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Laughlin’s argument for the quantized thermal Hall effect
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We extend Laughlin’s magnetic-flux-threading argument to the quantized thermal Hall effect. A proper analog
of Laughlin’s adiabatic magnetic-flux threading process for the case of the thermal Hall effect is given in
terms of an external gravitational field. From the perspective of the edge theories of quantum Hall systems, the
quantized thermal Hall effect is closely tied to the breakdown of large diffeomorphism invariance, that is, a global
gravitational anomaly. In addition, we also give an argument from the bulk perspective in which a free energy,
decomposed into its Fourier modes, is adiabatically transferred under an adiabatic process involving external

gravitational perturbations.
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I. INTRODUCTION

The thermal Hall conductivity is quantized in gapped
(2 + 1)-dimensional topological phases [1-3] of charged
and charge-neutral excitation systems. Integer and fractional
quantum Hall systems [4] and chiral p-wave topological
superconductors [5] are examples of such systems. More
precisely, the thermal Hall conductivity in these systems is
given by
k3T

o
where c is the chiral central charge of the gapless boundary
modes. Hence ky is quantized in units of wk37 /6. For
example, an integer quantum Hall system with the bulk
Chern number v of the filled electronic energy bands has
v complex-fermionic boundary modes with ¢ = v, and a

topological superconductor with the Chern number v of the
Bogoliubov quasiparticles has v Majorana boundary modes

ey

Kg =¢

with c = v/2.
The quantized thermal Hall effect in two-dimensional
topological insulators and topological superconductors

(superfluids) has been discussed both from bulk and boundary
points of view. From the perspective of chiral gapless boundary
theories, the thermal Hall effect has been studied in terms of
the chiral Luttinger liquid [4], the conformal field theory [6,7],
the gravitational Chern-Simons theory [8], and the equilibrium
partition function [9]. On the other hand, the thermal Hall effect
in the quantum Hall bulk is much controversial. Various studies
using the Kubo formula [10-12], the nonequilibrium Green’s
function [13], and the Stfeda formula [14] have concluded
that the bulk fermionic states show the quantized thermal
Hall effect. However, from the point of view of equilibrium
thermal field theories, the thermal Hall current in the bulk
is exponentially small when the temperature is much smaller
than the bulk energy gap [15]. Also, an induced gravitational
field theory derived from a fully gapped fermionic system in
a thermal equilibrium cannot describe the quantized thermal
Hall effect [16]. These results may imply that, while for chiral
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edge theories one can develop an argument for the quantized
thermal Hall effect, parallel to the quantum Hall effect, the bulk
picture of the quantized thermal Hall effect may be distinct
from that for the quantum Hall effect.

In this paper, we extend the gauge invariance/noninvariance
argument presented by Laughlin [17] to the thermal Hall
effect in quantum Hall systems. Laughlin’s argument provides
a fundamental and robust theory of adiabatic responses in
gapped topological phases. We will make an attempt to
follow as closely as possible the original Laughlin’s argument,
by making one-to-one correspondence between electromag-
netism and gravity (or more precisely, not full Einstein gravity
but gravitoelectromagnetism). We will discuss the adiabatic
responses of the chiral boundary fermion modes and the bulk
quantum Hall states against the gravitational counterpart of the
magnetic-flux threading.

From the edge-theoretical point of view, we elucidate the
role of quantum anomalies connecting the boundary theories
and Laughlin’s argument. In particular, we will make use of
the global gravitational anomaly of the boundary theories,
as opposed to the perturbative gravitational anomaly. While
the perturbative gravitational anomaly correctly accounts for
the nonconservation of the energy-momentum of the chiral
edge theories, and hence the necessity of having the bulk
system, it is not entirely obvious how one could relate the
nonconservation of the energy-momentum to the thermal
transport. As we will discuss, the connection to the thermal
transport is more transparent if we base our discussion on the
global gravitational anomaly. It should, however, be noted that
the global gravitational anomaly, i.e., the anomalous phase
of the partition function, has an ambiguity 277 X integer. One
may then worry that the global gravitational anomaly may
not have an ability to fix the thermal transport coefficient
entirely. Nevertheless, this ambiguity can be lifted by requiring
consistency with the perturbative gravitational anomaly.

As for the bulk point of view, our thermal extension of
Laughlin’s argument reveals a picture quite analogous to the
quantized charge Hall current that flows adiabatically through
the bulk, i.e., the creeping of Landau orbitals as one threads
a magnetic flux adiabatically. In particular, to explain the
thermal Hall effect, it seems that it is possible to avoid the
use of nonequilibrium frameworks, and confine our discussion
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FIG. 1. The cylindrical geometry for Laughlin’s argument. Elec-
trons are confined on the cylindrical surface in the presence of a
magnetic field B applied perpendicular to the surface. A magnetic
flux & is threaded through the hole of the cylinder, and an electric
field E, is applied.

entirely within the thermal effective field theory, as in other
anomaly-related transport phenomena.

This paper is organized as follows. In Sec. II, we start by
reviewing the Laughlin’s original argument of flux-threading.
In Sec. III, Laughlin’s argument is recast into the language
of the chiral boundary theories. In particular, we distinguish
two types of quantum anomalies, perturbative and global U(1)
gauge anomalies. While at the level of the quantized charge
transport, both anomalies lead to the same conclusion (the
quantized Hall effect), the distinction between the perturbative
and global anomalies is an important prerequisite for the later
application. In Sec. IV, we first show that the flux threading in
the gravitational case is described by a modular transformation
of the base manifold. Then the thermal Hall effect is explained
by a global gravitational anomaly regarding the modular
invariance of the boundary theory. In Sec. V, the thermal Hall
effect is quantitatively explained from the bulk point of view.
Finally, in Sec. VI, we summarize our results.

II. BULK ARGUMENT FOR THE QUANTUM HALL
EFFECT (LAUGHLIN’S ORIGINAL ARGUMENT)

Let us start by reviewing some notations and fundamentals
of the quantum Hall effect by following the Laughlin’s original
argument. Laughlin’s argument explains the quantized Hall
effect from the bulk point of view. Consider an electronic
system confined on the cylindrical surface (Fig. 1) of the x-y
plane. A magnetic field B > 0 is applied in the out-of-plane
(z) direction. Consider a two-dimensional electron gas (e < 0)
described by a quadratic single-particle Hamiltonian

1
H = —(—ihid — eA)?, 2)
2m
with the Landau gauge vector potential A = (—By,0), which

is consistent with the periodic boundary in the x direction.
The electronic system has translational invariance in the x
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direction, and thus eigenstates are labeled by the wave number
ky. The Hamiltonian (2) has the discrete energy spectrum
consisting of the Landau levels,

ey = hoe <N + %) A3)

where N is a non-negative integer labeling the Landau levels,
and w, = |e|B/m is the cyclotron frequency. When the Fermi
level lies in the energy gap between the Landau levels v and v +
1, that is, the eigenstates up to the Landau level v are occupied,
the electrons below the Fermi level carry a quantized Hall
conductivity as oy = ve?/2mh. The eigenstate wave functions
are given by

. (v 2 2
Bk (x,y) o X e O (y — ), )

where [ = (i/|e| B)'/? is the magnetic length and Hy(y) is the
Hermite polynomial of degree N. The wave functions (4) are
localized in the y direction about a point yy, and extended
in the x direction. Here the localized position y, is uniquely
determined by k, via

yo = hik,/|e|B. (5)

When the circumference of the cylinder is L, the wave
number is discretized as k, = 2wn/L (n € Z) and accordingly,
localized positions of the Landau levels take discrete values
with the interval éy = 2n/i/|e|BL.

