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Dale Scerri,* Ted S. Santana, Brian D. Gerardot, and Erik M. Gauger†

SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, EH14 4AS, United Kingdom
(Received 17 January 2017; revised manuscript received 14 March 2017; published 5 April 2017)

Increasing the collection efficiency from solid-state emitters is an important step towards achieving robust
single-photon sources, as well as optically connecting different nodes of quantum hardware. A metallic substrate
may be the most basic method of improving the collection of photons from quantum dots, with predicted
collection efficiency increases of up to 50%. The established “method-of-images” approach models the effects
of a reflective surface for atomic and molecular emitters by replacing the metal surface with a second fictitious
emitter which ensures appropriate electromagnetic boundary conditions. Here, we extend the approach to the
case of driven solid-state emitters, where exciton-phonon interactions play a key role in determining the optical
properties of the system. We derive an intuitive polaron master equation and demonstrate its agreement with
the complementary half-sided cavity formulation of the same problem. Our extended image approach offers a
straightforward route towards studying the dynamics of multiple solid-state emitters near a metallic surface.
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I. INTRODUCTION

The problem of a dipole emitter placed close to a reflective
surface has received much interest over the last few decades:
seminal work [1] by Drexhage in 1970 first demonstrated that
a reflective interface modifies the intrinsic properties of the
emitter, influencing both the emission frequency [2,3] and
the emitter’s excited lifetime [3–8]. Recently, a sound analog
of Drexhage’s experiment has been performed to study the
acoustic frequency shifts of a gong struck near a hard wall [9].

Mirrors have widespread use for directing light from
sources that emit across a extended solid angle, for example, in
the form parabolic reflectors in everyday light sources. On the
nanoscale, precise guiding of photons into particular optical
modes is of paramount importance for quantum information
processing and communication, where on demand single pho-
tons are required [10–13]. Although micron-sized spherical
mirrors for open access microcavities [14] have recently
enabled the investigation of quantum dot–cavity systems in
the strong coupling regime [15,16], the use of sophisticated
mirrors remains a challenge for solid-state quantum emitters
that are often embedded in heterogeneous layers of substrates
with varying refractive indices. This motivates the more
straightforward alternative of increasing the photon collection
efficiency by placing the emitter above a planar mirroring
interface [17–19]. Interestingly, the presence of even such a
simple mirror also affects the physical properties of the emitter,
as discussed above.

In recent years, progress in the synthesis and control of
solid-state emitters has enabled experimental investigation of
these modified properties of condensed-state emitters includ-
ing quantum dots (QDs) [20,21] as well as perovskite [22] and
transition-metal dichalcogenide monolayers [23] deposited
on reflective surfaces. Circuit QED analogs of an atom and
a variable mirror have also been successfully implemented
[24–26]; these offer the advantage of increased control over
the artificial atom’s interaction with the mirror. With improved
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atom-mirror coupling, Hoi et al. managed to collect over 99%
of the radiation by coupling a transmon microwave emitter to
a one-dimensional (1D) superconducting waveguide [24].

Several theoretical investigations [2–4,7] have shown that
an atomic two-level system (TLS) near a reflective surface can
be modeled as a pair of emitters: the real one as well as an
identical emitter that is placed equidistant from, but on the
opposite side of, the interface (see Figs. 1 and 2). The basic
idea follows that of the electrostatics concept of an image
charge to capture the surface charge distribution that ensures
meeting the electric field boundary conditions [27]. In the
optical case, the “method of images” relies on considering the
emission from the combined dipole-image system. This yields
the same expression for the modified spontaneous emission
(SE) rate which one obtains from a full QED treatment
(employing surface-dependent response functions to arrive
at the modifications to the emitter’s lifetime and transition
frequency) [28]. The image-dipole treatment has also been
applied to model the surface-induced modifications of more
complex structures such as molecules [29,30], multiple dipole
emitters [31–33], and solid state-emitters [20,22]. To date,
however, the latter have largely ignored the vibrational solid-
state environment and the continuous wave (cw) laser driving
typical of a resonance fluorescence (RF) setting.

Motivated by these successes, we here present a full
image-dipole polaron master equation (ME) treatment of a
driven TLS (such as, e.g., a quantum dot) in the proximity
of a metal surface (see Fig. 1). Our calculations extend
previous image-dipole studies as follows: (i) we consider
driven systems, showing how to incorporate a laser driving
term into the dipole and image Hamiltonian; (ii) we discuss
the need for introducing an additional “selection rule” to
prevent unphysical double excitation; (iii) we demonstrate how
a solid-state phonon environment can be accounted for, via a
single bosonic bath that is perfectly correlated across the real
emitter and its image.

We will show that the resulting master-equation model
remains highly intuitive and possesses appealing simplicity.
We establish the correctness of this model by comparing
its results to those obtained from an alternative calculation
which does not involve fictitious entities or rely on ad hoc
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FIG. 1. Artistic rendition of a driven quantum dot (QD), depicted
as a cyan spheroid, in the proximity of a golden metallic surface. The
corresponding “image dot” is shown blurred on the other side “below”
of the semiconductor-gold interface. The optical dipoles are depicted
as “dumbbells” within the QDs. The vertical red beam represents
the laser driving, and the magenta spiraling arrows indicate scattered
photons.

assumptions: the half-sided cavity model. This agreement
gives us confidence that the model could also be extended to the
case of multiple solid-state emitters near a reflective surface,
laying the groundwork for the investigation of collective
effects in this setting, where we believe that an image approach
will be easier to deploy than both the Green’s function and the
half-sided cavity approach.

