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Relativistic space-charge-limited current for massive Dirac fermions
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A theory of relativistic space-charge-limited current (SCLC) is formulated to determine the SCLC scaling,
J ∝ V α/Lβ , for a finite band-gap Dirac material of length L biased under a voltage V . In one-dimensional
(1D) bulk geometry, our model allows (α,β) to vary from (2,3) for the nonrelativistic model in traditional
solids to (3/2,2) for the ultrarelativistic model of massless Dirac fermions. For 2D thin-film geometry we obtain
α = β, which varies between 2 and 3/2, respectively, at the nonrelativistic and ultrarelativistic limits. We further
provide rigorous proof based on a Green’s-function approach that for a uniform SCLC model described by
carrier-density-dependent mobility, the scaling relations of the 1D bulk model can be directly mapped into the
case of 2D thin film for any contact geometries. Our simplified approach provides a convenient tool to obtain
the 2D thin-film SCLC scaling relations without the need of explicitly solving the complicated 2D problems.
Finally, this work clarifies the inconsistency in using the traditional SCLC models to explain the experimental
measurement of a 2D Dirac semiconductor. We conclude that the voltage scaling 3/2 < α < 2 is a distinct
signature of massive Dirac fermions in a Dirac semiconductor and is in agreement with experimental SCLC
measurements in MoS2.
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I. INTRODUCTION

Space-charge-limited current (SCLC) gives the maximum
current that can be transported across a solid of length L

with a biased voltage V , limited by the electrostatic repulsion
generated by the in-transit unscreened charge carriers that are
in excess of the thermodynamically allowed population [1].
In a trap-free bulk crystal, SCLC exhibits a signature current-
voltage (J -V ) characteristic of JMG ∝ V 2/L3, known as the
Mott-Gurney (MG) law [2], which is the solid-state counterpart
of the SCLC in vacuum as given by the Child-Langmuir (CL)
law: JCL ∝ V 3/2/L2 in the classical regime [3,4] and JCL ∝
V 1/2/L4 in the quantum regime [5,6]. Including defect states or
traps in solids, SCLC becomes trap-limited as described by the
Mark-Helfrich (MH) law [7]: JMH ∝ V l+1/L2l+1, where l =
Tc/T (T is the temperature and Tc is a parameter characterizing
the exponential spread in energy of the traps). Due to the
geometrical effect [8], the one-dimensional (1D) SCLC value
is enhanced as a result of a finite emission area [9] and
weakened Coulomb screening in a high aspect-ratio nanowire
[10]. Furthermore, SCLC is an important tool to probe
the trap characteristics in solids, and also for photocurrent
measurement since the extraction efficiency of photogenerated
carriers is fundamentally limited by SCLC [11].

For organic semiconductors, field-dependent [12–15] and
density-dependent mobility SCLC models [16,17] are com-
monly employed to characterize the SCLC carried by the
holes. Similarly, SCLC of electrons was found to be universally
described by a trap model with Gaussian energy distribution
in a large class of organic semiconductors [18,19]. Recently, it
was demonstrated that the magnitude of electron SCLC can be
significantly enhanced via the dilution of traps in conjugated
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polymer blends of only 10% active semiconductors [20],
which opens up an exciting possibility of a high-efficiency
and low-cost organic light-emitting diode. SCLC in the trap-
limited regime was reformulated [21] with the inclusion of
the interplay between dopants and traps, the Poole-Frenkel
effect [22], and quantum-mechanical tunneling, which solved
the long-standing problem [23,24] of the enormously sharp
current rise in the trap-limited regime, and it demonstrated that
an exponentially distributed trap is not necessarily required to
explain the power-law sharp rises of SCLC in the trap-limited
regime. Remarkably, the model successfully reproduced the
anomalous noise-spectrum peak observed in [25].

In spite of SCLC being a classic model first derived in
the 1940s, it remains an active topic for organic materials
and nanowires, as mentioned above. With the advances in
fabricating novel 2D Dirac materials [26–28], it is of interest
to revisit the SCLC model for these 2D Dirac materials. To the
best of our knowledge, there is no theory or model to deal with
the SCLC transport in Dirac materials. Recent experiments
reported a typical J -V characteristic in the form of MH law
for highly disordered materials such as reduced graphene oxide
[29,30]. On the other hand, SCLC in a crystalline monolayer
MoS2 [31] and hBN [32] was found to exhibit an unusual
power-law dependence of J ∝ V α with 1.7 � α � 2.5, which
was claimed to originate from the different levels of traps
in different samples by using the traditional MH law. This
explanation is doubtful as the traditional MH law is only valid
for α > 2 for Tc > T , which implies that the voltage scaling
from the MH law must be α � 2 theoretically and it cannot
be used to fit with the measured scaling of 1.7 � α � 2.5. For
Tc < T , the traps are narrowly distributed in energy space and
the SCLC essentially reduces to single-level shallow trapping
with α = 2 [23]. Thus, the observation of α < 2 cannot be
explained by the MH law or other SCLC models such as
a shallow trap [23], Gaussian disorder [33], field-dependent
mobility [12], and density-dependent [16] mobility.

For a Dirac material with a finite band gap, the electrons
mimic relativistic massive Dirac fermions [34,35], whereas
the classical SCLC models are based on the conduction model
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of nonrelativistic quasifree electrons [1]. In this work, we
proposed a model of relativistic SCLC of massive Dirac
fermions, which can explain the peculiar α < 2 scaling
observed in recent experiments using Dirac materials, and
thus it circumvents the unjustified assumption of Tc < T

used in the MH law in order to fit the experimental data.
According to our model, the J1-V characteristics of SCLC
in a 1D bulk geometry will vary between the nonrelativistic
limit of J1 ∝ V 2/L3 and the ultrarelativistic limit of J1 ∝
V 3/2/L2 (this is different from the CL law; see below for an
explanation). We present a master equation that is in good
agreement with the experimental data and can be used to
characterize the transition between Ohmic conduction and
the SCLC regime. By extending the bulk 1D model to a 2D
thin-film model, the scaling relation becomes J ∝ V α/Lβ ,
with α = β varying between 3/2 and 2, respectively, at the
ultrarelativistic and nonrelativistic limits. In doing so, we prove
rigorously, using a Green’s-function approach [8], that the 1D
bulk SCLC current-voltage scaling relation can be directly
mapped to 2D thin-film SCLC. It is shown that for a general
transport equation of J = enμ(n)E, where μ(n) is a mobility
that depends on carrier density, n, and E is the electric field,
the 1D bulk SCLC and 2D thin-film SCLC are linked by a
universal SCLC scaling relation (see Sec. III). Our analysis
provides a convenient tool to deduce the 2D thin-film SCLC
scaling relation via a simple 1D SCLC model without the need
of explicitly solving the complicated 2D SCLC model.

II. THEORY OF RELATIVISTIC
SPACE-CHARGE-LIMITED CURRENT

In this section, a relativistic SCLC model is developed using
the semiclassical Boltzmann transport equation (BTE). For
simplicity, we first consider the SCLC by assuming a simple
1D Poisson equation, which allows semianalytical scaling rela-
tions to be determined. In Sec. III, we shall show that the simple
1D SCLC scaling relation derived in this section can be directly
mapped to the case of 2D SCLC with thin-film geometry.