In Laughlin’s argument, one considers an adiabatic process
in which a magnetic flux quantum &y = 27/i/|e| is threaded
through the cylinder. The corresponding change in the vector
potential is A — A + (2n/i/le|L,0). If an electron state is
coherent along a closed loop in the x direction, a magnetic
flux induces a phase shift by ¢ — e?***/Ly; that results in a
shift of the momentum by k, — k, 4+ 27 /L. According to (5),
the momentum shift is accompanied by an adiabatic shift of
the electron position from yg to yp + 8y. Such an adiabatic
motion of electrons forced by threading a magnetic flux is
the key property in the bulk argument. Note that electrons
without coherence undergo trivial changes in their phase
factors without any real-space motions. When the length of
the cylinder is infinite, or when two boundaries of the cylinder
are connected to make a 2-torus, all coherent electrons are
shifted to their neighboring positions by one magnetic flux
quantum 27t/i/|e|, and thus totally the electron state turns back
to the original state.

When the electric field is applied in the y direction, an
electron localized at y, gains an energy by  E = e E,§y during
a shift to yg + §y. The charge current is givenby ej = de/0A,
where € is the electron energy per unit area. When electrons
fill up to the vth Landau level, the current density is evaluated
as

1 9E 1 8E e’
- — > —— =) —
Léy dA, &y ®g 2rth

€jx (—E,), (6)
since all filled Landau levels contribute equally to the Hall
current. In (6), a differential is approximated by a difference
in the second equality.
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FIG. 2. The cylindrical geometry for the boundary picture of
Laughlin’s argument. On the cylindrical surface, solid arrows rep-
resent electric currents and dashed arrows are the electric field. (a)
Electric Hall current in the x direction is induced by an applied
voltage V. (b) Charge pumping between boundaries as an electric
Hall current in the y direction is induced by a temporal change of the
magnetic flux .

III. BOUNDARY ARGUMENT FOR THE
QUANTUM HALL EFFECT

In this section, we revisit Laughlin’s argument for the
quantum Hall effect in terms of the ¢ = 1 chiral boundary
theory

S = f d’x ik (d; + 9V, (7)

and its intrinsic anomalies. Here and henceforth we set the
Fermi velocity as vg = 1. The chiral boundary theories cannot
existas anisolated (1 4+ 1)-dimensional system, and are always
accompanied with the higher-dimensional bulk. The quantum
anomaly in the U(l) gauge symmetry and the resulting
breakdown of the charge conservation are peculiarities in
such systems, and are shown to have a close connection with
the quantum Hall effect in the bulk. [Here, we consider the
sharp boundary with thickness much shorter than the magnetic
length [ to rule out the possibility of edge reconstruction [18].
While the subsequent calculations are presented in terms of
the simplest edge theory (7), the edge reconstruction is not
expected to change the quantum anomaly (the chiral central
charge).]

A. From perturbative U(1) gauge anomaly
1. Charge pumping and anomaly

Consider electrons forming a v = 1 quantum Hall state on
the cylindrical geometry [Fig. 2(a)]. The axial length and the
circumference of the cylinder are W and L, respectively. When
a magnetic flux @ is threaded through the cylinder, coherent
electrons in the bulk flow adiabatically along the cylinder. At
interfaces between boundaries and the bulk, bulk electrons
flow into the left boundary, and simultaneously, bulk electrons
are supplied by the right boundary.

When we focus on the two boundaries, such a process is
interpreted by increase and decrease of the electron numbers

PHYSICAL REVIEW B 95, 165405 (2017)

in the (141)-dimensional electronic systems. The right-
(left-)moving chiral boundary fermion mode resides on the
left(right) boundary. In the following, we denote “right” and
“left” in the subscript of any physical quantities to represent
boundary sides, not the moving directions. Combining two
chiral modes, the boundary action is given by

Sittrigh = / Px =iy (D, —ieA ), (8

where ¥ = (Yieg, Vign), ¥ = ¥y, y" = io*, y! = 0 sat-
isfying {y*,y"}/2 = n*¥ = diag[—1, + 1], and 9,, = (9;,0,).
As electrons flow into/from the left/right boundary, the
chiral U(1) particle number conservation is violated. This is
quantified by the chiral U(1) anomaly [19,20] equation

e
A jt = ——€",A,, 9
s I Ay ©))
where w,v=t,x and j§' = jii — Jjligy is the axial current
composed of the particle current on left and right boundaries.
Integrating (9) over the boundary space, one obtains

. . e .

Nieft — Niight = —%‘D, (10
where Niefirigny 1S the total electron number of the left (right)
boundary defined by the electron density jfgﬁ(right), and @ is the
magnetic flux threaded at the center of the boundary circle. On
the other hand, the U(1) gauge symmetry of the combination
of left and right boundary electrons imposes the conservation
of the total electron number 0;(Niefy + Nright) = 0. Therefore,
through adiabatically threading a magnetic flux, the electron
number changes as'

e
——. 11
2nh (an
A relation (11) governing nonconservation of the boundary
electron has the same form as the Stfeda formula for the
quantum Hall effect [21]

O Niefe = —8 Nright =

e’ oN
V— =e—,
2nth P
with v = —1 for the left boundary and v = +1 for the
right one, although (12) considers a magnetic flux & that
is applied perpendicularly to the two-dimensional electrons,
while that in (11) is threaded through the cylinder. However,
the Stfeda formula (12) and the relation (11) can be identified
as follows, provided that the total electrons number N in (12)
is completely due to the chiral boundary modes. Consider
quantum Hall states on two disks Dief; and Dy perpendicular
to threaded magnetic flux, which have common boundaries
with the cylinder as shown in Fig. 3. Focusing only on the
boundary mode, the chiral boundary modes of the v =1
quantum Hall state on the cylindrical surface are equivalent
to those of the v = —1 quantum Hall state on D and
the v = 1 quantum Hall state on Dy;gy, Where, in the latter

o = 12)

"While we have used the chiral U(1) anomaly to quantify the charge
pumping, we could have used the U(1) gauge anomaly, focusing
on a single edge. The (covariant but not consistent) U(1) anomaly
quantifies the loss/gain of the charge for a given edge.
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(a) (b)

FIG. 3. A quantum Hall states on the cylindrical surface have the
same boundary electronic modes as those on two disks.

geometry, electrons on the cylindrical surface are absent. This
explains the reason why the boundary electrons obey the Stieda
formula.

2. The quantized Hall current induced by
the electrostatic potential

Let us now relate (11) to the Hall conductance. When a
magnetic flux @ is applied, the number of electrons on the
left boundary at the electric potential V changes by § Njee and
that on the right boundary at the electric potential O by 6 Nijgp.
The electric potential energy gains by 6 Epot = eV 8 Niefi, and,
in turn, the total (kinetic) energy of electrons increases by

SE = —eV 8Nt (13)

The electric Hall current is determined by equating the energy
supplied by applied voltage and the interaction energy of
the electric current with the vector potential resulting from
the threaded magnetic flux A, = ®/L. Thus, using (11), the
electronic current is given by

1 9SE e?
=—V. (14)

w
ey = e/o e Y W =
The above argument can be regarded as a boundary picture of
Laughlin’s argument on the quantum Hall effect.
Notice that the boundary argument in this subsection cannot
tell whether the Hall current flows in the bulk or along the
boundary, since it predicts only the total electric Hall current

flowing perpendicular to the applied voltageeJ, = e fOW dyjx,
i.e., we have computed the Hall conductance, but not the Hall
conductivity. Provided that the electric current is uniformly
distributed in the bulk, we would conclude that the electric
Hall conductivity is quantized as in (6), from (14) (recalling
E,=-V/W).