This paper is organized as follows: We will start by briefly
summarizing the results from the established Green’s function
method for calculating the SE rate of a “bare” dipole emitter.
Next, we shall derive a ME for the emitter by treating the
metal surface as a half-sided Fabry-Pérot cavity, providing the
benchmark model for a single TLS near the metal surface [see
Fig. 2(a)]. Finally, we formulate the ME using the method of

FIG. 2. Two equivalent descriptions of an emitter near a perfect
metallic mirror. Left: schematic of the Green’s function and half-
sided cavity approaches. Right: the emitter supplemented with a
fictitious image dipole. The solid (dashed) red arrows indicate emitted
(reflected) photons whereas the solid (dashed) red curve indicates the
incident (reflected) driving beam.

images [see Fig. 2(b)]. We show that, with suitable alterations,
the two-body ME reduces to an effective two-level system
with rates and energy shifts agreeing with the cavity model.
Finally, we put our model to use to obtain the RF spectrum of
the modified system, featuring a phonon sideband, the Mollow
triplet, and the ratio of coherently to incoherently scattered
light.

II. GREEN’S FUNCTION APPROACH: BRIEF SUMMARY

We begin by summarizing the main results of the Green’s
function approach for modeling the optical environment of a
dipole emitter. This can be applied to obtain the SE rate of an
emitter in free space [34] as well as in the presence of a metallic
surface [5,34,35]. While this approach gives a closed analytical
solution for the case of a single dipole, a numerical route has
to be taken to model a system comprised of a larger number
of emitters [33,34], even in the absence of a driving field and
phonon environments. Therefore, we here limit the discussion
to a single bare emitter as an independent reference point for
the SE rate (and energy shift) in that idealized configuration.

Let the dipole be situated at position rd , where rd is
perpendicular to a metal surface containing the origin of
the coordinate system. In the Green’s function approach, the
emitter is usually modeled as a classical dipole oscillating
harmonically with amplitude x at frequency ω0 about rd [33].
In vacuum, the SE rate can be calculated as

γ
pt

0 (ω0) = 4ω2
0

πε0h̄c2
[d̂ · Im{G(rd ,rd ; ω0)} · d̂], (1)

where ε0 is the electric permittivity of vacuum, c is the speed of
light, d̂ is a unit vector indicating the direction of the emitter’s
dipole moment, and G(rd ,rd ; ω0) is the Fourier transform of
the dyadic Green’s function at the emitter’s position [34]. In
Ref. [33], Choquette et al. studied the the collective decay rate
of N such classical emitters near a planar interface, arriving at
a diagonal Green’s function matrix, so that Eq. (1) allows one
to find the SE rate for arbitrary dipole orientations.

To obtain the SE rate in a dielectric environment, we con-
sider the following expression for the normalized dissipated
power:

P

P0
= 1 + 6πε0εr

|d|2k3
Im{d∗ · Es(rd )}, (2)

where P0 is rate of energy dissipation in free space, εr and k

are the relative permittivity and wave-vector magnitude in the
dielectric surrounding the emitter, respectively, and Es(rd ) is
the scattered electric field at the dipole’s position (which, for
a single dipole near the surface, corresponds to the reflected
field) [34]. The connection between the Green’s function and
the decay rate of the dipole emitter is established via the
relationship

P

P0
= γ pt (ω0)

γ
pt

0 (ω0)
. (3)

Rearranging the above then yields an integral expression for
the desired SE rate γ pt (ω0).

In the Green’s function approach, care must be taken when
considering the limit of a perfect conductor, as assuming
perfect reflectivity for all frequencies entails a violation of the
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FIG. 3. The limiting case of the Fabry-Pérot cavity, effectively
reducing to a single perfectly reflecting surface. The arrows indicate
the wave vectors in (5) and (10), and r denotes the surface reflection
coefficient [7,41].

sum rule for the environment-modified emission rates [36,37].
However, additional insight gained from the method of images
can in fact resolve this apparent violation [37].

We note that the Green’s function method is not lim-
ited to ideal metallic interfaces but can also be applied
straightforwardly to reflective dielectric interfaces, simply by
substituting appropriate dielectric constants into the above
relevant expressions [34]. In this case, one obtains qualitatively
very similar results for a dielectric mirror, especially at larger
separations [34]. While our discussion of the method of
images focuses on the special case of a perfectly conducting
surface, this approach can be easily extended to the problem
of dielectric interfaces as well [27]. Further, under certain
conditions, the method of images applies to more complex
reflective structures, such as distributed Bragg mirrors [38].

III. HALF-SIDED CAVITY MODEL

In the previous section, we discussed how to determine the
SE rate for an undriven emitter interacting only with a photonic
environment. However, in order to fully model a solid-state
emitter such as a QD, we need to include interactions between
the emitter and its phonon environment [39,40]. Now, we
shall derive the polaron ME for a TLS near a metal surface,
by modeling the latter as a half-sided Fabry-Pérot cavity
positioned at z = 0 lying in the xy plane, and the QD
positioned at z = rd � 0, where rd = |rd |. Our calculation
follows the general cavity model from Refs. [7,41], taking
the appropriate limits for the reflectivity and transmittivity of
the two mirrors to obtain, effectively, only a single perfectly
reflecting surface (see Fig. 3).