A. Boltzmann transport equation for a conventional
semiconductor

The starting point of the trap-free SCLC theory, i.e., the
Mott-Gurney law, is the semiclassical BTE, which provides
a basic equation of current density governing the transport
of charge carriers. The diffusion component is usually not
considered except in some cases of polymers due to their
highly disordered nature. For a quasistatic system, the BTE
in the linearized transport regime under relaxation-time ap-
proximation is

−eE
h̄

· ∂f

∂k
+ v · ∂f

∂r
= −f − f0

τ
, (1)

where E is the electric field, k is the crystal momentum,
r is the position vector, v is the carrier velocity, f is the
out-of-equilibrium distribution function, f0 is the equilibrium
Fermi-Dirac distribution function, and τ is a typical collision
time scale. If the system is spatially homogeneous, the
diffusion component of the transport current, i.e., ∂f/∂r, can
be omitted. By assuming a 3D isotropic parabolic energy

dispersion, one arrives at the well-known drift-current density,
J = e/(3π )3

∫
vkf d3k, for semiconductors:

J3D = τe2

m
n(x)E(x). (2)

By connecting the drift equation with the 1D Poisson equation
via charge density n(x), the Mott-Gurney current-voltage
scaling of J ∝ V 2 can be recovered.

For 2D gapped Dirac materials, Eq. (2) is no longer valid
due to two reasons: (i) the dimensionality is reduced to two
dimensions, and (ii) the energy dispersion follows a relativistic
dispersion similar to that of the massive Dirac fermions. In
the following, we shall formulate the drift-equation for Dirac
semiconductor based on the BTE approach and demonstrate
that the SCLC mediated by relativistic quasiparticles follows
a completely different current-voltage scaling relation.

B. Boltzmann transport equation for a 2D Dirac semiconductor

For massive Dirac fermions, the energy dispersion is εk =√
h̄2v2

F k2 + �2, where vF is the Fermi velocity, k is the crystal
momentum, and 2� is the band gap. The group velocity is
vk = h̄−1dεk/dk = h̄v2

F k/εk . The density of states, D(ε) =∑
k δ(ε − εk), is rewritten as D(ε) = (gsvε/2πh̄2v2

F )
(ε −
�), where gsv denotes the spin-valley degeneracy and 
(x) is
a Heaviside function. The electron density at low temperature
can then be obtained from the 2D density of states, n =∫

D(εk)dεk , which gives n = (gsv/4πh̄2v2
F )(μ2 − �2), and μ

is the Fermi level. The general expression of the 2D linear
current density is J = (τe2E/2π )

∫
v2

kk dk(−∂f0/∂εk), where
f0 is the Fermi-Dirac distribution function, τ is the scattering
time, and E is the externally applied electric field. In the
low-temperature limit, the current density can be analytically
solved to give J = (gsvτe2E/2πh̄2μ)(μ2 − �2). Eliminating
μ via n, we obtain

J =
√

egsv

π

τevF

h̄

en(x)√
en(x) + ρc

E(x), (3)

where ρc ≡ egsv�
2/4πh̄2v2

F is a band-gap-dependent charac-
teristic charge density, and n and E are reexpressed as func-
tions of the transport direction, x. The term [en(x) + ρc]−1/2

in Eq. (3) represents a major difference between the relativistic
massive Dirac fermions and that of the nonrelativistic quasifree
electrons. As ρc ∝ �2, it can be seen from the εk-k relation that
the electrons are nonrelativistic at very large ρc or � � h̄vF k.
For vanishingly small ρc or � � h̄vF k, the electrons approach
an ultrarelativistic limit and become massless Dirac fermions.

By expressing Eq. (1) in the Drude form of J =
enμD(n)E, a density-dependent Dirac mobility is defined
as μD ≡ γ [en(x) + ρc]−1/2, where γ ≡ τvF e3/2g

1/2
s,v /π1/2h̄.

Consequently, the relativistic SCLC of massive Dirac fermions
belongs to the class of density-dependent mobility SCLC.
However, μD ≡ γ [en(x) + ρc]−1/2 is unique to the massive
Dirac fermions.

C. Relativistic SCLC in bulk geometry

We assume that the SCLC is carried solely by elec-
trons injected through an Ohmic contact. For simplicity, we
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employ the 1D Poisson equation dE(x)/dx = en(x)/εd,
where E(x) = dV (x)/dx, V (x) is the electrostatic potential,
and ε is the effective dielectric constant. Here, we first assume
that the 3D carrier density, n3D(x), is related to n(x) via
n3D(x) = n(x)/d, with d as an effective thickness (see the
modification presented later). By coupling Eq. (3) with the
Poisson equation via n(x), we obtain the governing equation
of the relativistic SCLC for a Dirac solid:

E(x)
dE(x)

dx
= J

γ εd

√
εd

dE(x)

dx
+ ρc. (4)

We first investigate the solutions of the 1D relativistic
SCLC, i.e., Eq. (4), in two asymptotic limits: (i) the nonrela-
tivistic SCLC regime [ρc � en(x)], and (ii) the ultrarelativistic
SCLC regime [ρc � en(x)], which allows Eq. (3) to be
approximated, respectively, as

Jnr = 9

8
εd

2τev2
F

�

V 2

L3
, ρc � en(x), (5a)

Jr = 8

3

√
egsvδε

3π

τevF

h̄

V 3/2

L2
, ρc � en(x). (5b)

The MG scaling is readily recovered from the nonrelativistic
charge dynamics at large ρc. As the electrons reside just
slightly above the band gap where the inequality h̄vF k � �

holds true, we have εk ≈ m∗v2
F + h̄2k2/2m∗, where m∗ ≡

�/v2
F . It can be shown [36] that the corresponding current

density is in the nonrelativistic Drude form, which recovers
the MG scaling of J ∝ V 2/L3.

In the opposite limit of ρc → 0, h̄vF k � � implies ultra-
relativistic dynamics with a scaling of J ∝ V 3/2/L2, as shown
in Eq. 3(b). Coincidentally, this has the same scaling to the
CL law [3], although the underlying physics is fundamentally
different. For Dirac materials studied there, the ultrarelativistic
SCLC is obtained from

Jr ∝
√

d2V (x)

dx2

dV (x)

dx
, (6)

while SCLC in vacuum (or CL law) is obtained from

Jvac ∝
√

V (x)
d2V (x)

dx2
. (7)

A simple dimensional analysis [37] immediately shows that
Jr and Jvac are both proportional to V 3/2 despite their very
different origins. Nonetheless, Eq. (6) originates from the
Jr ∝ √

n(x) dependence due to the ultrarelativistic electron
dynamics in Dirac solids, while Eq. (7) originates from the
Jvac ∝ √

V (x) dependence due to the energy balance of a
nonrelativistic free electron accelerating in vacuum. This
demonstrates the fundamentally different mechanism behind
the J ∝ V 3/2 scaling in the two cases.

