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Lindblad approach to spatiotemporal quantum dynamics of phonon-induced carrier
capture processes
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In view of the ultrashort spatial and temporal scales involved, carrier capture processes in nanostructures
are genuine quantum phenomena. To describe such processes, methods with different levels of approximations
have been developed. By properly tailoring the Lindblad-based nonlinear single-particle density matrix equation
provided by an alternative Markov approach, in this work we present a Lindblad superoperator to describe how the
phonon-induced carrier capture affects the spatiotemporal quantum dynamics of a flying wave packet impinging
on a quantum dot. We compare the results with non-Markovian quantum kinetics calculations and discuss the
advantages and drawbacks of the two approaches.
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I. INTRODUCTION

The shrinking of space and time scales of modern devices
has reached the threshold where semiclassical approaches
like the Boltzmann equation [1] are no longer able to
fully catch the genuine quantum mechanical effects on the
electronic transport [2–4]. To model the dynamics in these
systems, several quantum mechanical approaches have been
proposed, including nonequilibrium Green’s functions [5–7],
path integrals [8–10], surface hopping approaches [11,12], and
density matrix based treatments either on a non-Markovian,
quantum kinetic (QK) level [2,3,13] or on a Markovian level
[14–17].

Carrier capture processes into localized states of a nanos-
tructure [18–20] are within the most intrinsically quantum
mechanical processes, as can be inferred both from the
nanometric size of its constituents and the subpicosecond time
scale of the interaction. Furthermore, they involve transitions
from extended states in the continuous part of the spectrum into
localized states in the discrete part. In this work we focus on a
wave packet traveling in a quantum wire (QWR) which, when
passing by a quantum dot (QD) embedded in the wire, interacts
with the latter by means of electron-phonon scattering; see
Fig. 1. Experimentally, QWRs with an embedded QD have
been realized by different techniques, e.g., by cleaved-edge
overgrowth [21], by growth on a patterned substrate [22], or
by growth in vertical nanowires [23–26].

The intrinsically spatially inhomogeneous problem in-
duces, in turn, a nontrivial spatiotemporal dynamics, which
could then suggest interesting applications in electronic-based
quantum information processing. For example, in the concept
of flying qubits one could use the shape of a traveling
electronic wave packet to store and transmit information
around the nanodevice [27–29]. Potentially, the carrier capture
processes could be able to alter this information in a point
which is strongly localized both in space and time [19];
considering the rise of novel materials able to provide
strain-tunable QDs [30–33] or dispersionless propagation
[34,35], this property could make the capture processes
one key ingredient of electronic-based quantum information
protocols.

On the other hand, due to the intrinsically local nature
of the carrier-phonon interaction in combination with the

nonlocal character of the continuum states, the spatiotemporal
dynamics of carrier capture processes is extremely demanding
to describe on a fully quantum mechanical level. In view
of their importance for heterostructure semiconductor lasers,
capture rates obtained from Fermi’s golden rule (FGR) have
been calculated for many years, first mainly for the capture
from bulk into quantum well states [36–39] and then also for
the capture into QD states [40–42]. The resulting semiclassical
treatments may thus efficiently provide the total captured
charge; however they will typically not be able to properly
describe the spatiotemporal dynamics of the traveling wave
packet. In addition, the different effective dimensionalities of
states involved in capture processes give rise to difficulties
already in properly defining the semiclassical equation; in
fact, the scattering rates typically depend on the normalization
volume of the delocalized states, which then has to be fixed by
some more or less rigorous argument.

This difficulty in describing spatiotemporal dynamics to-
gether with scattering processes is related to the fact that, as
long as only occupations are considered, as is often done in
these calculations, the electrons that occupy continuum states
are always completely delocalized. Space dependencies are
then often introduced in a phenomenological, parametric way.
However, spatially inhomogeneous distributions, where the
carriers are not completely delocalized, require superpositions
of these states, i.e., off-diagonal elements in the density
matrices defined with respect to these states [43,44]. This is
exactly what has been done in QK studies, where it has been
shown that the interaction provides local capture dynamics, in
contrast to what would be seen within a diagonal description
[19,20,45]. A local interaction in space translates into a finite
duration in time, which in turn induces broadened energy
selection rules with respect to the Dirac delta of conventional
FGR [19,20]. QK treatments provide accurate predictions,
but their computational costs make it complicated to study
longer evolutions or stronger interaction mechanisms, where
in addition numerical instabilities, especially on longer time
scales, may appear. They also often prohibit the extension to
more complicated structures, e.g., higher-dimensional systems
which cannot be reduced by spatial symmetries.