A. Hamiltonian

We consider a driven TLS with ground state |0〉 and excited
state |X〉, which is governed by the following Hamiltonian in a
rotating frame and after the usual rotating wave approximation
(h̄ = 1):

HS = δ|X〉〈X| + �∗
cav

2
|0〉〈X| + H.c., (4)

where H.c. denotes the Hermitian conjugate and δ = ω0 − ωl

is the detuning between the TLS transition frequency ω0 and
the laser frequency ωl . �cav is the effective Rabi frequency in

the presence of the metal surface, given by

�cav = 2

√
ωl

2εV
d · (el−e−iql r − el+eiql r ), (5)

where ql is the laser field wave vector, with polarization el−
(el+ after reflection), as shown in Fig. 3 for the case of the laser
beam being perpendicular to the surface. Photon and phonon
environments are modeled by the Hamiltonians

H
pt

E =
∑
q, λ

νqa
†
qλaqλ, (6)

H
pn

E =
∑

k

ωkb
†
kbk, (7)

where b
†
k and a

†
qλ (bk and aqλ) are the k-phonon and qλ-photon

creation (annihilation) operators, respectively. In the dipole
approximation, the photon interaction Hamiltonian is of the
form

H
pt

I = −d · E(rd )(|0〉〈X| + |X〉〈0|) (8)

with E(r) being the Schrödinger picture electric field for the
half-sided cavity [7,41],

E(r) = i
∑
q,λ

[uqλ(r)aqλ − H.c.]. (9)

The spatial mode functions uqλ(r) for an ideal half-sided cavity
(of perfect reflectivity) are given by

uqλ(r) =
√

ωqλ

2εV
(eq−λe

iq−r − eq+λe
iq+r ). (10)

Here, q− (q+) is the incident (reflected) wave vector, with
corresponding polarization eq−λ (eq+λ). For simplicity, we have
assumed that the dipole moment d of the TLS is real.

The interaction with the phonon bath can be generically
represented by the Hamiltonian [42]

H
pn

I = |X〉〈X|
∑

k

gk(b†k + bk), (11)

where gk is the coupling strength of the TLS’s excited elec-
tronic configuration with phonon mode k. We move to the po-
laron frame by employing the standard polaron transformation
U = eS , S = |X〉〈X| ∑k(gk/ωk)(b†k − bk) [43], obtaining the
following transformed system Hamiltonian:

HSP = δ′|X〉〈X| + �∗
cav

2
|0〉〈X|B− + �cav

2
|X〉〈0|B+, (12)

where δ′ = δ − ∑
k g2

k/ωk [becoming δ − ∫ ∞
0 Jpn(ω)/ω in the

continuum limit], and the phonon bath operators B± are de-
fined as B± = 
kDk(gk/ωk), with Dk(±α) = exp[±(αb

†
k −

α∗bk)] being the kth mode displacement operator. For numer-
ical results we shall later use a super-Ohmic exciton-phonon
spectral density Jpn(ω) with exponential cutoff at frequency
ωc that is appropriate for self-assembled III-V quantum dots
[44,45]:

Jpn(ω) = αω3e
− ω2

ω2
c . (13)
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In the polaron frame, the light-matter interaction
Hamiltonian (8) becomes

H
pt

IP = i|0〉〈X|B−
∑
q,λ

d · u∗
qλ(rd )a†

qλ

− i|X〉〈0|B+
∑
q,λ

d · uqλ(rd )aqλ. (14)

With the definitions A
pt

1 = |0〉〈X|, A
pt

2 = A
pt†
1 , B

pt

1/2 ≡ B∓,

C1 = i
∑

q,λ d · u∗
qλ(rd )a†

qλ, and C2 = C
†
1, we can compactly

write the above Hamiltonian as

H
pt

IP =
2∑

i=1

A
pt

i ⊗ B
pt

i ⊗ Ci. (15)

Since the second term in Eq. (12) contains system and
environment operators, we identify this as our new exciton-
phonon interaction term [46]. This new interaction term
possesses a nonzero expectation value with respect to the
thermal equilibrium bath state ρ

pn

E ; tracing out the phonon
bath degrees of freedom, we thus obtain

Trpn

E

[(
�∗

cav

2
|0〉〈X|B− + �cav

2
|X〉〈0|B+

)
ρ

pn

E

]

= �∗
cav

2
〈B〉|0〉〈X| + �cav

2
〈B〉|X〉〈0|, (16)

where

〈B〉 = exp

[
−1

2

∫ ∞

0
dω

Jpn(ω)

ω2
coth(βω/2)

]
. (17)

In order to expand perturbatively, we therefore define the
system-bath interaction with respect to this value. To this end,
we add the expectation value by defining B± = B± − 〈B〉 and
�

pn
cav = 〈B〉�cav and regrouping our system and interaction

Hamiltonian terms, obtaining

HSP = δ′|X〉〈X| + �
pn∗
cav

2
|0〉〈X| + �

pn
cav

2
|X〉〈0|, (18)

H
pn

IP = �∗
cav

2
|0〉〈X|B− + �cav

2
|X〉〈0|B+. (19)

As for Eq. (15), we introduce operator labels B
pn

1/2 = B∓,

A
pn

1 = �∗
cav/2 |0〉〈X|, and A

pn

2 = A
pn†
1 to recast the above

interaction Hamiltonian into the compact form

H
pn

IP =
2∑

i=1

A
pn

i ⊗ B
pn

i (20)

which will prove useful for the derivation of the master
equation.

B. Master equation

Having obtained our Hamiltonian in the polaron frame
and partitioned it into system, interaction, and environment
parts, we can make use of the generically derived microscopic
second-order Born-Markov master equation of Ref. [47]
[Eq. (3.118)]. The interaction terms (15) and (20) are of the
required form underlying this derivation, and the resultant ME

(in the interaction picture) reads as

d

dt
ρSP (t)

= −
∫ ∞

0
dτ TrE[HIP (t),[HIP (t − τ ),ρSP (t) ⊗ ρE(0)]],

(21)

where HIP (t) = H
pn

IP (t) + H
pt

IP (t), and TrE denotes the trace
over both environments [47]. It can be easily shown [46] that
the right-hand side (RHS) of the above equation can be split
into two parts:

d

dt
ρSP (t)

= −
∫ ∞

0
dτ Trpn

E [Hpn

IP (t),[Hpn

IP (t − τ ),ρSP (t) ⊗ ρ
pn

E (0)]]

−
∫ ∞

0
dτ TrE[Hpt

IP (t),[Hpt

IP (t − τ ),ρSP (t) ⊗ ρE(0)]].