The two limits—α = 3/2 and 2—are, respectively, the
extreme limits of the ultrarelativistic and nonrelativistic SCLC;
an intermediate regime of 3/2 < α < 2 is expected in the case
of massive Dirac fermions. This is in good agreement with
the experimental observations of 1.7 < α < 2.5 in monolayer
MoS2 [31] and 1.75 < α < 2.5 in monolayer hBN [32], where
the charge carriers are essentially massive Dirac fermions.
The model proposed here suggests that the α < 2 scaling is
intrinsic to the relativistic carriers without the unjustified or

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

(a)

φ

J

0 0.02 0.04 0.06 0.08 0.10
0.85

0.86

0.87

0.88

0.89

0.90

(b)

φ

J
(φ

�
1)

20 40 60 80 100
0.1

0.15

0.2

0.25

(c)

φ

J
(φ

�
1)

FIG. 1. J as a function of φ. (a) Numerical results of J over
the full range of φ. The dashed line shows the empirical fitting
equation; numerical results with (b) φ � 1; and at (c) φ � 1. The
fitting constants (a, b, c1, c2, and c3) are (1.067, 1.45, 0.889, 0.368,
and 1.092).

invalid assumption of introducing traps with Tc < T , which is
also inconsistent with the original formulation of the MH law
and other trap-limited SCLC models, as discussed above.

For convenience, we transform Eq. (4) into a dimensionless
form of

dV(χ )

dχ

d2V(χ )

dχ2
= J

√
d2V(χ )

dχ2
+ φ, (8)

where V(x) ≡ V (x)/V and χ ≡ x/L. The normalized current
J and the dimensionless parameter φ are

J ≡ h̄

τe3/2vF

√
εd

JL2

V 3/2
, (9a)

φ ≡ ρc

εd

L2

V
. (9b)

For a given value of φ and boundary conditions, V(0) = 0
and V(1) = 1, Eq. (8) is solved numerically at various J .
The corresponding space-charge-limited current is determined
when the value of J will cause the onset of V(χ ) < 0, and
the calculated SCLC J is plotted as a function of φ in
Fig. 1(a), which exhibits contrasting behavior at φ � 1 and
at φ � 1. For φ � 1 [Fig. 1(b)] and φ � 1 [Fig. 1(c)], the
numerical results can be fitted by J ′

fit = c1 − c2φ and J ′′
fit =

c3/
√

φ, respectively, where (c1,c2,c3) = (0.889,0.368,1.092).
The contrasting φ dependence can be understood from the
dependence of φ ∝ ρc, which corresponds, respectively, to
the ultrarelativistic SCLC at φ � 1 (or small φ) and the
nonrelativistic SCLC at φ � 1 (or large φ). By substituting
Eq. (9) into the above-mentioned fitting equations, Jr ∝
V 3/2/L2 and Jnr ∝ V 2/L3 are recovered, thus confirming the
analytical solutions given in Eq. (5).

Figure 2 shows the smooth transition of V and L in
between the ultrarelativistic and nonrelativistic regimes. The
dimensionless current density J̃L-Ṽ characteristic (at a fixed
L) exhibits a voltage scaling of α = 2 at low Ṽ and α = 3/2 at
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FIG. 2. Normalized voltage (blue axes, � symbols) and length
(green axes, � symbols) characteristic of the current density. The bro-
ken (red) and dotted (black) guidelines represent the ultrarelativistic
and nonrelativistic limit, respectively. The labels of the guidelines,
i.e., 1, 2, 3, and 4, correspond to the scalings J̃L ∝ V 2, J̃L ∝ V 3/2,
J̃V ∝ L2, and J̃V ∝ L3, respectively.

high Ṽ . Here the dimensionless parameters are J̃L ≡ J /J0,
Ṽ ≡ V/V0, J0 ≡ τe3/2vF

√
εδ/h̄, and V0 = ρcL

2/εδ. At a
fixed L, we have Ṽ ∝ 1/V0 ∝ 1/ρc, and thus low Ṽ and
high Ṽ correspond to the nonrelativistic (J̃L ∝ Ṽ 2) and the
ultrarelativistic (J̃L ∝ Ṽ 3/2) regimes, respectively, as shown
in Fig. 2 (blue axis, � symbols). In the intermediate regime,
J̃L-Ṽ deviates from the simple power law, and applying a
fitting would lead to a subquadratic scaling in the range of
3/2 < α < 2.

Similarly, the dimensionless J̃V -L̃ characteristic (at a fixed
V ) shows a length scaling of J ∝ L̃−β of β = 2 at small L̃ and
β = 3 at large L̃, as shown in Fig. 2 (green axis, � symbols).
Here, the dimensionless parameters are J̃V = J/J̄0, L̃ =
L/L0, J̄0 = τe3/2vF ρcV

1/2/h̄
√

εd, and L0 = √
εdV/ρc. As

L̃ ∝ √
ρc, small L̃ and large L̃ correspond to the nonrelativistic

and the ultrarelativistic regimes, respectively. The β < 3
subcubic inverse length scaling represents another signature
of the relativistic SCLC for Dirac solids in addition to the
α < 2 voltage scaling.

From Fig. 1(a), the numerical results over a wide range of
φ can be accurately fitted by Jfit(φ) = a√

φ+b
, where (a,b) =

(1.067,1.450). As all parameters are intrinsically contained in
J and φ, this empirical relation is universally valid and thus we
derive a master equation that universally describes the SCLC
transport over a wide range of parameters:

V 3

I 2
= �(ρc,εd,τ,L,W )

V
+ �(εd,τ,L,W ), (10)

where I = J × W is the total current, W is the device width,
and

�(ρc,εd,τ,L,W ) ≡ ρc

(εd)2

h̄2L6

a2τ 2v2
F e3W 2

, (11a)

�(εd,τ,L,W ) ≡ bh̄2L4

a2τ 2v2
F e3W 2

1

εd
. (11b)
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FIG. 3. Plot of V 3/I 2 against 1/V in the SCLC regime using
MoS2 experimental data from Ref. [31] with (T ,α) of (285 K, 1.67)
(blue square), (265 K, 1.73) (green circle), (245 K, 1.82) (yellow
triangle), (205 K, 2.00) (red diamond), and (185 K, 2.11) (black star).
(a) The entire V 3/I 2 range over 0.4 < 1/V < 100. The green dash-
dotted and blue dashed curves denote, respectively, Ohmic current
(J ∝ V ) and SCLC (J ∝ V 2) fitted to the T = 205 K data. The
horizontal gray line indicates the transitional regime of J ∝ V 3/2

(1 < 1/V < 6) separating the green-shaded SCLC-dominated and the
yellow-shaded Ohmic-dominated regime. (b) The SCLC-dominated
regime at small 1/V < 0.7.

It is important to emphasize that Eq. (10) is extremely usefully
if it is used to fit with the experimental I -V measurement (in
the form of V 3/I 2 as a function of 1/V ) to determine the values
of � and �, which can be subsequently used to determine the
collision time scale τ by using Eqs. (9) if the other parameters
are known.