Alternatively, one can consistently make an argument based
on the electric Hall current flowing along the boundary
[22,23]. This way of describing the Hall current results from
a quantization of the boundary electric current

ajbdry _ L

o 27k’

where +(—) is for the right-(left-)moving chiral fermion. Then

the Hall current is calculated solely by a summation of the
boundary current on left and right boundaries as

s)

Mieft — Mright _ e 2 (16)

Jo=j . _
Jleft + Jright h 2l
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which is equivalent to (14). It should be noted, however,
the relation (16) does not assert that the Hall current is
carried only by the chiral boundary modes. This is because
(16) considers only the difference of the electric currents on
two boundaries flowing in opposite directions. An absolute
value of the boundary electric current is not well-defined
for the (141)-dimensional Dirac system: it depends on the
momentum cutoff A as

o) 1 [EA A
@:—/ dk=+(L -2 an
L 27 Jon 2nh 2w

while such a high-frequency regime is not well-defied as
the boundary property, and should be attributed to the bulk
electronic states. Therefore the boundary argument in this
section does not provide any information about the distribution
of the electric Hall current.

Jefuright =

3. The quantized Hall current induced by the
time-dependent magnetic flux

Another point to be mentioned is that one can also regard
an adiabatic electron transfer between two edges as the electric
Hall current flowing in the y direction [Fig. 2(b)], which
flows perpendicularly to the Hall current (14) flowing in the x
direction [Fig. 2(a)]. The Hall current in this case is induced
by a temporal change of the magnetic flux which works as
the electric field in the x direction: E, = —A, = —®/L.
The voltage between two boundaries is absent in this case
(V =0), and therefore the bulk electronic states are still in
equilibrium during threading the magnetic flux. The electric
current density in the bulk is determined by imposing electron
number conservation Lj, — § Ny = 0 at the left boundary. By
using (11), the charge current is related to the electric field as

68N]eft 2 @ &2
e - " E,
L 2zh L 2mh
which is equivalent to (14) by rotating /2 in the x-y plane.

ejy = (18)

B. From global U(1) gauge anomaly

The charge pumping relation (11) derived from the chiral
U(1) gauge anomaly can also be derived from another type of
anomaly that occurs in the (14-1)-dimensional chiral fermionic
system, that is, the global U(1) gauge anomaly. The U(1) gauge
symmetry of the fermionic system refers to invariance under a
U(1) gauge transformation

Y(x) = P'(x) = e Oy (x). (19)

In order for the fermionic system on a closed one-dimensional
space of the circumference L to be invariant, the U(1)
gauge transformation must preserve the boundary condition
in the spatial direction, which is dictated as a(L) — a(0) €
Z. U(l) gauge transformations satisfying a(L) — a(0) =0
can be continuously deformed to the identity transformation
[a(x) = 0], referred to as infinitesimal or small U(1) gauge
transformations. The relation (11) is a consequence of an
anomaly regarding transformations of this class, which is
referred to as the perturbative anomaly. On the other hand,
when a(L) —a(0) = n is a nonzero integer, such transfor-
mations cannot be continuously deformed to the identity
transformation, and are referred to as large U(l) gauge
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transformations. Threading a magnetic flux is equivalent to
a large U(1) gauge transformation, when the magnetic flux is
an integer multiple of the flux quantum, a(L) — a(0) = &/ d,.

Laughlin’s original argument on the quantum Hall state
considers a large U(1) gauge transformation for the bulk elec-
tronic states induced by threading a magnetic flux quantum.
We review the consequence of the same transformation on the
boundary theories [24,25]. Consider the (141)-dimensional
right-moving chiral fermion on a circle with the circumference
L given by

L
H :/ dx T () (=i)d, — ieA )Y (x), (20)
0

where the electromagnetic vector potential is induced by the
magnetic flux & threaded into the center of the circle, and
is related via A, = ®/L. We incorporate the effect of A,
as a twisted boundary condition in the x direction. More
generically, we consider the Hamiltonian

H= /OL dxy (—ilhid )y (1)

together with a twisted boundary condition in time as well:
Y(t,x + L) = Dy, x), (22)
VUt +hp.x) = 2Oy (z x). (23)

Parameters a,b play the role of the spatial and temporal flux,
specifically, as a — 1/2 = ®/®y. In the canonical formalism,
the temporal twist is realized by an operation of exp(2wibN),
where N is the total fermion number operator

L
N:f dxyiy. (24)
0

Observe that the classical system, as defined by the
Hamiltonian (action) and the boundary conditions (22) and
(23), is invariant under @ — a + 1 and b — b + 1. This large
gauge invariance, however, may be lost once we quantize the
theory. In particular, the partition function may acquire an
anomalous phase factor [= global U(1) gauge anomaly] under
a—>a+1landdb— b+ 1.

The partition function of the (141)-dimensional chiral
complex fermion (21) with the twisted boundary conditions
can be explicitly computed as follows. The fermion field
operator is expanded by wave functions satisfying (22) as

VEEIEDY

reZ+a—1/2

eznirx/L wr’ (25)

and the ground state is defined by filling all negative-energy
states. When a € [—1/2,1/2), normal-ordering of the Hamil-
tonian and the fermion number operator gives

2nh 1 a?
H=— Yl —— 4 — |, 26
7 [ > oriyly at 2} (26)
reZ+a—1/2
N = Z : wjl//, : +a, 27
reZ+a—1/2

where extra terms are resulting from the normal-ordering
regularized by the Riemann zeta function. Recall that the
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partition function of the (14-1)-dimensional chiral fermion
without twisting (¢ = 1/2,b = 0) is given by tracing e~ A
over the Hilbert space satisfying the periodic boundary
condition ¥ (x + L) = ¥(x). The partition function in the
present case is given by

Ziap) = Tr(e PH 270N

— g~/ )2 pomiab
% l—[(l +qnfl/2+a62nib)(l +qn71/27a67271ib)’
neN
(28)

where the tracing refers to the boundary condition (22) and

q = exp(—2nhp/L).
By inspection, one verifies

Ziaw) = Ziar1p) = € T Zig by (29)

and hence there is a global U(1) gauge anomaly. From the
anomaly, we can read off the charge pumping formula. We
normalize the particle number such that the ground state
particle number at a =0 (& = —9(/2) as 0. At a =0, by
changing the chemical potential > — b 4 1 one does not earn
any phase. On the other hand, at a # 0, the partition function
acquires a nonzero phase factor. This phase is indicative of
the change of the ground state fermion number as compared
to the fermion number at a = 0. Since the free energy
changes by § F = —2mia /B during the change of the chemical
potential dpu = 2mi/B, the particle number is evaluated as
N = —§F/éu = a. [Note that, from (28), the “imaginary”
chemical potential is identified as B = 2mib.] Then,
oN 1 ON le]
3® @y da  2nh’

which is equivalent to the consequence of the perturbative U(1)
gauge anomaly (11), although broken symmetries are distinct.