Hence it is desirable to have a computationally lighter ap-
proach still capable of describing the spatiotemporal dynamics,
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FIG. 1. Schematic representation of the carrier capture process
from a wave packet (red shapes) traveling in a cylindrical QWR into
an embedded QD (green shapes): the upper and lower panels show the
process in three-dimensional space and reduced to the longitudinal
direction z, respectively. Here z0 and k0 are the initial central position
and wave vector of the wave packet, respectively [see also Eq. (10)].

thereby being intermediate between FGR and QK. We look
therefore for an approach able to deal with nondiagonal density
matrices through a closed equation of motion. Conventional
Markov approximations [14–17] could in principle fulfill these
requirements, but the asymmetric shape of their superoperator
may lead to huge instabilities due to their nonpositive definite
definition [46]. The solution to the instability problem can be
given by a recently introduced Markov approximation [47],
which in fact is able to provide a Lindblad-like many-body
superoperator and a positive-definite nonlinear single-particle
density matrix equation [46], the latter being of Lindblad type
itself in the low-density regime.

In this paper we extend this treatment to carrier capture
processes. We then compare the resulting Lindblad single-
particle (LSP) approach to a full QK analysis, which can be
considered as a benchmark. We show that the LSP approach
catches the essential features of the spatiotemporal dynamics
and further discuss the advantages and drawbacks of the two
approaches.

The paper is organized as follows: In Sec. II we present the
theory behind the carrier capture processes, recall the main
fundamentals of the QK treatment, and introduce the properly
tailored LSP approach. In Sec. III we study the capture process
of a nanometric flying wave packet impinging on a QD with
one (Sec. III A) or two (Sec. III B) bound states, and finally
conclude in Sec. IV.

II. THEORY

A. Hamiltonians and equations of motion

The starting point for our description is a proper definition
of the single-particle eigenstates |α〉 and the associated energy
levels εα corresponding to the nanodevice potential profile. We
will reduce our system to be effectively one-dimensional by
considering only the lowest transverse eigenmode of a cylindri-
cal GaAs QWR with 100 nm2 cross section. As a consequence,
the state |α〉 corresponds to the eigenfunction ψα(z) ≡ 〈z|α〉

solving the single-particle Schrödinger equation
[
− h̄2

2m∗
∂2

∂z2
+ V (z)

]
ψα(z) = εαψα(z), (1)

with m∗ being the effective mass and V (z) the profile of the QD
potential along the longitudinal direction z (see also Fig. 1).
The single-particle spectrum is discrete for the bound states
(εα < 0) and continuous for the delocalized states (εα > 0).
The dynamical variable is the single-particle density operator
ρ̂, whose matrix elements ραα′ are defined as

ραα′ = Tr[ĉ†α′ ĉαρ̂], (2)

where ĉ†α and ĉα are the creation and annihilation operators of
state α, while ρ̂ is the many-body density matrix containing all
the electronic and phononic degrees of freedom. The dynamics
of ρ is given by

dραα′

dt
= Tr

[
ĉ
†
α′ ĉα

dρ̂

dt

]

≡ dραα′

dt

∣∣∣∣
free

+ dραα′

dt

∣∣∣∣
scat

, (3)

where in the last equality we have distinguished between the
scattering-free and electron-phonon induced dynamics, which
are defined as

dραα′

dt

∣∣∣∣
free

= 1

ıh̄
Tr(ĉ†α′ ĉα[Ĥe + Ĥph,ρ̂]), (4a)

dραα′

dt

∣∣∣∣
scat

= 1

ıh̄
Tr(ĉ†α′ ĉα[Ĥe-ph,ρ̂]). (4b)