(22)

Since we assume that the (initial) environmental state is
thermal, ρE(0) factorizes: ρE(0) = ρ

pn

E (0) ⊗ ρ
pt

E (0).

1. Phonon bath correlations

We proceed by analyzing the first term on the RHS of
Eq. (22) which captures the influence of phonons on the TLS
dynamcis with scattering rates determined by phonon corre-
lation functions [48–50]. In the ME formalism, the rate γ (ω)
of a dissipative process is given by γ (ω) = 2 Re[

∫ ∞
0 dsK(s)],

where K(s) is the relevant correlation function [cf. Eq. (3.137)
in Ref. [47]]. For our phonon dissipator, these functions are
given by

C
pn

ii (τ ) = Trpn

E

[
B†

±(τ )B±(0)ρpn

E (0)
]

= 〈B〉2(eφ(τ ) − 1), (23)

C
pn

ij (τ ) = Trpn

E

[
B†

±(τ )B∓(0)ρpn

E (0)
]

= 〈B〉2(e−φ(τ ) − 1), (24)

where i,j ∈ {1,2}, i �= j . After some algebra, we obtain a
phonon dissipator of the form

γ pn(ω′)L[σ−] + γ pn(−ω′)L[σ+]

− γ
pn

cd (ω′)Lcd [σ−] − γ
pn

cd (−ω′)Lcd [σ+],

where L[C] = CρSP C† − 1
2 {C†C,ρSP } and Lcd [C] =

CρSP C − 1
2 {C2,ρSP }. The rates γ pn(±ω′) and γ

pn

cd are

γ pn(±ω′) =
∣∣�pn

cav

∣∣2

4

∫ ∞

−∞
dτ e±iω′τ (eφ(τ ) − 1),

γ
pn

cd (ω′) =
(
�

pn∗
cav

)2

4

∫ ∞

−∞
dτ cos(ω′τ )(1 − e−φ(τ )),

γ
pn

cd (−ω′) =
(
�

pn
cav

)2

4

∫ ∞

−∞
dτ cos(ω′τ )(1 − e−φ(τ )),
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where φ(τ )= ∫ ∞
0 dω

Jpn(ω)
ω2 [coth(βω/2) cos(ωτ ) − i sin(ωτ )].

Our rates match the ones obtained by Roy-Choudhury et al.
[49] in previous work [51]. The rates γ pn(ω′) and γ pn(−ω′)
correspond to enhanced radiative decay and incoherent exci-
tation of the TLS, respectively, while γ

pn

cd (±ω′) is associated
with cross dephasing [48].

2. Electromagnetic bath correlations

Having arrived at a “Lindblad-type” phonon dissipator [52],
we now turn our attention to the second term of the RHS of
Eq. (22). This term will yield the modified SE rate of the TLS
near the cavity, as well as account for the frequency shift via
a unitary renormalization term. As in the previous section, we
begin by explicitly printing the correlation functions obtained
from Eq. (22):

C
pt

ij (τ ) = TrE
[(

B
pt†
i (τ ) ⊗ C

†
i (τ )

)(
B

pt

j (0) ⊗ Cj (0)
)
ρE(0)

]
= Trpn

E

[
B

pt†
i (τ )Bpt

j (0)ρpn

E (0)
]

× Trpt

E

[
C

†
i (τ )Cj (0)ρpt

E (0)
]
, (25)

where i,j ∈ {1,2}. After substituting for the bath operators,
we make use of the following relations [47]:

Trpt

E

[
aqλaq′λ′ρ

pt

E (0)
] = Trpt

E

[
a
†
qλa

†
q′λ′ρ

pt

E (0)
] = 0,

Trpt

E

[
aqλa

†
q′λ′ρ

pt

E (0)
] = δqq′δλλ′[1 + N (νq)] ≈ δqq′δλλ′ ,

Trpt

E

[
a
†
qλaq′λ′ρ

pt

E (0)
] = δqq′δλλ′N (νq) ≈ 0,

where we have assumed that ∀ ω > 0, the Planck distribution
N (ω) ≈ 0 [53]. This means that we only have a single
nonvanishing correlation function C

pt

11 (τ ). Following Ref. [46],
we consider well-separated photon and phonon correlation
times (appropriate for an unstructured photonic environment),
so that C

pt

11 (τ ) reduces to the photon bath correlation function
in the absence of a phonon bath. The latter is given by

C
pt

11 (τ ) = |d|2
6π2εc3

∫ ∞

0
dνq ν3

q[1 + Fcav(qrd )], (26)

where the term

Fcav(x) = 3

2

(
− sin(2x)

2x
− cos(2x)

(2x)2
+ sin(2x)

(2x)3

)
(27)

describes the influence of the metal surface. The SE rate then
evaluates to

γ pt
cav(ω′) = [1 + Fcav(q0rd )]γ pt

0 (ω′), (28)

where γ
pt

0 (ω′) is the bare SE rate for an isolated TLS, and is
given by γ

pt

0 (ω′) = |d|2ω′3/3πεc3. The imaginary part of the
correlation tensor has two components: the first term is the
usual Lamb shift (whose expression is divergent unless one
adopts a full QED approach based on a relativistic Hamiltonian
and appropriate renormalization [54]). The second term is the
additional energy shift term and takes the form [7,55,56]

Vcav = 1
2Gcav(q0rd )γ pt

0 (ω′), (29)

where the function Gcav is given by

Gcav(x) = 3

2

(
− sin(2x)