To give a more microscopic view on the global U(1)
gauge anomaly, let us follow the spectrum of the Hamil-
tonian (20) as we change the magnetic flux adiabatically.
Under the periodic boundary condition, the eigenfunction is
du(x) = exp[ZJTinx/L]/\/Z(n € Z), and the corresponding
eigenenergy is

(30)

® 2k ed a1

en(P)=— Ak (€29)
After a magnetic flux quantum &g = 2n/i/|e| is threaded,
the energy spectra turn back to the original ones by shifting
each energy level to the adjacent one (¢, — €,41). This
implies that the large U(1) gauge transformation leaves the
whole electronic energy spectra invariant. However, following
gradual change of the energy spectra through threading the
magnetic flux, the ground-state property changes.

Quantizing the fermion by introducing the anticommuta-
tion relation {y(x),¥ (x")} = 8(x — x’), and expanding the
fermion operator by the eigenmodes ¥ (x) = Y, ¢n(x)cy, the
Hamiltonian is rewritten as

H=> e (P)c)cy. (32)

If the magnetic flux initially lies in the range & € (—®,,0), the
eigenenergy is positive for n > 0 and negative for n < 0. The
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ground-state |0)¢ is made by filling all states with negative
eigenenergies, thus the Fermi level lies between €y(®) and
€1(®). After threading a magnetic flux quantum &, each
energy level is shifted as €,(® + ®g) = €,41(P), and thus
the new Fermi level lies between €;(®) and €,(P). While the
energy spectra are invariant through the magnetic flux change
® - & + O, the number of electrons in the ground state
changes by unity §N = 1, since a filled energy level with
eigenenergy €o(® + ®g)[= €1(P)] goes above the original
Fermi level. Let the electron number change be a continuous
function of the threaded magnetic flux, the above relation,
again, leads to (30).

As shown above, the global U(1) anomaly counts the
number of electronic energy levels that traverse the Fermi
level during the large U(1) gauge transformation. Within
this process, only energy levels close to the Fermi level are
concerned. Therefore, as long as the transformation leaves the
electronic system invariant at the classical level, the quantized
number of traversed energy levels would be unaffected even
after small perturbations are added.

IV. BOUNDARY ARGUMENT FOR THE QUANTIZED
THERMAL HALL EFFECT

As seen in the previous section, the quantum Hall effect can
be explained by anomalies of the (1+1)-dimensional chiral
boundary theory. The broken symmetries in these arguments
are the invariance under infinitesimal and large U(1) gauge
transformations. Here, we extend this boundary argument to
the case of the quantized thermal Hall effect. With the help of
the Stfeda formula for the quantized thermal Hall effect [14]

nkéT . 0S
6 9de’

the relevant symmetry is described by a space-time transfor-
mation given in terms of gravity.

(33)

Kg = ¢

A. Modular transformation

Consider the (141)-dimensional system under a static
gravitational field g"”. The Stfeda formula for the quan-
tized thermal Hall effect (33) describes an entropy change
induced by the gravitomagnetic flux, which is the gravitational
counterpart of the magnetic flux defined by ®2 = A$L. The
gravitomagnetic vector potential A$ is defined by the line
element of the Minkowski space-time

ds> = —(dr + A%dx)’ + dx’. (34)

By the Wick rotation, the line element of the Euclidean space-
time is given by

ds> = (di® + ABdx)’ + dx?, (35)

where E = it is the imaginary time, and AE = i A{ is the grav-
itomagnetic vector potential in the Euclidean space-time. In the
following, the symbol ¢ is used as the imaginary time in place
of tE for convenience. In the finite-temperature formalism,
boundaries of the temporal direction are periodically identified
with the period i =% /(kgT). When the space direction has
also the periodic boundary by the period L, the space-time is
a 2-torus.
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(a)
t

\

1B -

FIG. 4. (a) A modular transformation of the space-time 2-torus
induced by threading a gravitomagnetic flux ®E =i 8. A rectangular
2-torus (solid line) is transformed to a sheared-rectangular 2-torus
(dashed line). Boundaries on left and right, and those on top and
bottom are identified, respectively. The modular group is generated
by (b) T:t—>1t+1, and (¢c) S: 7 — —1/7. (d) Another basic
transformation can be composed by 7ST : t — t/(1 + 7).

Provided that the gravitomagnetic vector potential AE is
static, a transformation from a flat space-time to the one
specified by (35) is given by a diffeomorphism

(t,x) = (t +hpa"(x),x), (36)

where a®(x) = (i)' [, dx'AE(x'). Taking into account the
fact that the imaginary time is defined modulo /8, a trans-
formation satisfying a®(L) — a®(0) € Z leaves the space-time
invariant. Corresponding gravitomagnetic flux ®F is an integer
multiple of 7. A transformation (36) with a nonzero integer
a®(L) — a¥(0) cannot be continuously deformed to the identity
transformation. This type of transformations is referred to
as large diffeomorphism. Large diffeomorphisms of a torus
are referred to as modular transformations [26,27]. Consider
a simplest modular transformation given by ®f =/ or
AE = ®F/L, and a corresponding transformation

(t,x) = (', x') = (t +hpx/L,x). (37)

After this transformation, periodicity of the space-time 2-torus
is altered from an identification

(t,x)~ (t+hB,x)~ (t,x + L). (38)
to a new identification [28]
(t,x)~ @ +hB,x)~ (t+hB,x + L), 39)

which is shown in Fig. 4(a). The transformation (37) represents
a sequence of prescriptions composed of, cutting the space-
time torus by a loop along the temporal direction, twisting
one of the edges by 8, and gluing two edges to make a
2-torus again. Notice that the unit of the gravitomagnetic flux
inducing a modular transformation is @2 = —ih B, while the
unit of the magnetic flux bringing about a large U(1) gauge
transformation is the magnetic flux quantum &y = 27/ /|e|.
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Before moving on, we briefly review the concept of the
modular group [27]. The space-time 2-torus is defined by
periodicities, and thus is the quotient space of the two-
dimensional Euclidean space R? by a two-dimensional lattice
spanned by two linearly-independent lattice vectors. When the
torus is defined on the complex plane C by, e.g., z = x + it,
the lattice vectors are represented by two complex numbers
w1,y € C as

(t,x) ~ (t + Im[w;o)].x + Re[wz)]). (40)

As in the description of crystals, there is an ambiguity in choice
of the lattice vectors. Another set of lattice vectors given by a

transformation
wh\ _ f(a b\fw
()= ) @

satisfying ad — bc = 1(a,b,c,d € Z), spans the same lattice,
since the transformation matrix is invertible. The matrix in
(41) leaves the area spanned by two lattice vectors invariant,
and forms a group SL(2,Z) of 2 x 2 integer-valued matrices
with unit determinant.

Thanks to the conformal invariance that the linearized
form of the gapless boundary fermion (7) possesses, physical
properties on a torus should be invariant up to scaling, and
thus be dependent only on the ratio of two periods T = w» /w;y,
which is referred to as the modular parameter. Redefinition of
lattice vectors (41) transforms the modular parameter as

, at+b
= —,
ct+d

which forms a group PSL(2,Z) = SL(2,Z)/Z,, referred to
as the modular group. Here, Z, in the modular group is
due to the fact that inverting the signs of a,b,c,d leaves the
transformation unchanged. The modular group is known to
be generated by two operations T : 7 - t+land S: 7 —
—1/7 [Figs. 4(b) and 4(c)].