For the ultrarelativistic limit at ρc → 0, Eq. (10) becomes
V 3/I 2 ≈ �, which confirms the predicted ultrarelativistic
scaling of (α,β) = (3/2,2). For the nonrelativistic limit at
ρc � 0, Eq. (10) reduces to V 3/I 2 ≈ �/V , which recovers
the classical MG scaling of (α,β) = (2,3) as expected. There-
fore, the intermediate relativistic SCLC will produce a positive
intercept on the vertical axis of V 3/J 2-1/V characteristic,
whereas the SCLC with nonrelativistic scaling will have a
zero intercept, as shown in Fig. 3(b).

Interestingly, the V 3/I 2-1/V characteristic [suggested in
Eq. (10)] provides a convenient tool to represent the SCLC data
that can be generally applied to any solids. To illustrate this
point, we consider a trap-free solid in which the conduction
transits from Ohmic to SCLC at increasing V , as shown in
Fig. 3(a). In the Ohmic regime (large 1/V or small V ) where
J ∝ V , we have V 3/I 2 ∝ (1/V )−1, i.e., V 3/I 2 decreases
with increasing 1/V [green dash-dotted line in Fig. 3(a)]. In
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contrast, in the SCLC regime (small 1/V or large V ) where
I ∝ V 2, we have V 3/I 2 ∝ 1/V , i.e., V 3/I 2 increases linearly
with 1/V [blue dashed line in Fig. 3(a)]. These contrasting
behaviors lead to a transitional peak [38] in the intermediate
regime that clearly separates the SCLC-dominated and Ohmic-
dominated conduction, as shown in Fig. 3(a). This finding is
confirmed by using various experimental data (color symbols)
for MoS2 from Ref. [31] at different temperature, as shown
in Fig. 3(a). The above-mentioned transitional peak between
the SCLC-dominated regime (dashed curve) and the Ohmic-
dominated regime (dash-dotted curve) can be clearly observed
at all temperatures.

A zoom-in view at the small-1/V SCLC-dominated regime
is shown in Fig. 3(b), which indicates that the experimental
results (symbols) can be explained by linear fitting to obtain
the voltage scaling, which ranges from α = 2.11 down to
1.67 according to Eq. (10). The α scaling decreases to α < 2
at elevated temperature because the higher energy levels
of the conduction band are increasingly populated by the
thermally liberated electrons from trapping sites. This leads
to a higher degree of relativistic dynamics of the transport
electrons, thus reducing α. For the three α < 2 cases, they
can be extrapolated to have positive intercepts on the y

axis at 1/V → 0 [see Fig. 3(b)]. As α approaches 2, the
intercept diminishes and becomes approximately zero at α =
2. These observations are in good agreement with the predicted
intercepts of Eq. (10), as discussed above. Note that Eq. (10)
breaks down in the case of α > 2, where the intercept becomes
negative.

III. SIMPLIFIED MODEL OF UNIFORM SCLC INJECTION
IN A 2D DIRAC SEMICONDUCTOR

The relativistic SCLC model derived above is based on
solving the 1D Poisson equation. The Dirac semiconductor is
a 2D thin film, thus a 2D thin-form model is required. In this
section, we provide a simplified formalism of the 2D thin-film
relativistic SCLC model without the need to explicitly solve
for the 2D model [8].

A. Universal model of D-dimensional uniform SCLC injection
in a solid with density-dependent mobility

The SCLC has been previously formulated for thin films
and nanowire using an integral form of the 2D electrostatic
Poisson equation [8,10]. Here, we shall formulate a thin-film
SCLC relativistic model under the assumption of carrier-
density-dependent mobility to illustrate the general SCLC
scaling properties for a Dirac semiconductor, which has a
density-dependent mobility of μD = γ [en(x) + ρc]−1/2.

We consider the D-dimensional transport in a solid
with density-dependent mobility in a general form of μ =
μ0f [n(x)]/f0, where f [n(x)] is a density-dependent term and
f0 is a constant factor. The dimensionality of D = 1 and 2
corresponds to bulk and 2D thin film, respectively. In the
following analysis, we consider the case of uniform SCLC
injection, where the two electrodes are separated by a fixed
spacing of L, as shown in Fig. 4(a). For uniform SCLC
injection along the x direction, the electric field profiles, i.e.,

FIG. 4. Schematic drawings of the device and contact geometries.
Top view of (a) is the constant-L contact geometry for uniform SCLC
injection. Current is uniformly injected along the x direction. For
D = 1 bulk geometry, the constant-L geometry is invariant along
both the z and y directions, whereas for D = 2 thin-film geometry
the structure is only invariant along the z direction. Parts (c) and (d)
show the side view of constant-L 2D thin film with edge and strip
contacts, respectively.

ED for bulk (D = 1) and thin film (D = 2), can be written,
respectively, as

E1(x) = e

ε

∫
dx ′ ∂G1(x,x ′)

∂x
n3(x ′), (12a)

E2(x,y) = e

ε

∫
dx ′

∫
dy ′ ∂G2(x,y,x ′,y ′)

∂x
δ(y ′)n2(x ′),

(12b)

where n2(x) and n3(x) denote the surface and volume carrier
density, respectively. G1(x,x ′) and G2(x,y,x ′,y ′) are, respec-
tively, the 1D and 2D Green’s functions that are dependent
on the geometry of the contacts. Figures 4(b) and 4(c) show
a 2D thin film with two possible contact geometries, i.e.,
edge and strip contacts, respectively [8]. By eliminating the
y ′ integration via δ(y ′) and suppressing the argument of y = 0
in Eq. (12b) for simplicity, Eq. (12) can be written compactly
as

ED(ξ ) = e

ε

∫ 1

0
dξ ′ ∂GD(ξ,ξ ′)

∂ξ
nν(ξ ′), (13)

where we have introduced a dimensionless variable as ξ ≡
x/L, and the subscript of ν = 2,3 denotes surface and bulk
carrier density, respectively. Considering that the charge-
transport mechanism in a Dirac solid belongs to the class
of density-dependent mobility models, we assume a general
current density of

JD = enν(ξ )μ0
f [nν(ξ )]

f0
ED(ξ ), (14)

where the subscript D = 1,2 denotes linear and areal current
density, respectively. The density-dependent mobility is given
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as μ[nν(ξ )] ≡ μ0f [nν(ξ )]/f0, where f [nν(ξ )] is an nν(ξ )-
dependent term and f0 is a normalization constant. From
Eq. (14), the bias voltage relation, V = ∫ L

0 ED(x ′)dx ′, is
written as

JDf0

∫ 1

0

dξ ′

nν(ξ ′)f [nν(ξ ′)]
= eμ0

V

L
. (15)

The solution of Eq. (15) gives the equation of SCLC. Its
full solution require knowledge of nν(ξ ) over the intervals
from ξ = 0 to 1, which can be obtained by solving the
nonlinear integral equation in Eq. (13). Nonetheless, the
scaling relations, i.e., JD-V and JD-L, can be readily deduced
via a simple dimensional analysis [8] without explicitly
solving Eqs. (13) and (15).