(2x)2
− cos(2x)

(2x)3
+ cos(2x)

2x

)
. (30)

Overall, the transition frequency for the TLS in the polaron
frame is now given by

ω̃′ = ω′ + Vcav (31)

and the final polaron frame ME takes the following form in
the Schrödinger picture:

d

dt
ρSP = − i

h̄
[H ′

SP ,ρSP (t)] + Dpn(ρSP ) + Dpt (ρSP ), (32)

where Dpn(ρSP ) = γ pn(ω′)L[σ−] + γ pn(−ω′)L[σ+] −
γ

pn

cd (ω′)Lcd [σ−] − γ
pn

cd (−ω′)Lcd [σ+] and Dpt (ρSP ) =
γ

pt
cav(ω′)L[σ−]. H ′

SP is the system Hamiltonian in the polaron
frame including the energy shift from Eq. (29).

In summary, Eqs. (28) and (29) capture how the presence
of a metal surface (here treated as a perfect reflector) alters the
SE rate and the transition frequency of the TLS, respectively.
Considering our results in the absence of phonons, we find full
analytical agreement with the prior literature on the image-
dipole approach [7,57], and except for very small separations,
we also have excellent numerical agreement with the full QED
approach [28], as well as field quantization methods using the
correct classical spatial modes [58]. We show this agreement
in Fig. 4 as a function of the distance of the emitter to the
surface. The dashed vertical lines at multiples of 1/8n (where
n is the refractive index of the host material, taken to be GaAs
in our case), taken from Eqs. (28) and (29), serve as a guide
to the eye for the approximate frequency of oscillation, and
demonstrate that multiple periods occur within a wavelength’s
separation of emitter to surface. In the limiting case rd → ∞,
we have Vcav → 0 and γ

pt
cav(ω′) → γ

pt

0 (ω′), i.e., we recover the
case of an isolated QD as required.

IV. IMAGE EMITTER APPROACH

Models involving emission from a combination of two
identical TLS have been used extensively to study the
modifications to the SE rate of an emitter in the proximity of
a dielectric or metal surface. After setting up the appropriate
Hamiltonian, we shall once more derive a polaron frame ME.
We then show that this ME is identical to the one derived using
the half-sided cavity approach, provided we disregard certain
terms in order to constrain the dynamics of our two-emitter
model to the “right” subspace.

A. Setup

We focus on the case where the dipole is oriented parallel to
the surface [59] (as is appropriate for a typical self-assembled
QD emitter), implying that the image dipole will be antiparallel
[4,28,55,56]. In what follows, we shall once again take the
real emitter to be situated at a distance rd > 0 along the
positive z axis, with the dipole vector oriented in the positive x

direction. Hence, the corresponding image dipole is positioned
at z = −rd , with its dipole vector being parallel to the negative
x axis.
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FIG. 4. Spontaneous emission rate (left) and energy shift (right) for the half-sided cavity model (red), where we divided expressions (28)
and (29) by the bare SE rate in order to avoid dependence on its value. The blue energy shift curve denotes the energy shift obtained using a full
QED approach [28], showing a distinctively different behavior at smaller separations (� 0.05λ0) when compared to the half-sided cavity and
image approaches. The oscillations persist even at larger separations, of the order of the emission wavelength λ0 for the SE rate. As x → ∞,
the SE rate tends to that of a bare emitter and the energy shift vanishes, as expected.

B. Hamiltonian

The Hamiltonian of the two driven TLS in a frame rotating
with frequency ωl is given by

HS =
2∑

j=1

δ|Xj 〉〈Xj | + �∗
j

2
|0j 〉〈Xj | + �j

2
|Xj 〉〈0j |, (33)

where the subscript j = 1,2 denotes the real and image
TLS, respectively. In order to match the boundary conditions
required for reflection, we model the classical driving field as
two counterpropagating beams, with the secondary “reflected”
beam having a π phase shift with respect to the original beam.
For simplicity, we model these as plane waves propagating
along the z axis and polarized in the x direction. In phasor
notation, these two waves can be written as

E1(r) = Eincident(r) = E0e
iql ·rx̂,

E2(r) = Ereflected(r) = −E0e
−iql ·rx̂, (34)

giving rise to the following Rabi frequencies at the positions
r1,2 of the two emitters:

�1 = 2d1 · [E1(r1) + E2(r1)],

�2 = 2d2 · [E1(r2) + E2(r2)]. (35)

Since r2 = −r1 and d2 = −d1, we have � := �1 = �2.
We now turn to the wider electromagnetic environment

(excluding the coherent driving field discussed above). The
electric field operator can be written as in Eq. (9) but with the
spatial mode functions now being replaced by the free-space
functions

uqλ(r) =
√

ωqλ

2εV
eqλe

iqr . (36)

The interaction Hamiltonian of the TLS with the photonic
environment is then given by

H
pt

I = H
pt,1
I + H

pt,2
I

= −
2∑

j=1

dj · E(rj)(|0j 〉〈Xj | + |Xj 〉〈0j |). (37)

For the interaction with vibrational modes, we assume that
both real and image TLS see the same phonon bath and possess
perfectly correlated coupling constants gk. This ensures the
image system exactly follows the dynamics of real dipole, as
is required for matching the boundary condition of a perfectly
reflecting interface. Thus, our relevant Hamiltonian reads as

H
pn

I = H
pn,1
I + H

pn,2
I

=
2∑

j=1

∑
k

|Xj 〉〈Xj |gk(b†k + bk). (38)

Next, we move into the polaron frame with the transformation
eS1+S2 = eS1eS2 , obtaining the transformed Hamiltonians

HSP =
2∑

j=1

δ′|Xj 〉〈Xj | + �pn∗

2
|0j 〉〈Xj | + H.c., (39)