Here, we apply the above framework to our situation. The
lattice vectors of the rectangular space-time torus (38) are
assigned as w; = L and w, = i/i8, and corresponding lattice
vectors of the sheared rectangular space-time torus (39) are
w; =L+ ihf and w; = ihif. Defining the ratio of spatial
and temporal periods by o =/8/L, the modular parameter
is changed from 7 =ia to v/ =iwa/(1 +ia) during the
gravitomagnetic flux ®f is threaded. This process is a modular
transformation given by T7ST : v — t/(1 + 7) [Fig. 4(d)].

Notice that, in the above context, we have encoded the
gravitomagnetic flux into the change of the lattice vectors
that span the space-time torus, not into the change of the
metric with which the fermionic kinetic action is defined.
These two interpretations are equivalent, at least, when the
gravitomagnetic flux is uniform in the whole space-time (see
for details in Appendix A). With this in mind, we study,
throughout this paper, the fermionic action on the flat space-
time under the boundary condition specified by the threaded
magnetic and gravitomagnetic fluxes.

(42)

B. Free energy pumping and global diffeomorphism anomaly

In this section, the breakdown of the modular invariance,
that is, the global diffeomorphism anomaly [24,25,28,29],
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of the (1+41)-dimensional edge theory of the quantum Hall
systems is reviewed, and is shown to account for the quantized
thermal Hall effect. For our calculation of the global diffeo-
morphism anomaly, we again employ the chiral massless Dirac
fermion theory (21). It should be stressed that this theory
(21) enjoys an exact conformal (and/or Lorentz) symmetry,
which makes the following calculations rather transparent. In
contrast, the (realistic) edge theory of the quantum Hall bound-
ary realizes the conformal symmetry only approximately at
low energies. Our rationale of assuming the exact conformal
symmetry is that we focus on the renormalization group fixed
point, which, irrespective of microscopic details, is described
by a scale invariant field theory. For edge theories which are
not quite at a renormalization group fixed point, we invoke
the usual 't Hooft anomaly matching, i.e., the calculation of
quantum anomalies should not depend on what energy/length
scale is chosen for the calculation. This should be contrasted
with our calculation of the large U(1) gauge anomaly and the
quantized Hall conductance: the large U(1) gauge invariance
is an exact symmetry of the system at all scales. On the other
hand, in the thermal/gravitational case, at least technically,
our calculation of the global gravitational anomaly (presented
below) relies on an emergent conformal symmetry at low
energies. We leave it as a future problem whether or not
the reliance on the conformal symmetry can be relaxed or
completely removed. (See, however, Ref. [30], where it was
attempted to give the definition of the chiral central charge
without assuming conformal symmetry.)

The global diffeomorphism anomaly can be read off from
the partition function. In addition to the modular parameter t
that characterizes the base space-time manifold, one needs to
specify the boundary condition of the fermion defined on it.
The boundary condition is, in general, defined for two periods
by

Y (t + Imlw],x 4+ Re[w]) = ' “ Py (r,x),  43)
Yt 4 Im[ws],x + Re[ws]) = 7O~V Dy(r,x).  (44)

The boundary conditions for the fermion on the space-time
torus without the gravitomagnetic flux (38) is given by

Y(t,x + L) =y(t,x),
1/f(f +hﬂsx) = _w(t?x)s (45)

which corresponds to t =ia and [a,b] = [%,0]. On the
other hand, the boundary condition on a torus with the
gravitomagnetic flux @g specified by (39) is

Yt +hB.x + L) = —y(1,x),
Yt +hp.x) = —Y(t.x), (46)

which corresponds to t = ia/(1 + i) and [a,b] = [0,0]. If
the fermionic system is invariant under the modular transfor-
mation, the partition function should be unchanged during the
transformation. This is not true for the present case since there
is an anomaly regarding the modular invariance.

The partition function of the (14-1)-dimensional chiral
complex fermion (21) with the boundary condition specified by
the modular parameter T = 7, + iTp«¢ and [a,b] is calculated,
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in much the same way as in Sec. III B:
Z[a b](T) = Tr(efrzﬂHeitlLP/hezrribN)

_ q—1/24+a2/2ezmab
% 1_[(1 +qn—1/2+aezmh)(1 +qn—l/2—ae—2m’b)’
neN
(47)

where P = H (we have set the Fermi velocity as vg = 1)
and ¢ = ¢*™'*. Under the modular transformation TST : 7 —
/(1 + 1), the partition function of the boundary fermion is
transformed as [26,27]

Z[%’O](ia) — Zpolic/(1 +ia)]
= e 171 =1/ + )]
_ e—in/ﬂz[%m(l +ia)
= "7 g (i), (48)

A contribution due to the global diffeomorphism anomaly
appears as an extra phase factor ¢/”/!2. Therefore an extra
imaginary free energy §F = —im /128 is generated during
this process. Since a real gravitomagnetic flux ®f =7p
in the Euclidean space-time corresponds to an imaginary
gravitomagnetic flux ®F = —ifi in the Minkowski space-
time, a free energy change induced by the gravitomagnetic
flux is formulated as

OF _OF  mhkyT?
o0 T @f 12

(49)

where in the first equality, a differential is approximately
given by a difference as in the case of the global U(1) gauge
anomaly (30). An indication of the relation (49) is that the
(14-1)-dimensional gapless fermionic system loses or gains
free energy depending on its central charge, by threading the
gravitomagnetic flux into the one-dimensional space loop.

The free energy (49) has been derived and discussed in
the context of the anomaly-related transport phenomena.” In
particular, Golkar and Sethi [28] discussed the free energy
(49) by using the global gravitational anomaly. (The same free
energy was also obtained in Ref. [9]—see discussion below.)
It should be noted however that this method of determining an
effective free energy from the global anomaly suffers from an
ambiguity. The free energy change can be determined only up
to an integer multiple of 27,

SF = (—i/B)(m/12 +27n) (n € Z), (50)

since the logarithm of the extra phase factor ¢/™/!> can be

determined up to an integer multiple of 2777 [31]. Nevertheless,

2See, for example, R. Loganayagam and P. Suréwka, J. High Energy
Phys. 04 (2012) 097 and K. Jensen, R. Loganayagam, and A. Yarom,
J. High Energy Phys. 02 (2013) 088. In these works, the anomaly-
related finite-temperature transport coefficients and free energy in
even dimensions are discussed, and the so-called “replacement rule”
connecting the free energy and the anomaly polynomials is proposed,
in which the field strength and the Riemann curvature is “replaced”
by the (chiral) chemical potential and the temperature.
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the ambiguity can be removed by requiring the consistency
with the perturbative gravitational anomaly, and the boundary
thermal conductivity [6,31] leading to the free energy (49).

Observe the same ambiguity does exist for the case of
the global U(1) gauge anomaly: the global anomaly (the
anomalous phase acquired by the partition function under
large U(1) gauge transformations) is determined only up to
an integer multiple of 2. Once again, matching the global
anomaly with the perturbative U(1) gauge anomaly removes
the ambiguity. It should be also noted that, for the case of
the global U(1) gauge anomaly, the situation is slightly better
as there are two compact adiabatic parameters, a and b, that
we can change. While the anomalous phase exp(2ria) under
b — b + 1 has an ambiguity, demanding that the phase is a
continuous function of a, one can read off the Hall conductance
from the derivative of In[exp 2mia] with respect to a, which is
free from the ambiguity. On the other hand, for the gravitational
case, we have only one compact variable t. We thus need
to resort on consistency with the perturbative gravitational
anomaly to fix the ambiguity.