The Hamiltonians Ĥe and Ĥph appearing in Eq. (4a) are the
scattering-free electronic and phononic Hamiltonians,

Ĥe =
∑

α

εαĉ†αĉα, (5)

Ĥph =
∑

ξ

Ĥξ ≡
∑
ξ,q

h̄ωξ
qb̂

ξ†
q b̂ξ

q, (6)

with ξ denoting the type of phonon (e.g., optical or acoustic,
longitudinal or transverse, ...), q the three-dimensional phonon
wave vector, and b̂

ξ†
q (b̂ξ

q) the creation (annihilation) operator
of a phonon of type ξ and wave vector q.

The scattering-induced dynamics of Eq. (4b) is given
by the electron-phonon Hamiltonian Ĥe-ph. In a real-space
representation the interaction Hamiltonian has the form

Ĥe-ph =
∫

d3r	̂†(r)V̂e-ph(r)	̂(r), (7)

where 	̂†(r) [	̂(r)] are the creation (annihilation) operators
for an electron at the position r and V̂e-ph(r) is the phonon-
induced potential acting on the electrons. Its detailed form
depends on the phonon type and the interaction mechanism
(e.g., deformation potential, piezoelectric, polar optical, ...).
Equation (7) clearly shows that the interaction is local in
space; i.e., it connects the annihilation of an electron at a given
position with the creation at the same position. Inserting the
mode representations of electrons and holes, the interaction
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Hamiltonian can be written in the more conventional form

Ĥe-ph =
∑

ξ

Ĥe−ξ

=
∑

ξ

∑
αα′,q

(
g

ξq−
αα′ ĉ†αĉα′ b̂ξ

q + g
ξq+
α′α ĉ

†
α′ ĉαb̂ξ†

q

)
, (8)

with + (−) standing for emission (absorption) of a phonon
associated with a transition from state α to α′ (α′ to α).
Hereby we distinguish between continuous-continuous (CC,
both α and α′ referring to delocalized states), discrete-discrete
(DD, both α and α′ referring to bound states), and continuous-
discrete transitions (CD, with one among α′ and α referring
to a delocalized and the other to a bound state). In particular,
the latter are responsible for the carrier capture processes. In
view of the large energetic separation between the bottom
of the delocalized states band and the bound states, the
only phonons able to induce CD transitions are the optical
ones. For the interaction matrix element we take the Fröhlich
coupling which is typically the dominant electron-phonon
interaction mechanism in III-V semiconductors. Therefore we
consider the longitudinal optical (LO) phonons, whose energy
ELO ≡ h̄ωLO

q is in good approximation q-independent. We
will restrict ourselves to the low-temperature limit, in which
only (spontaneous) emission processes are allowed due to the
negligible value of the Bose-Einstein distribution Nh̄ωLO

q
≡

NELO � 1. In principle, also the Coulomb scattering could
be included in the equations, but for low carrier densities its
impact is minor and hence it is neglected here. We furthermore
assume that the QWR is of high structural quality, such that
on the length scales considered here (a few hundred nm)
any disorder effects such as impurity scattering or Anderson
localization can be neglected.

B. Description of the spatiotemporal dynamics

In every CD transition, the coefficients g
ξq±
αα′ depend on

the overlap between the localized wave function of the bound
state and the product between one electronic delocalized wave
function and one phononic plane wave; as a consequence,
the electron-phonon Hamiltonian of Eq. (8) is local. A fully
diagonal approach to the capture processes is unable to catch
this locality, even if the initial state is homogeneous [45];
a reduction of the occupation of a delocalized state due to a
capture process will immediately reduce the electron density in
the whole structure, in contrast to the expectation that initially
only regions close to the QD should be depopulated. Only a
nondiagonal treatment is able to correctly model the locality
of the capture processes [45].

The relation between off-diagonal elements and local be-
havior is a general feature of density matrix based descriptions.
Given the longitudinal eigenfunction ψα(z) of Eq. (1), the
longitudinal spatial electron density n(z) is given by

n =
∑
αα′

ραα′ψα(z)ψ∗
α′(z). (9)

Above a few meV, the delocalized states ψα(z) are essentially
plane waves, thus having a spatially homogeneous square
modulus. As a consequence, a localized wave packet outside
the dot can only be described by including off-diagonal

elements of the density matrix (already in the absence of any
scattering mechanism).