H
pt,j

IP = i|0j 〉〈Xj |B−
∑
q,λ

dj · u∗
qλ(rj )a†

qλ

− i|Xj 〉〈0j |B+
∑
q,λ

dj · uqλ(rj )aqλ,

H
pn,j

IP = �∗

2
|0j 〉〈Xj |B− + �

2
|Xj 〉〈0j |B+. (40)

As in Sec. III, the latter two can easily be seen to be of the
following generic form (with appropriate identifications for
the A,B,C operators) which will enable straightforward use
of the ME [Eq. (3.118) from Ref. [47]]:

H
pn,j

IP =
2∑

i=1

A
pn,j

i ⊗ B
pn,j

i , (41)

H
pt,j

IP =
2∑

i=1

A
pt,j

i ⊗ B
pt,j

i ⊗ C
j

i . (42)
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C. Master equation

The ME for our system can, once again, be written as

d

dt
ρSP (t) = −

∫ ∞

0
dτ Trpn

E

[
H

pn

IP (t),

[
H

pn

IP (t − τ ),ρSP (t) ⊗ ρ
pn

E (0)
]]

−
∫ ∞

0
dτ TrE

[
H

pt

IP (t),

[
H

pt

IP (t − τ ),ρSP (t) ⊗ ρE(0)
]]

, (43)

however, it now features a larger number of correlation
functions due to the presence of the image emitter. Following
the general procedure in Sec. III B, we shall analyze different
contributions in turn to arrive at our final ME of the image
emitter model.

1. Phonon dissipator

The correlation functions (including cross-correlation
terms between bath operators of the real and image system)
result in the following phonon dissipator:

Dpn(ρSP )

=
2∑

i,j=1

γ
pn

ji (ω′)
(

σ
j
−ρSP (t)σ i

+ − 1

2
{σ i

+σ
j
−,ρSP (t)}

)

+
2∑

i,j=1

γ
pn

ji (−ω′)
(

σ
j
+ρSP (t)σ i

− − 1

2
{σ i

−σ
j
+,ρSP (t)}

)

−
2∑

i,j=1

γ
pn

cd,ji(ω
′)
(

σ
j
−ρSP (t)σ i

− − 1

2
{σ i

−σ
j
−,ρSP (t)}

)

−
2∑

i,j=1

γ
pn

cd,ji(−ω′)
(

σ
j
+ρSP (t)σ i

+ − 1

2
{σ i

+σ
j
+,ρSP (t)}

)
,

(44)

where the rates γ
pn

ji (±ω′) and γ
pn

cd,j are given by

γ
pn

ji (±ω′) = |�pn|2
4

∫ ∞

−∞
dτ e±iω′τ (eφ(τ ) − 1),

γ
pn

cd,ji(ω
′) = (�pn∗)2

4

∫ ∞

−∞
dτ cos(ω′t)(1 − e−φ(τ )),

γ
pn

cd,ji(−ω′) = (�pn)2

4

∫ ∞

−∞
dτ cos(ω′t)(1 − e−φ(τ )).

We shall return back to the phonon dissipator when discussing
the ME equation in the symmetric-antisymmetric basis, which
allows us to derive a model agreeing with the half-sided cavity
approach.

2. Photon dissipator

We now turn our attention to the photon dissipator term from
Eq. (43). After evaluating the correlation and cross-correlation
functions, we obtain the usual expression for two emitters [7]

in a shared electromagnetic environment:

Dpt (ρSP ) =
2∑

i,j=1

γ
pt

ji

(
σ

j
−ρSP (t)σ i

+ − 1

2
{σ i

+σ
j
−,ρSP (t)}

)
, (45)

where the diagonal terms γ
pt

22 (ω′) = γ
pt

11 (ω′) = γ
pt

0 (ω′), while
the off-diagonal terms are given by γ

pt

12 (ω′) = γ
pt

21 (ω′) =
F12(q0�r)γ pt

0 (ω′) with �r = r1 − r2 = 2rd , and where

F12(x) = 3

2

(
− sin(x)

x
− cos(x)

x2
+ sin(x)

x3

)
. (46)

This is the same function obtained for the half-sided cavity
approach [cf. Eq. (27)]. The imaginary part of the correlation
function yields the “correction” term to the unitary part of the
ME [7,47,55]: its diagonal contribution represents diagonal
Lamb shift terms. Their small energetic shifts can be absorbed
into the bare TLS transition frequency. We thus focus on the
off-diagonal element which is of the form

V12 = 1
2G12(q�r)γ pt

0 (ω′), (47)

where the function G12 is

G12(x) = 3

2

(
− sin(x)

x2
− cos(x)

x3
+ cos(x)

x

)
. (48)

Again, this corresponds to the same energy shift term we have
previously encountered in Sec. III B 2. After diagonalizing
the Hamiltonian, the frequency of the symmetric excited- to
ground-state transition (in the polaron frame) is then given by

ω̃′ = ω′ + V12, (49)

exactly matching the transition frequency Eq. (31) of the half-
sided cavity model.