If we need to fix the ambiguity with the help of the
perturbative anomaly, one may wonder why we need to rely
on the global anomaly in the first place. However, as noted
previously [8], deriving the thermal response by using the
perturbative gravitational anomaly is not obvious, as one needs
to relate the gravitational response to the thermal response by
using Luttinger’s trick [32]. On the other hand, as we will
demonstrate in the following, the thermal response appears
more naturally when we consider the global diffeomorphism
anomaly.

A direct consequence of (49) is the Stfeda formula for the
quantized thermal Hall effect. Using a thermodynamic relation
88§ = —06F/0dT, the Stfeda formula is derived as

éS wkiT

o= 62 = kplc = —1), (51
where «y(c) represents the quantized thermal Hall conductiv-
ity for the chiral central charge c. (51) is the Stfeda formula
for the quantized thermal Hall effect in the v = —1 quantum
Hall system, and is quite analogous to (12) for the quantum
Hall effect led by the U(1) gauge anomaly.

Although the free energy (49) is a functional only of the
gravitomagnetic vector potential Af:

T2 L

Flaz] = T8 / dx A%, (52)
12n Jy

one can deduce a form of the free energy when a gravitational

potential field o is additionally present. The metric is given by

ds> = 7% (dt + i A%dx)’ + dx>. (53)

Thus including a gravitational potential is reduced to changes
B — e ?B and A% > ¢77 A%, The global diffeomorphism
anomaly in this new metric is read off from the free energy
change 6 F = —ime® /128 induced by % = —ilie™ 8, which
results in the free energy as a functional of o and Af.
Expanding with respect to the gravitational potential as

ﬂkéT2 L
121 Jo
= F[A%] + FV[0,A2] + O(c?), (54

Flo,A%] = dxe® A®
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(a) (b)

14

! t t
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FIG. 5. A setup for Laughlin’s argument on the quantized thermal
Hall effect from the boundary theory. On the cylindrical surface,
solid arrows represent thermal currents and dashed arrows represent
temperature gradients. (a) Left and right boundaries are in contact
with heat baths and are in thermal equilibrium at temperature T
and Tigy, respectively. The thermal Hall current is induced by the
temperature difference between boundaries. (b) Two boundaries are
in thermal equilibrium at the same temperature 7. A transferred heat
between boundaries as a thermal Hall current is induced by a temporal
change of the gravitomagnetic flux ®=.

the zeroth-order term is given in (52), while the first-order term
k2 T2 L
FO[o,A8] = ”L/ dx o AE, (55)
6 Jy

is equivalent to the boundary free energy derived by the authors
in a previous paper [9].

C. The quantized thermal Hall current induced
by the temperature gradient

Now we are ready to extend Laughlin’s argument using the
relation in the previous subsection (49). Consider a geometry
shown in Fig. 5(a). The bulk electrons form a quantum Hall
state with the Chern number v = 1. Left and right boundaries
are in the thermal equilibrium at temperature Tier, and Tiighe,
respectively, by contacting them with heat baths. The quantum
Hall state on the cylindrical surface is assumed to have an
energy gap much larger than both boundary temperatures so
that the electronic excitations are suppressed in the bulk.

The thermal Hall current can be read off by equating the
free energy generated at the boundaries as a result of the global
diffeomorphism anomaly (49), and an interaction energy of
the thermal current with the gravitomagnetic vector potential
induced by the gravitomagnetic flux. A free energy generated
at left and right boundaries is given, respectively, by

kAT kg T ign
8 Fiefe = f—%kﬂqﬂ, 3 Fright = —%q)g, (56)
and thus the change of the total free energy by
_ i k123 2 2 g
8F = 8 Fieft + 8 Fright = E(Tleft - Tright)cb . N

When the temperature difference between two boundaries
is sufficiently small compared with boundary temperatures
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themselves (|Tiery — Tright| <K Tiefiright))> One obtains

SF ~ k3T
oh

where T is the average temperature between Ti. and Trignt-
The thermal current (energy current) couples to the gravito-
magnetic field, and is derived from this free energy as

/Wd L (08F\ nkgf(T Lo (59)
0 Yix = L 8A§ - left right/»

(Tiefe — Tright) %, (58)

(7

which is the quantized thermal Hall effect with the thermal
Hall conductance mwk3T /6 for the Chern number v = 1.
Notice that the boundary argument presented above is free
from the fictitious temperature gradient in terms of gravity, that
is, Luttinger’s trick [32] using the Tolman-Ehrenfest relation
—T~!'V,T = —V,0 by the gravitational potential o.

As aresult, when two sides of the quantum Hall boundaries
contact with heat baths with different temperature, a thermal
current flows parallel to the boundaries, and the thermal Hall
conductance is quantized by the central charge of the chiral
boundary modes, which, in this case, is equivalent to the bulk
Chern number. However, it should be noted that the boundary
argument cannot tell whether the thermal Hall current flows
in the bulk or along the boundary, due to the same reason
as we mentioned in Sec. III A 2 for the quantum Hall effect.
The relation (59) tells us about the total thermal Hall current
L~'398F /3 A% integrated over the section of the Hall bar
geometry. For example, one can also explain the thermal Hall
effect solely by the boundary thermal current. The thermal
current of the (14-1)-dimensional fermion is evaluated as

_ nkéT

=(c—0) )
aT o
which is related to a perturbative gravitational anomaly [6].
Although the relation (60) is enough to show the quantized
thermal Hall effect when two boundaries have different
temperature, we cannot conclude, from this relation, that the
thermal Hall current flows only near the boundary. This is
because the absolute value of a thermal current flowing along
the boundary cannot be determined.

The boundary argument presented in this section, and the
similar one in the previous section for the quantum Hall effect,
rely on the presence of the chiral massless fermionic mode on
the boundary and the gapful bulk. The presence of the chiral
massless fermion is robust against perturbations including
disorders and interaction as long as the bulk energy gap is
large enough compared with perturbations. Furthermore, the
boundary mode is robust against perturbations on the boundary
due to chirality. However, unlike the case of the quantum Hall
effect where the large U(1) gauge invariance and quantization
of electric responses are exact for the chiral boundary modes,
the thermal Hall coefficient is not necessarily quantized, in a
strict meaning, due to the breakdown of the scale invariance
by microscopic details of the model.

8] T ,bdry

(60)

D. The quantized thermal Hall current induced by
the time-dependent gravitomagnetic flux

Following the discussion of the quantum Hall effect in
Sec. III A 3, we now discuss the possibility of regarding a heat

165405-9



RYOTA NAKAI, SHINSEI RYU, AND KENTARO NOMURA

transfer between two boundaries as the quantized thermal Hall
current [Fig. 5(b)]. When both boundaries are in equilibrium
at the same temperature 7', the total free energy conserves
due to (56), which indicates a heat is transferred between
boundaries by threading a gravitomagnetic flux. The amount of
the transferred heatis evaluatedas §Q = 78S = —TdSF/dT.
By imposing the continuity equation of the heat at the left
boundary, a thermal current in the bulk is determined by
LjI — 80 = 0. Therefore

50 _ TasE _akr

NETTTLAaT T e
This expression indicates that, if we recognize the time
derivative of the gravitomagnetic vector potential as a fictitious
temperature gradient by —T 'V, T = —A$, a heat transfer
in the y direction between two boundaries can also be
regarded as a quantized thermal Hall current. Notice that,
in addition to the Tolman-Ehrenfest relation — 7'V, T =
—V,0, a gravitational expression of a temperature gradient
should be given by

(— A2). (61)

~T7'V,T = —V,0 — A&, (62)

which is analogous to the expression of the electric field in
terms of the electric potential ¢ and the vector potential A in
electromagnetism: E, = —V,¢ — A,. A similar expression
has been employed in evaluation of the thermal current [33],
although definition of the vector potential in this literature is
different from ours.