To illustrate this, we first combine Eqs. (13) and (14) to
obtain

1 = e2μ0

εf0JD

nν(ξ )f [nν(ξ )]
∫ 1

0
dξ ′ ∂GD(ξ,ξ ′)

∂ξ
nν(ξ ′). (16)

From the Poisson equation, i.e., ∇2GD(r,r′) = δD(r), where
δD(r) is a D-dimensional Dirac delta function, the physical
dimension of GD can be obtained as [GD(ξ,ξ ′)] = L2−D ,
where L denotes the fundamental dimension of length, and
[X] denotes the unit of physical quantity X. Correspondingly,
the partial derivative, ∂GD/∂ξ , in Eq. (16) can be nondimen-
sionalized as

∂GD(ξ,ξ ′)
∂ξ

= L2−D ∂GD(ξ,ξ ′)
∂ξ

, (17)

where GD(ξ,ξ ′) is a dimensionless Green’s function. We now
rewrite Eqs. (15) and (16) as

JDf0

∫ 1

0

dξ ′

nν(ξ ′)fν

= eμ0
V

L
, (18a)

1 =
(

e2μ0L
2−D

εf0JD

)
nν(ξ )fν

∫ 1

0
dξ ′ ∂GD(ξ,ξ ′)

∂ξ
n(ξ ′), (18b)

where fν ≡ f [nν(ξ )] for simplicity. A direct inspection of
Eq. (18a) shows that after the integral

∫
dξ ′(· · · ) is fully

converted into a dimensionless form, the JD-V and JD-L
scaling relations can be unambiguously determined. In this
case,

∫
dξ ′(· · · ) becomes a dimensionless numeric factor that

does not play any role in the JD-V and JD-L scaling relations.
The nondimensionalization of Eq. (18a) can be accom-

plished by appropriately regrouping the constant term in
Eq. (18b), i.e., (e2μ0L

D−2/εf0JD), into each of the nν(x)
and fν terms on the right-hand side of Eq. (18b) such
that dimensionless terms Nν(ξ ) and Fν can be defined,
respectively, for nν(ξ ) and fν . In general, the regrouping of
(e2μ0L

D−2/εf0JD) can be expressed in an arbitrary form of

e2μ0L
2−D

εf0JD

≡ AJD
(fν)ÃJD

(fν)BL,D(fν)B̃L,D(fν), (19)

where AJD
(fν) and ÃJD

(fν) are terms containing JD , and
BL,D(fν) and B̃L,D(fν) are terms containing L2−D . The roles
of A’s and B’s are to pair up with n(ξ ) and fν in Eq. (18b)
such that the resulting terms are dimensionless.

In the following, we suppress the argument of A’s and
B’s for simplicity. As the explicit form of fν determines the

regrouping of (e2μ0L
D−2/εf0JD), A’s and B’s are both fν-

dependent. Furthermore, A’s are D-independent and B’s are
D-dependent as L2−D is deliberately distributed only into B’s.
We can now recast Eq. (18b) as

1 = Nν(ξ )Fν

∫ 1

0
dξ ′ ∂GD

∂ξ
N (ξ ′), (20)

where all terms are dimensionless via the following grouping:

Nν(ξ ) ≡ (AJD
BL,D)nν(ξ ),

(21)
Fν ≡ (ÃJD

B̃L,D)fν.

With Nν(ξ ) and Fν now being dimensionless, Eq. (18a) can
be rewritten as

JDAJD
ÃJD

BL,DB̃L,D

∫ 1

0

dξ ′

Nν(ξ ′)Fν

= eμ0
V

L
, (22)

or more compactly as

JDAJD
ÃJD

= ψGD

eμ0

BL,DB̃L,D

V

L
, (23)

where ψGD
is a dimensionless numeric factor dependent on D

and GD , i.e.,

ψGD
≡

( ∫ 1

0

dξ ′

Nν(ξ ′)Fν

)−1

, (24)

which can be explicitly solved from Eq. (18b), and it affects
only the overall magnitude of SCLC without affecting its
voltage and length scaling relations. Thus the JD-V and JD-L
scaling relations are determined by

JDAJD
ÃJD

∝ 1

BL,DB̃L,D

V

L
. (25)

B. Derivation of 2D thin-film SCLC scaling relations

Equation (25) represents a universal SCLC scaling relation
for uniform SCLC injection into either a D = 1 (bulk) or a D =
2 (thin film) based solid of length L with arbitrary density-
dependent mobility μ[nν(ξ )]. Several remarkable properties
can be extracted from Eq. (25): (i) The JD-V scaling, i.e.,
JDAJD

ÃJD
∝ V , is determined solely by the μ[nν(ξ )] and

is completely independent of the device geometry (GD) and
dimensionality (D); (ii) the JD-L scaling, on the other hand, is
affected by both fν and D; (iii) for a fixed D (= 1 for bulk or
= 2 for thin film), the geometry of contacts affects only ψGD

and hence both SCL JD-V and JD-L scaling are universally
independent on contact.

From Eq. (19), we see that the constant term carries a
length scale dependence of L2−D , and thus Eq. (19) will be
independent of L for D = 2 (for a thin-film setting) resulting
in BL,2 = B̃L,2 = 1. In this 2D thin-film limit, Eq. (23) gives
the SCLC relation for a thin film:

J2AJ2ÃJ2 = ψG2eμ0

(
V

L

)
. (26)

Note that Eq. (26) includes that both J2-V and J2-L follow the
same scaling relation.

Together with property (i) and Eq. (26), a powerful tool is
shown that can be used to directly map the scaling relation of a
simple bulk SCLC model into the 2D thin-film SCLC model.
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By virtue of property (i), we conclude that the voltage scaling
for thin-film (J2-V ) is identical to the bulk J1-V scaling, thus
the voltage scaling obtained in Sec. II is valid for a thin film
as well. For a thin film, Eq. (26) also dictates that the length
(J2-L) scaling relation is identical to the J2-V scaling relation.

To summarize this section, we provide a rigorous derivation
of scaling laws (both voltage and length) for uniform SCL
injection into a 2D thin-film setting. These properties allow
the J2-V and J2-L scaling relations of a 2D thin film to be
fully determined from a simple 1D bulk SCLC model, which
was shown in Sec. II. The full J2-V and J2-L scaling relations
are thus obtained without the need of explicitly solving the
complicated coupled equations in Eq. (18). In Appendix A,
two examples of 2D thin-film SCLC are analyzed using our
simplified formalism developed here.

C. Derivation of SCLC scaling relations and full numerical
solutions of Eq. (18) for a 2D Dirac semiconductor with traps

The relativistic SCLC scaling relation of a Dirac semicon-
ductor in 2D thin-film geometry can be readily determined
by using the simple derivation developed above. Since the 1D
SCLC scaling relation takes the form of J1 ∝ V 3/2 and J1 ∝
V 2, respectively, for the ultrarelativistic and nonrelativistic
regimes, for 2D thin film our simple analysis yields

J2 ∝
(

V

L

)α

, (27)

where α = 2 and 3/2 are for the nonrelativistic and ultrarel-
ativistic limit, respectively. In the intermediate regime, the
scaling follows an approximate power-law form with α varying
continuously from 2 to 3/2 akin to Fig. 2.