D. Effective TLS in the energy eigenbasis

As stated in the Introduction, previous literature treating
spontaneous emission from initially excited emitters consid-
ered the transition from the symmetrically excited to the
ground state, as this choice yields matching results with
other methods [4,7]. We follow this approach and adopt the
basis {|e〉,|s〉,|a〉,|g〉} with |e〉 = |X1〉|X2〉, |s〉 = (|01〉|X2〉 +
|X1〉|02〉)/

√
2, |a〉 = (|01〉|X2〉 − |X1〉|02〉)/

√
2, and |g〉 =

|01〉|02〉 (see Fig. 5). In this basis, our full polaron ME
reads as

d

dt
ρSP (t) = − i

h̄
[H ′

SP ,ρSP (t)]

+ Ds
pn(ρSP ) + Da

pt (ρSP ) + Ds
pt (ρSP ), (50)

where the dissipator terms are explicitly given in the Appendix.
Here, H ′

SP denotes the system diagonalized Hamiltonian [in-
cluding the energy shift term (47)]. The ME photonic dissipator
separates into a symmetric channel (|g〉↔ |s〉↔ |e〉) and an
antisymmetric one (|g〉 ↔ |a〉 ↔ |e〉). Courtesy of the fully
correlated phonon bath, phonons also only act in the symmetric
channel.

Since �1 = �2, the symmetric channel Rabi frequency
becomes �sg := (�1 + �2)/

√
2 = √

2� = �cav and, hence,
we obtain the same phonon rates as in the half-sided cavity
approach [60]. Furthermore, the antisymmetric channel Rabi
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FIG. 5. Energy-level diagram for the two-emitter system. The
symmetric (|s〉) and antisymmetric (|a〉) levels are shifted up and
down by V12, respectively. The black arrows indicate the laser driving;
the antisymmetric state is decoupled. Blue and red wavy lines indicate
photon emission from the antisymmetric and symmetric channels,
respectively. As discussed in the text, it is necessary to disable driving
on the |s〉 ↔ |e〉 transition (black dashed) to recover the effective
two-level system |g〉 ↔ |s〉. For environments permitting photon
absorption, the dashed wavy transitions also need to be explicitly
disabled.

frequency �a := (�1 − �2)/
√

2 = 0, meaning that the laser
field is completely decoupled from the antisymmetric state.

Consistency with the Green’s function and half-sided
cavity approach demands that we restrict the dynamics of
our four-dimensional Hilbert space to the subspace spanned
by the states {|g〉,|s〉}, i.e., the larger Hilbert space only
served to let us calculate the correct properties of this single
transition. Fully decoupling the antisymmetric singly and
the doubly excited states from the dynamics is achieved by
disabling the laser driving on the |s〉 ↔ |e〉 transition. For
finite-temperature photon environments with N (ω) �= 0, we
also need to remove dissipative photon absorption channels, by
dropping the antisymmetric dissipator term Da

pt (ρSP ) from the
ME and explicitly removing the dissipative |s〉 ↔ |e〉 operator.

The image approach can thus be reduced to an effective
TLS model featuring the same Rabi frequency, SE rate, and

transition frequency as the half-sided cavity approach, i.e.,
displaying full equivalence between the two representations.

In Fig. 6, we summarize the key results from the previous
sections: We show the transition frequency and SE rate for the
all four cases considered in this paper alongside their schematic
depictions. The driving term is not included as it has no direct
influence on the properties of the optical dipole transition.

V. RESONANCE FLUORESCENCE SPECTRUM

Having included the possibility of laser driving in our
model, a natural application is to study the resonance
fluorescence (RF) spectrum of a condensed matter TLS
near a mirroring surface. We use the ME (50) (after
discarding the antisymmetric channel, as argued above)
to calculate the spectral function, which is given by the
Fourier transform of the (steady-state) first-order correlation
function limt→∞〈E(−)(R,t)E(+)(R,t + τ )〉, where E(−)(R,t)
and E(+)(R,t) are, respectively, the negative and positive
components of the electric field operator evaluated at the
position R of the detector [7]. These operators are related to the
system operators σ− = |0〉〈X| and σ+ = |X〉〈0| and, hence,
after applying the polaron transformation, the RF spectral
function can be written as

S(ω) ∝
∫ ∞

−∞
dτ e−i(ω−ω′)τ 〈σ+(τ )B+(τ )σ−(0)B−(0)〉s , (51)

where we have exploited the temporal homogeneity of the
stationary correlation function, and where the subscript “s”
denotes the trace taken with respect the steady-state density
matrix [47]. The correlation function appearing in Eq. (51)
involves two time scales, the nanosecond time scale associated
with the exciton lifetime and the shorter picosecond phonon
bath relaxation time scale, allowing us to separate the corre-
lation function into the product 〈σ+(τ )σ−(0)〉s〈B+(τ )B−(0)〉s
[61]. Substituting the expression for the phonon bath correla-

FIG. 6. Overview of the four scenarios for an optical dipole considered in this work. All cases have a schematic depiction accompanied by
the corresponding SE rates γ0 and transition frequencies ω. Here, �r is the separation between the real and image dipoles, F12(q0�r) and V12

are given by Eqs. (46) and (47), respectively, and ω0 and ω′ are the bare and polaron shifted frequencies, respectively. The blue “masses on
springs” (blue circles) denote the phonon bath. Note that the driving field is not shown here, as its presence or absence does not influencing the
relevant properties.
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FIG. 7. Left: Incoherent component of the RF spectrum for a single TLS (blue) and the effective TLS incorporating surface-induced
modifications (red). Right: Ratio of coherent emission for all four cases (with/without mirror, with/without the phonon environment) as a
function of the (normalised) effective Rabi frequency. �s denotes the saturation Rabi frequency for γ

pt

0 = 0.001 ps−1. See text for a discussion.

tion function, we obtain the spectral function

S(ω) ∝ 〈B〉2
∫ ∞

−∞
dτ e−i(ω−ω′)τ eφ(τ )〈σ+(τ )σ−(0)〉s . (52)

In the left panel of Fig. 7, we show the incoherent part of
the emission spectrum of our surface-modified system as well
as that of a reference TLS (also subject to the same phonon
environment). Following Ref. [21], we take the TLS’s position
relative to the surface as rd ∼ 177 nm. The reference TLS
is driven with “free-space” Rabi frequency given by �pn =
2〈B〉d · E0. As expected, the curves differ in the position of
the Mollow sidebands and the width of the three peaks since
the former is determined by the effective Rabi frequency and
the latter depends on the emission rate, which both undergo a
change in the presence of a reflective surface. The two insets
in the left panel of Fig. 7 show the much broader phonon side-
band, which receives ∼ 16% of the scattered photons for the
chosen spectral density at a phonon temperature of T = 10 K.