V. BULK ARGUMENT FOR THE QUANTIZED
THERMAL HALL EFFECT

In this final section, we will develop yet another argument
for the quantized thermal Hall effect following the spirit of
the original Laughlin’s argument presented in Sec. II. We will
apply the modular transformation (37) to the bulk electronic
states forming the Landau levels, and examine an adiabatic
transport induced by the modular transformation. As in the
original Laughlin’s argument, our discussion here relies on
and is limited to single-particle eigenfunctions of the Landau
levels, but gives a complementary view to the boundary
argument presented in Sec. IV.

A. Modular transformations for bulk wavefunctions

Consider the Fourier modes of the fermion field on the
Euclidean (2-+1)-dimensional space-time labeled by the
fermionic Matsubara frequency w, =2n(n + 1/2)/hf (n €
7Z) and the momentum k, = 2xwl/L (I € Z),

V(iwn.ky,y) = d>xe T RT oy (r xy). (63)

7l
BL
Consider a continuous diffeomorphism of the base manifold
as a function of the threaded gravitomagnetic flux. Boundary
conditions (45) and (46) are continuously connected by an
intermediate boundary condition

VUt + ship.x + L,y) = e @Dy x.y),
W(f +ﬁ,3aX,)’) = _w(t’x’y)a (64)
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where m is an arbitrary integer and s = ®F/®f € [0,1].
The fermion field satisfying (64) can be expanded by
plain waves exp[—iw,(t — shifx/L) + ik¥x], where k¥ =
2rxl/L — s(2m + 1) /L (I € Z). The modular transformation
(37) transforms a Fourier mode continuously as

U (iw, kY, y)
— ! d> ] t
e xexp|iw,|t—
JVBL
swahiB

1 ) Y ) ]
= —m/d X exp |:la)nt z(kx +—L x |Y(t,x,y)
= Y(iwp,k? + s(n —m)2m/L,y), (65)

Shfx) —ik)(f)xi|1ﬂ(t,x,y)

At s =1, the momentum is changed as k, — k, + (n —
m)2m /L. Thus, by expanding the fermion field with respect
to the imaginary time, the modular transformation results in
a frequency-dependent momentum shift. One can remove an
integer m by threading magnetic flux quanta. This prescription
does not affect the following argument, since the magnetic flux
does not induce the thermal Hall current. For later convenience,
we consider twice the unit of the modular transformation (s =
2), and the momentum is shifted as k, — k, + (2n + 1)2% /L.
As explained in Sec. II, a momentum shift in the quantum Hall
state is accompanied with an adiabatic shift of the center of
mass of wave functions, which can be read off from (5) as

y—=y+Q@2n+ 1)y, (66)

where 8y = 2nhi/|e| BL. Thus by threading the gravitomag-
netic flux 2®f, bulk quantum Hall electronic states with the
Matsubara frequency w, are adiabatically transferred from
their original localized positions to their (2n + 1)th neigh-
boring positions. This should be contrasted with the original
Laughlin’s argument for the quantum Hall effect, where,
after threading a magnetic flux quantum &, all electronic
states are equally shifted to their neighboring positions. When
the quantum Hall system is in a thermal equilibrium, the
gravitomagnetic-flux threading leaves the whole electronic
system unchanged.

B. The quantized thermal Hall current induced by
the static gravitational potential

Consider the situation that a temperature gradient is applied
uniformly in the bulk. Local temperature is defined through
Luttinger’s trick using the Tolman-Ehrenfest relation 7'(y) =
Te®Y), where e72° = ggo, and T is a reference temperature
independent of location, and simultaneously serves as a bulk
temperature when o (y) is small enough. Here we focus on
a specific position yy of a localized position of the Landau
level wave function determined by (5). The jth neighboring
localized position deviated from yj is denoted by y; = yo +
Jdy. Also, we define the local temperature at a position y; by
T; = T(y;), and its inverse by B; = (kgT;)~".

In order to capture qualitatively the changes in physical
quantities induced by an adiabatic shift (66), we consider the
partition function of the bulk quantum Hall states under a
uniform temperature gradient. We assume that the position-
dependent temperature is represented in the partition function
by the upper bound of the imaginary time integral as S(y) =
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(kgT(y))~'. Then the action and the partition function are
given by

AB(y)
5= / dx / i D, x)EY +H — W (t.x),
0

Z = /D@Dlﬂ exp(—S/h), 67)

where x = (x,y), and ‘H is the Hamiltonian of the bulk two-
dimensional electron system under a perpendicular magnetic
field, defined in (2). The fermion field operator is expanded by
the eigenstate wave functions of the Landau levels (4) as

(,x) = D e Oy vy, (68)

f
Zast (X)——

where w,(y;) = 2n + Dr/hB;, and B; is uniquely deter-
mined by k,. Then the action becomes

V(%) = Z O Nk, (69)

Sih=>" Unni(—ihony) +ex — Wi, (70)
n,N,ky

where ey is the Nth Landau level energy (3), and we have
used the fact that the Landau level wave function ¢y, is
localized about the position y;. Thus we decompose the
partition function by the momentum k, and calculate the path
integral part by part as

Z =[] Bi(—ifwu(y)) + ex — 1. (1)

n,N,j

where the summation over the momentum k, is replaced by
that over the index of the localized position j. The total free
energy is given by

F==" g7 In[B;(—ihw,(y;) + ex — )1 = Y Faly)).

n,N,j n,j

(72)

Let us now focus on the local free energy at position yy.
A local change of the bulk free energy can be evaluated by
collecting parts of the partition function localized at y, before
and after threading the gravitomagnetic flux. Before threading
the gravitomagnetic flux, the local free energy at y, is given
by

F(y0) =Y Fa(y0)- (73)

Consider threading a uniform gravitomagnetic flux ®£. As we
showed in Sec. V A, when the flux ®F = 2hB; is threaded,
a Fourier mode with (w,(y;).k,), which is localized at y;,
is adiabatically changed to a mode with (w,(y;),kx + (2n +
1)27/L). As for the local free energy at yy, a part of
the free energy with w,(y) originally at y, flows out to
Vauq1 When ®F = 21 8y. On the other hand, the free energy
with @, (y_@nt1)) at y_@u+1) flows into yo when @F =
25 B_n+1y (Fig. 6). Then the local free energy change at yj is
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Fn(y-2n+1))

<

Yon+1 Yo Y-@2n+1)
(Ton+1) (To) (T-2n+1))

FIG. 6. Transferred components of the bulk free energy in a
quantum Hall state induced by the gravitomagnetic flux ®¢ = —2inf.

given by

Fn —(zn
8F(<I>g;y0)=id>gZ|: - +1))_
" 2R B_n+1)

where we assume §F to be a smooth function of the
gravitomagnetic flux ®£.