To verify Eq. (27), the relativistic SCLC in 2D thin-film
geometry with inclusion of exponential traps is explicitly
solved (the full derivation is presented in Appendix B). In
the presence of exponential traps, the relativistic SCLC in a
2D thin-film Dirac semiconductor is

nl
s(ξ )(1 − ξ 2)1/2√
Clnl

s(ξ ) + nc

=
∫ 1

−1

(
2γ e2Cl

J2ε

ns(ξ ′)(1 − ξ ′2)2

ξ − ξ ′

+
√

Clnl
s(ξ ) + nc

πnl
s(ξ

′)

)
dξ ′, (28a)

V = J2L

γ eCl

∫ 1

−1

√
Clnl

s(ξ ) + nc

nl
s(ξ )

dξ, (28b)

where l ≡ Tc/T > 1; ns(ξ ) is the 2D carrier density; nc ≡
ρc/e; Cl ≡ N0/N

l
t , with N0 as the effective density of states

at the conduction-band edge and Nt as the trap density; and
ξ and ξ ′ are dimensionless variables. In the ultrarelativistic
and nonrelativistic SCLC regimes, we obtain J2 ∝ (V/L)l/2+1

and J2 ∝ (V/L)l+1, respectively. By setting l = 1 (which
corresponds to a trap-free case), we obtain J2 ∝ (V/L)2

(nonrelativistic) and J2 ∝ (V/L)3/2 (ultrarelativistic), thus
confirming the simple derivation in Eq. (27). This agreement
demonstrates that the unconventional JD-V scaling of 3/2 <

α < 2 is a universal signature of the relativistic charge-carrier
dynamics in both bulk and 2D thin-film geometries.

In comparison to prior works in Ref. [31], the variation of
α ≈ 1.7 to α ≈ 3 with decreasing temperature was attributed

100 101

100

101

102

Φl=1 ∝ V−3/2
l=1

Φl=1 ∝ V−2
l=1

l=1

Φ
l=

1

FIG. 5. Numerical solution of the trap-free (l = 1) 2D thin film
of a Dirac semiconductor. The dashed and dotted lines denote
�l=1 ∝ V−2

l=1 and �l=1 ∝ V−3/2
l=1 , respectively. As �l=1 ∝ 1/J2 and

Vl=1 ∝ V/L, the small-Vl=1 and large-Vl=1 regime corresponds to
J2 ∝ (V/L)2 (nonrelativistic) and J2 ∝ (V/L)3/2 (ultrarelativistic),
respectively. Note that the data points exhibit oscillations at small
Vl=1 due to a numerical error.

to the transition from T < Tc (valid) to T > Tc (invalid). Our
relativistic SCLC model with exponential traps presented here
is intended, however, to take into account such a temperature
dependence without imposing the invalid Tc < T condition.

To further confirm the analytical relativistic SCLC scaling
relation obtained above, the integral equation in Eq. (28a),
which belongs to the class of nonlinear Cauchy singular
integral equations [39], is numerically solved for the trap-free
case of l = 1. The numerical solution ns(ξ ) [from Eq. (28a)]
is then integrated in Eq. (28b) to obtain J2 as a function of V .
For simplicity, Eq. (28) is solved in terms of a dimensionless
variables, i.e., Vl=1 ∝ V/L and �l=1 ∝ 1/J2 [see Appendix C
and Eqs. (C6) and (C7) for the definition of Vl and �l]. The
numerical results (red circles) of �l=1(∝ 1/J2) as a function of
Vl presented in Fig. 5 show good agreement with the derived
scaling laws: �l=1 ∝ V−2

l=1 (dotted lines) at a small voltage
of Vl=1 < 2, and �l=1 ∝ V−3/2

l=1 at a large voltage of Vl=1 >

2. Thus, the comparison confirms the two corresponding
analytical scaling laws [see Eq. (27)] for space-charge-limited
conduction in a 2D thin-film Dirac solid with a finite band
gap: J2 ∝ (V/L)2 and J2 ∝ (V/L)3/2, respectively, for the
nonrelativistic and ultrarelativistic limits. More importantly,
the unconventional relativistic SCLC scaling of 3/2 < α <

2 is unambiguously confirmed for the 2D thin-film Dirac
semiconductor and is in agreement with experiments [31,32].

Finally, we discuss the screening effect on the relativistic
SCLC in 2D Dirac materials. In such materials, the charge
transport is sensitively influenced by the substrate screening
and excess charge screening induced by a gate electrode
in field-effect-transistor geometry. Despite these screening
effects, SCLC was unambiguously observed in experiments
as reported in Refs. [31] and [32]. These experimental
observations suggest that the screening effect cannot entirely
remove SCLC in 2D materials. In a previous theoretical
work [40], it was demonstrated that the surrounding dielectric
screening will affect the transport properties of a 2D thin film
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by modifying the relaxation time τ , and a significant mobility
enhancement can be achieved via a high-dielectric substrate
with a vanishingly thin membrane. This theoretical prediction
was experimentally confirmed in monolayer MoS2 with a high
substrate [41]. With regard to our SCLC model, we point out
that as the substrate screening effect alters only the relaxation
time τ , which comes into the SCLC picture as a proportionality
constant, it can be reasonably expected that only the magnitude
of the SCLC will be altered while the new scaling laws
reported here will remain unchanged. A microscopic theory
of substrate screening can be formulated via first-principles
calculation, which takes into account the complex many-body
interactions at the interface between 2D materials and the
substrate [42]. The complete microscopic quantum picture of
dielectric screening is beyond the scope of this work.

IV. CONCLUSION

In summary, we have proposed a theory of relativistic
space-charge-limited conduction (SCLC) in Dirac solids with
new scaling laws for both bulk and thin file models. For the
one-dimensional (1D) bulk model, the scaling laws are J1 ∝
V α/Lβ with 3/2 < α < 2 and 2 < β < 3. For the 2D thin film
model, we have J2 ∝ (V/L)α for uniform SCLC injection with
α remaining the same as the case of the 1D bulk model under
the assumption of density-dependent mobility. Both scaling
laws have been verified with numerical calculations and have
good agreement with experimental results. The important
finding from this paper is the new voltage scaling of α < 2,
which is a signature of the massive Dirac fermions in the
2D Dirac materials, and it cannot be explained by using the
traditional SCLC models derived decades ago for traditional
materials. The inconsistencies in using such traditional SCLC
models with an unjustified trap condition to fit the experimental
measurement is questionable. Our results represent another
class of relativistic space-charge phenomena in Dirac solids
that may be used to model Dirac-based devices operating
in the space-charge-limited regime and may also be used as
a tool to extract useful parameters by fitting the analytical
equations with measurements. The relativistic SCLC model
should generate unconventional SCL photocurrent response
[11] in a relativistic Dirac semiconductor such as MoS2. The
widely studied photoresponse of MoS2 [43] can be readily used
as an additional platform to verify the proposed relativistic
SCLC model here.
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APPENDIX A: TWO EXAMPLES OF 2D THIN-FILM SCLC
USING THE SIMPLIFIED FORMALISM

In this appendix, we illustrate the simple derivation of the
2D SCLC scaling relations developed in Secs. III A and III B

using two examples. In the first example, we consider a trivial
case with fν/f0 = 1, i.e., the mobility is independent of carrier
density. For the bulk model of D = 1, Eq. (18b) becomes