In the right panel of Fig. 7, we plot the fraction of coherently
scattered photons as a function of the renormalized effective
Rabi frequency. This ratio is obtained numerically as the
(integrated) coherent spectrum divided by the total integrated
spectrum. There are two pairs of curves: one with and one
without phonons. For the former, the finite area under the
phonon sideband means that the coherent fraction does not
go to unity even when driving far below saturation. The level
at which this fraction plateaus is phonon coupling strength
and temperature dependent [61]. By contrast, in the absence
of phonons, almost all light is coherently scattered at weak
enough driving. The close agreement between the two curves
in each pair bears testament to the fact that the surface-
modified emitter largely behaves like a bare emitter once the
effective Rabi frequency has been corrected for (with the slight
remaining discrepancy due to modifications of the natural
lifetime). Indeed, plotting this ratio directly as a function of the
laser driving field amplitude reveals sizable horizontal shifts
between these two curves in each pair (not shown).

VI. SUMMARY AND DISCUSSION

We have extended the method of images, traditionally
developed for capturing spontaneous emission in atomic

ensembles near reflective interfaces, to the case of a driven
solid-state emitter near a metal surface. We have developed
two approaches: a half-sided cavity and image dipole, and
shown that the latter agrees with the former, but only when
additional “selection rules” are introduced to constrain the
dynamics to the relevant subspace. Both our approaches
agree with a Green’s function treatment in the absence of a
vibrational environment. Through a rigorous derivation, we
find that the emitter can indeed still be described as an ef-
fective (phonon-dressed) two-level system with appropriately
modified properties, even in the presence of a phonon bath and
for a driven system. Our calculated RF spectrum corroborates
this observation.

We note that image-dipole approach not only necessitates a
larger Hilbert space, but also involved a more cumbersome
ME derivation than the half-sided cavity approach. This
begs the questions as to whether such an image approach
remains useful. We submit that the method of images can
more easily accommodate larger numbers of emitters near a
surface (of varying separation to the surface), as the problem
then straightforwardly maps onto the case of several optical
dipoles in a shared (free-space) electromagnetic environment,
a problem which has been studied extensively (see, e.g.,
Ref. [7]). Future work might investigate the role of geometry
in configurations with N > 1 emitters, possibly resulting in
the enhancement of Dicke super-radiance of an ensemble of
solid-state emitters [33,62], or the use of mirrors to bring
about other collective effects in the light matter interaction,
for example, inspired by a recent proposal for engineering the
quantum-enhanced absorption of light [63] or by harnessing
subradiant collective states [64,65].

Another interesting avenue for future work might be
the study of charged quantum dots featuring excited trion
states. In addition to the optical dipole, the image approach
would then feature a separate permanent dipole. To a first
approximation, we would expect this second dipole to be
static, meaning it would not radiate and only modify the
spectrum via energetic shifts. However, one might speculate
whether the Coulomb interaction of the three charges in-
volved in the trion state could slightly “wiggle” this dipole,
making some radiative contribution to the overall spectrum
conceivable.
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APPENDIX

1. Eigenbasis dissipators

The dissipators of Sec. IV D are given by

Ds
pn(ρSP ) = 2γ pn(ω′)

[
(Sse + Sgs)ρSP (t)(Ses + Ssg) − 1

2 {(See + Sss),ρSP (t)}] + 2γ pn(−ω′)
[
(Ses + Ssg)ρSP (t)(Sse + Sgs)

− 1
2 {(Sgg + Sss),ρSP (t)}] − 2γ

pn

cd (ω′)(Sse + Sgs)ρSP (t)(Sse + Sgs) − 2γ
pn

cd (−ω′)(Ses + Ssg)ρSP (t)(Ses + Ssg),

(A1)

Da
pt (ρSP ) = 2γ pt (ω′)

[
(Sae − Sga)ρSP (t)(Sea − Sag) − 1

2 {(See + Saa),ρSP (t)}]
+ 2γ pt (−ω′)

[
(Sea − Sag)ρSP (t)(Sae − Sga) − 1

2 {(Sgg + Saa),ρSP (t)}], (A2)

Ds
pt (ρSP ) = 2γ pt (ω′)

[
(Sse + Sgs)ρSP (t)(Ses + Ssg) − 1

2 {(See + Sss),ρSP (t)}]

+ 2γ pt (−ω′)
[
(Ses + Ssg)ρSP (t)(Sse + Sgs) − 1

2
{(Sgg + Sss),ρSP (t)}], (A3)

with Sij = |i〉〈j |; i,j ∈ {g,a,s,e}; |g〉, |a〉, |s〉, and |e〉 being the doubly ground, antisymmetric, symmetric, and doubly excited
states of our joint system, respectively.

2. SE rate and cross Lamb shift terms for dipole perpendicular to the surface

In the case of a dipole perpendicular to the surface, expressions for the cross Lamb shift term and SE rate similar to the ones
used in Sec. IV can be derived from first principles as well, arriving at the expressions

F12(q�r) = 3

(
−cos(q�r)

(q�r)2
+ sin(q�r)

(q�r)3

)
(A4)

and

G12(q�r) = −3

(
sin(q�r)

(q�r)2
+ cos(q�r)

(q�r)3

)
, (A5)

instead of the ones used in Sec. IV.
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