The right-hand side of (74) is evaluated as follows.
Assuming the temperature gradient is relatively small, one
obtains

Fn(yO)
2By

] . (M

SF(®2; y0) > i D2 Y " (T_uyr) — To)(

n

] Fn(y))
AT 21p

Z In[B(—ihiw, + ey — @]

3
=i T Z(Zn + 1)ﬁ ST

CMNT D
= T o XN: or? ;( iheon)
x In[B(—ihw,+en — )], (75)

where 8T = T;, — T; is the difference of the temperature
between neighboring localized positions. Evaluating the Mat-
subara summation, one obtains

Y (—ihw,) In[B(—ifiw, + ey — w)] = Gley — p),  (76)

where G(z) is the integral of Bz/(ef* + 1). At low tempera-
tures, G(z) is expanded with respect to the temperature by the
Sommerfeld expansion as

b4 ,32/
Giz)= | dZ
(2) /oo v

where 6 is the Heaviside step function. The local free energy
change is then given by

Bz ? 3
0(— z)(T - @) + O(T”),

(77

b4 k2 Ty

SF(®%;yg) = v—B-C T, (78)
where v is the number of filled Landau levels and is equal to the
total Chern number of filled energy levels. Since each localized
position is separated by an interval §y, the bulk thermal current
is given by

o _ L 98F@%y) _ kT

_ _ v,T, 79
I T TSy 9AE o (79)
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where 8T = (V,T)8y and ®¢ = LA are used. The above
relation is the quantized thermal Hall effect in the quantum
Hall state with the Chern number v. Equation (79) satisfies the
Wiedemann-Franz law with the Laughlin’s original result (6).
The above argument quantitatively describes how a thermal
Hall current can flow adiabatically in a gapped bulk.

VI. CONCLUSION

We studied the generalization of Laughlin’s magnetic-
flux-threading argument to the quantized thermal Hall effect
in terms of gravity, from the perspective of both bulk and
boundary theories.

The boundary argument reveals that the global diffeomor-
phism anomaly accounts for the quantized thermal Hall effect.
More precisely, we formulated, quantitatively, the responses of
the chiral boundary modes against the gravitomagnetic flux,
by making use of the global diffeomorphism anomaly. The
boundary modes gain or lose their free energy during threading
the gravitomagnetic flux depending on the central charge and
the temperature. We have shown that this anomaly explains the
quantized thermal Hall effect. When boundaries are in contact
with heat baths at different temperatures, the thermal Hall
current flows in the direction perpendicular to the temperature
difference, and is quantized in units of the chiral central charge.

Guided by the very precise analogy between the Laughlin’s
original argument for the charge transport and its thermal
version, which holds at the level of edge theories, we further
discussed the corresponding bulk picture: the Landau level
states respond to the gravitomagnetic flux by adiabatic shift of
their localized positions, the distance of which is dependent
on the Matsubara frequency. We evaluated the change in the
free energy under threading of the gravitomagnetic flux, and
further related it to the quantized thermal Hall current carried
by the bulk electronic states. Although as we have shown
there is an almost exact parallelism between the thermal
transport at the level of quantum anomalies, the precise nature
of the free energy generation by the frequency-dependent
adiabatic motion of electrons in the Landau level is still
somewhat mysterious (as compared to the charge pumping
by the adiabatic motion of Landau orbits). It is an important
future problem to study the nature of the free energy generation
more precisely.

Finally, we again stress that our free energy is defined only
globally due to the global nature of large diffeomorphism. This
should be contrasted with effective field theory descriptions
which are local (e.g., see Refs. [8,16]). As noted earlier [8],
the gravitational Chern-Simons term is not able to describe
the response which could be generated by the finite gravitopo-
tential and gravitomagnetic potential. In this paper (see also
Refs. [9,14]), we attempted to derive the finite temperature
effective action different from the gravitational Chern-Simons
theory. Within the physics of edge theories, we have derived
(1+1)-dimensional effective action describing the thermal
transport edge theory. The result is consistent with the known
result (“the replacement rule”) in the context of the chiral
magnetic effect (and the related field). The possible bulk
effective field theory, consistent with the boundary effective
theory, is presented in Ref. [14].
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APPENDIX: GRAVITOMAGNETIC FLUX IN
METRIC AND PERIODICITY

‘We consider the metric of the (2+1)-dimensional Euclidean
space-time under the gravitomagnetic vector potential. Reduc-
tion of the following argument to the (1+1)-dimensional case
is apparent. The space-time metric is given by

1 AE 0
gw=|AE 1+4+4F 0], (A1)
0 0 1
and the corresponding frame field e, by
1 E 0
e=10], ee= 1], e=]0], (A2)
0 0 1

which satisfies g, = ¢, - e,. The coframe field e/, which is
dual to the frame field, is given by

0
L =|-AE], e'=|1], &=]0], (A3)
1

which satisfies e* - ¢, = &%, and g, (e")y(€")g = Sup.

Here we show that one can cancel the gravitomagnetic
vector potential in the metric by a diffeomorphism of the space-
time torus given by (36), as long as the gravitomagnetic vector
potential is uniform. The coframe field couples to the covariant
derivative to make it invariant under the general coordinate
transformation, as (e"), D,,. Since the gravitomagnetic vector
potential is constant in (imaginary) time and space, the spin
connection w,, vanishes. The covariant derivative is rewritten
as

(e")o(nd, —ieA,) =hd, —ieA,, (A4)
where 9;, = (e"),0,, and A), = (e*)yA,,. The new coordinate
x’ resulting from the gravitomagnetic flux is given in terms of

the original coordinate x as
' x',y) = (t + Afx,x,y), (A5)

which agrees with the diffeomorphism (36).

When the quantum of the gravitomagnetic flux ®F =/ is
threaded, the transformation (A5) leads to the change of the
boundary condition from

YO +0p,x" x7) = —y(t,x,y),

Vvt x+L.y)=y(t.x,y)

(A6)

(A7)
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on the region A defined by 7€ [0i8],x € [0,L],y €
[—00,00] to

W(I/ +hﬂvx/’y/) = _w(t/v-x/9y/) (A8)

Ut +hiB,x' + L,y) = -y x'.y) (A9)

on the region A’ defined by ¢’ € [a8x'/L.aB(1 + x'/L)],x" €
[0,L],y" € [—00,00]. Then solving the eigenvalue problem of
the Lagrangian density with the gravitomagnetic flux

ﬁ[A,%]Iﬁa(x) = (iw, — €)Va(x)

on the undistorted region A is equivalent to the same problem
without the gravitomagnetic flux

L[A% = 0]y (x)) = (i — €)Pa(x)

on the distorted region A’.
The Lagrangian density operator of the Dirac fermion under
the electromagnetic vector potential and the gravitomagnetic

(A10)

(Al1)
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vector potential is
L[A®,A] = \/glihvey" D, — m],

where the gamma matrix on the curved space-time y* satisfies

{Z",Z"} = 2g"", which is related to the one on the flat

(A12)

space-time ¢ via y* = (e"),y®, where {y®,y#} = 26*f. The
identity (A4) transforms the derivative in (A12) as

YD, —ieA,) = y (i3], — ieAl,). (A13)

Due to /g = (det[g,,“v])l/2 =1, (A13) cancels the gravito-
magnetic vector potential, and the remaining problem is to
solve the equation of the form (A11).

In a similar way, the quadratic Hamiltonian under the
uniform gravitomagnetic vector potential [16]

A j 1
L[A%,A] = @[%(e’“)oDu + E(e”)a(e”)“DuDv} (Al4)

can also be transformed to the problem (A11).
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