1 =
(

e2μ0L

εJ1

)∫ 1

0
dξ ′ ∂G1(ξ,ξ ′)

dξ
n(ξ ′), (A1)

which can be fully nondimensionalized by defining AJ =
(e2μ0/εJ1)1/2, ÃJ1 = 1, BL,1 = L1/2, and B̃L,1 = 1. From
Eq. (23), we obtained J1(e2μ0/εJ1)

1/2 = ψG1eμ0V/L3/2,
which can be rearranged to give the well-known bulk MG
law of

J1 = ψ2
G1

εμ0
V 2

L3
. (A2)

The numerical factor can be solved as ψ2
G1

= 9/8 via
Eq. (24) by using a 1D Green’s function [8]. We can now map
the J1-V bulk SCLC scaling relation to the 2D thin-film case,
which yields J2 ∝ V 2. Furthermore, as J2-L scales equally
with J2-V , the 2D thin-film SCLC scaling relation can now be
fully determined as J2 ∝ (V/L)2. One can verify this scaling
relation by explicitly solving Eq. (26) withAJ2 = (e2μ0/J2)1/2

and ÃJ2 = 1. This gives J2(e2εμ0/εJ2)
1/2 = ψG2eεμ0V/L,

which can be rearranged to give the well-known 2D thin-film
SCLC [8], i.e.,

J2 = ψG2εμ0

(
V

L

)2

, (A3)

where ψG2 is a G2-dependent numeric factor.
In the second example, we consider a carrier-density-

dependent mobility in a power-law form, i.e., fν = nν(ξ )l−1

and f0 = nl−1
0 , where n0 and l are some constants. This

particular form of μ is equivalent to Mark-Helfrich’s
exponential-trap model with l > 1. For this particular
form of fν/f0, Eq. (18b) can be fully nondimensional-
ized by regrouping the constant factor (e2εμ0L/nl−1

0 J1)
via the following definitions: AJ1 = (e2εμ0/nl−1

0 J1)1/(l+1),
ÃJ1 = (e2εμ0/nl−1

0 J1)(l−1)/(l+1), BL,1 = L1/(l+1), and B̃L,1 =
L(l−1)/(l+1). The bulk SCLC can then be obtained from Eq. (23)
as

J1

(
e2μ0

nl−1
0 εJ1

) l
l+1

= ψG1eμ0
V

L
2l+1
l+1

, (A4)

which can be simplified as

J1 = ψl+1
G1

(
enl

0

)l−1
εlμ0

V l+1

L2l+1
(A5)

and is in agreement with the Mark-Helfrich exponential trap
model [7]. To generalize the bulk SCLC to the case of 2D thin
film, we again utilize the facts that (i) J2-V follows the same
scaling as J1-V , and (ii) J2-L scales equally with J2-V . This
gives J2 ∝ (V/L)l+1, which is in agreement with the explicit
solution of Eq. (26), i.e.,

J2 = ψl+1
G2

(
enl

0

)l−1
εlμ0

(
V

L

)l+1

. (A6)
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APPENDIX B: DERIVATION OF THE 2D RELATIVISTIC
SCLC MODEL

In this appendix, we provide a full derivation of the Mark-
Helfrich SCLC model and Dirac semiconductor in 2D thin-film
geometry based on Grinburg’s formalism [8].

1. Mark-Helfrich’s trap model of SCLC in
2D thin-film geometry

In the presence of traps that follow an exponential energy
distribution [7], the free and trapped carrier densities are
related by nf (x) = (N0/N

l
t )nl

s(x) ≡ Cln
l
s(x), where nf (x) is

the free carrier density, ns(x) is the trapped carrier density, N0

is the effective density of states at the conduction-band edge,
Nt is the trap density, and Cl ≡ N0/N

l
t . Here, l ≡ Tc/T � 1,

where Tc is a characteristic temperature representing the
exponential spread in energy of the traps. The charge density
in a 2D thin film is given as

ρ(x,y) = eδ(y)[−ns(x) + Psδ(L − x)], (B1)

where δ(y) is a Dirac delta function and Ps = ∫ L

0 ns(x)dx is
the charge density induced on the anode by the total ns(x)
residing in the thin film. Note that y represents the direction
that is out-of-plane of the thin film. For thin-edge contacts, the
corresponding Green’s function is

G(x − x ′,y − y ′) = − 1

2π
ln[(x − x ′)2 + (y − y ′)2]1/2

(B2)

and the scalar potential can then be solved as

φ(x,y)=− 1

2π

∫ ∞

−∞
dy ′

∫ L

0
dx ′ ln[(x − x ′)2 + (y − y ′)2]1/2

×
(

−4πe

ε

)
δ(y ′)[−ns(x) + Psδ(L − x)]. (B3)

Simplifying φ(x,y = 0) and knowing that Ex(x,0) =
−dφ/dx, we obtain

Ex(x,0) = 2e

ε(L − x)

∫ L

0

L − x ′

x − x ′ ns(x
′)dx ′. (B4)

By defining ξ = x/L and ξ ′ = x ′/L, we obtained

Ex(ξ,0) = 2e

ε(1 − ξ )

∫ 1

0

1 − ξ ′

ξ − ξ ′ ns(ξ
′)dξ ′. (B5)

We now consider a current density equation in Drude’s form,
i.e.,

J = enf (x)μEx(x,0). (B6)

By combining Eqs. (B5) and (B6), we obtain

1 = 2e2μCl

J ε

ns(x)l

1 − ξ

∫ 1

0

1 − ξ ′

ξ − ξ ′ ns(ξ
′)dξ ′. (B7)

Equation (B7) can be rearranged as follows:

1 =
(

2e2μCl

J ε

) l
l+1 nl

s(ξ )

1 − ξ

∫ 1

0

1 − ξ ′

ξ − ξ ′

(
2e2μCl

J ε

) 1
l+1

ns(ξ
′)dξ ′.

(B8)

By defining

νs(ξ ) ≡
(

2e2μCl

J ε

) 1
l+1

ns(ξ ), (B9)

Eq. (B8) becomes

1 = νl
s(ξ )

1 − ξ

∫ 1

0

1 − ξ ′

ξ − ξ ′ νs(ξ
′)dξ ′, (B10)

which is an integral equation that can be solved to obtain ν(ξ ).
The bias voltage can be obtained from V = ∫ 1

0 Ex(ξ,0)dξ and
Eq. (B6) as

V = JL

eμCl

∫ 1

0

dξ

nl
s(ξ )

. (B11)

To obtain the exponential trap-limited SCLC in 2D thin-
film geometry with an edge contact, Eqs. (B9) and (B11) are
combined to give

V = JL

εμCl

(
2e2μCl

J ε

) 1
l+1

∫ 1

0

dξ

νs(ξ )
. (B12)

With the definition of λ ≡ ∫ 1
0 dξ/νs(ξ ), which is a constant

that can be solved from the integral equation in Eq. (B10), we
obtain

J =
(

ε

2λ

)l

e2μCl

(
V

L

)l+1

. (B13)

