Hamiltonian has the
opposite sign as that for the electron Dirac Hamiltonian due

to its opposite charge. Thus, the induced electric field for the
hole Dirac Hamiltonian with μ = |μ0| is the same as that for
the electron Dirac Hamiltonian with μ = |μ0| or, equivalently,
the induced electric field for the electron Dirac Hamiltonian is
unchanged as μ0 → −μ0.
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