Equation (B13) gives the exponential trap-limited SCLC of
a 2D thin film with edge-contact geometry [see Fig. 4(b)]. For
strip geometry [see Fig. 4(c)], the electric field is given as

Ex(ξ ) = 2

(1 − ξ 2)1/2

(
e

ε

∫ 1

−1

ns(ξ ′)(1 − ξ ′2)1/2

ξ − ξ ′ dξ ′ + V

πL

)
,

(B14)

where ξ ≡ (2x − L)/L and ξ ′ ≡ (2x ′ − L)/L. Using a similar
procedure, we obtain

J

eμ
= 2Cln

l
s(ξ )

(1 − ξ 2)1/2

(
e

ε

∫ 1

−1

ns(ξ ′)(1 − ξ ′2)1/2

ξ − ξ ′ dξ ′

+ 1

πL

JL

eμCl

∫ 1

0

dξ

nl
s(ξ )

)
, (B15)

which can be simplified to

1 = νl
s(ξ )

(1 − ξ 2)1/2

(∫ 1

−1

νs(ξ ′)
(
1 − ξ ′2)1/2

ξ − ξ ′ dξ ′ + 1

π

∫ 1

−1

dξ

νl
s(ξ )

)
.

(B16)

From Eq. (B12), the SCLC current density equation is obtained
as

J =
(

ε

2λ′

)l

e2μCl

(
V

L

)l+1

, (B17)

where the numeric factor λ′ ≡ ∫ 1
−1 dξνs(ξ ) can be obtained by

solving νs(ξ ) from Eq. (B16). In summary, the 2D thin-film
uniform injection of SCLC in the presence of exponential traps
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follows the following scaling relation:

J ∝
(

V

L

)l+1

(B18)

for both edge- and strip-contact geometries. More importantly,
this scaling relation is in agreement with Eq. (A6) obtained
using the simplified formalism.

2. Relativistic SCLC model for 2D massive Dirac fermions

For a 2D Dirac semiconductor, we obtain

1 = 2γ e2Cln
l
s(ξ )

Jε
√

Clnl
s(ξ ) + nc

∫ 1

0

1 − ξ ′

ξ − ξ ′ ns(ξ
′)dξ ′ (B19)

and√
Clnl

s(ξ̃ ) + nc(1 − ξ̃ 2)1/2

nl
s(ξ̃ )

=
∫ 1

−1

(
2γ e2Vl

J ε

ns(ξ̃ ′)(1 − ξ̃ ′2)2

ξ̃ − ξ̃ ′ +
√

Clnl
s(ξ̃ ) + nc

πnl
s(ξ̃

′)

)
dξ̃ ′,

(B20)

respectively, for edge-contact and strip-contact geometries.
The applied bias voltage for edge- and strip-contact geometries
becomes, respectively,

V = JL

γ eCl

∫ 1

0

√
Clnl

s(ξ ) + nc

nl
s(ξ )

dξ (B21)

and

V = JL

γ eCl

∫ 1

−1

√
Clnl

s(ξ̃ ) + nc

nl
s(ξ̃ )

dξ̃ . (B22)

The coupled Eqs. (B19)–(B22) can be solved to obtain
the relativistic SCLC in 2D thin-film geometry. Equations
(B19)–(B22) have to be solved numerically. Nonetheless, in
the nonrelativistic and ultrarelativistic limits, semianalytical
scaling relations can be derived. We first consider the non-
relativistic limit of nc � nl

s(ξ ) for all ξ with edge contacts.
Equations (B19) and (B21) can be approximated, respectively,
by

1 = 2γ e2Cln
l
s(ξ )

Jεn
1/2
c

∫ 1

0

1 − ξ ′

ξ − ξ ′ ns(ξ
′)dξ ′ (B23)

and

V = JLn
1/2
c

γ eCl

∫ 1

0

dξ

nl
s(ξ )

. (B24)

By defining

νs(ξ ) ≡
(

2γ e2Cl

J εn
1/2
c

) 1
l+1

ns(ξ ), (B25)

we obtain

J = 1

λl+1

(
ε

2

)l
γ Cl

n
l/2
c e2l−1

(
V

L

)l+1

, (B26)

where λ ≡ ∫ 1
0 dξ/νl

s(ξ ) is a numerical factor that can be solved
from the nonlinear integral equation in Eq. (B19). By setting
l = 1, the current-voltage scaling relation agrees with the 1D
bulk model as shown in Eq. (5a) of the main text. The current
voltage scales equally with the current length, which is also in
agreement with the simplified derivation of the 2D thin-film
SCLC scaling relation presented in Eq. (27) of the main text.

In the ultrarelativistic limit of nc → 0, Eqs. (B19) and (B21)
become, respectively,

1 = νl/2
s (ξ )

∫ 1

0

1 − ξ ′

ξ − ξ ′ νs(ξ
′)dξ ′ (B27)

and

V = JL

γ e

(
2γ e2C

1/2
l

J ε

) l/2
l/2+1

∫ 1

0

dξ

ν
l/2
s (ξ )

, (B28)

where

νs(ξ ) ≡
(

2γ e2C
1/2
l

J ε

) 1
l/2+1

ns(ξ ), (B29)

which can be rearranged to give

J = 1

λ′l/2+1

(
ε

2

)l/2
γ e1−l/2

C
l/4
l

(
V

L

) l
2 +1

. (B30)

The numerical factor, λ′ ≡ ∫ 1
0 dξ/ν

l/2
s (ξ ), can again be

solved from Eq. (B19). For l = 1, the current-voltage scaling
relation agrees with the ultrarelativistic results in Eq. (5b) of
the main text. In the intermediate regime, the scaling relation
can be approximated by

J ∝ (V/L)�, (B31)

where � = l/2 + 1 and � = l + 1.

APPENDIX C: EQUATIONS (B28)–(B32) IN
DIMENSIONLESS FORM

Equations (B28)–(B32) can be transformed into dimension-
less form for numerical solution in Fig. 5. For edge contacts,
we obtain

1 = �l

1 − ξ

f l
s (ξ )√

f l
s (ξ ) + 1

∫ 1

0

1 − ξ ′

ξ − ξ ′ fs(ξ
′)dξ ′ (C1)

and

Vl = 1

�l

∫ 1

0

√
f l

s (ξ ) + 1

f l
s (ξ )

dξ. (C2)

For strip contacts, the dimensionless form yields

1 = f l
s (ξ )√

f l
s (ξ ) + 1

1

(1 − ξ 2)1/2

∫ 1

−1

(
�lfs(ξ

′)
(1 − ξ ′2)1/2

ξ − ξ ′

+ 1

π

√
f l

s (ξ ′) + 1

f l
s (ξ ′)

)
dξ ′ (C3)

and

Vl = 1

�l

∫ 1

−1

√
f l

s (ξ ) + 1

f l
s (ξ )

dξ. (C4)
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The dimensionless parameters are defined as

fs ≡ Cl

nc

1/l

ns(ξ ), (C5)

�l ≡ 2γ e2

Jε

(
nc

Cl

)1/l√
nc, (C6)

and

Vl ≡ εV

2eL

(
Cl

nc

)1/l

, (C7)

where �l is a current- and material-dependent parameter.
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