Different approaches are possible in order to deal with the
huge amount of degrees of freedom of Eq. (3), which is not
closed in the single-particle density matrix ρ since the terms
under the trace also involve phononic degrees of freedom.
QK density matrix approaches rely on a correlation expansion
involving the coupling to an increasing number of phonon
operators. The dynamics of the lower-order terms depend
on the next-order contributions, giving rise to a (bottom-up)
hierarchy which has then to be truncated at some level.
The lowest-order contribution induced by the electron-phonon
scattering to the dynamics of ρ depends on phonon-assisted
density matrices s

(ξ )
α,q,α′ ≡ Tr[ĉ†α′ (b̂

ξ
q − B

ξ
q )ĉαρ̂], with B

ξ
q ≡

Tr[b̂ξ
qρ̂] giving the coherent phonon contributions. A detailed

discussion on the QK approach applied to carrier capture can
be found in Refs. [19,20] and references therein.

On the other hand, the many-body density matrix appearing
on the right-hand side of Eq. (3) can be rewritten as an integral
over an additional time t ′ of dρ̂/dt ′, where the latter may
be rewritten through the Liouville–von Neumann equation
as a commutator of ρ̂. Markov approximations then separate
the time dependence of ρ̂ into a fast contribution caused by
the scattering-free Hamiltonian, which is taken into account
exactly, and a remaining slow contribution, which is then
taken out of the integral [48]; as a consequence, in contrast
to QK approaches Markov approaches are said to disregard
memory effects. However, the procedure of forgetting the
memory of times t ′ < t is extremely delicate, as the crude
one done in conventional Markov approximations could lead
to highly problematic evolutions [46] of the single-particle
density matrix ρ.

C. LSP approach

A recently introduced Markov approximation is able to
solve these limitations by providing a Lindblad superoperator
at the many-body level [47] and a nonlinear but still positive-
definite (closed and nondiagonal) equation at the single-
particle one [46]. The latter equation is of Lindblad form in
the low-density regime, i.e., when the generalized Pauli factors
may be neglected. The resulting superoperator is fully micro-
scopic and intrinsically able to consider broadened energy
selection rules by tuning the value of the energy-broadening
parameter ε̄ appearing in its coefficients [see Eq. (A3) in the
Appendix]. The details of the full original Lindblad-based
single-particle superoperator can be found in Ref. [46], while
the here adopted LSP equations of motion are summarized in
the Appendix. While CC scattering mechanisms can typically
be described in the so-called completed collision limit, i.e., ε̄

going to zero (as also happens in FGR), in order to describe
CD transitions the proposed LSP approach has to account
for the energy-time uncertainty through a finite ε̄, as will
be discussed in more detail in Sec. III A 3. Although in this
work we focus on the low-temperature limit, the proposed
equations can easily be extended to finite temperatures. In
fact, the original Lindblad approach has already been em-
ployed in several room-temperature studies of localized wave
packets in various nanosystems and under different scattering
mechanisms [34,35,49–52], while the carrier capture at finite
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temperature has been already studied by QK treatments in
Refs. [45,53].

III. CAPTURE PROCESS FROM FLYING WAVE PACKETS

In this work we will focus on a spatially localized wave
packet traveling in the QWR. As initial condition ρ0 we take a
right-propagating pure state with Gaussian distribution in both
real and wave vector space, described by the single-particle
density matrix

ρ0
k1,k2

∝ e−
2
z ( k1+k2

2 −k0)2
e− 1

4 
2
z (k1−k2)2

e−ız0(k1−k2), (10)

where 
z gives the spatial size of the wave packet, while z0 and
k0 are the initial central position and electronic wave vector,
respectively. The latter can be expressed in terms of the excess
energy E0 via k0 = √

2m∗E0/h̄. We then study the evolution of
the density matrix both within the LSP approach of Eqs. (A1)–
(A4) and the QK formalism [19,20]. In all our studies we take

z = 10 nm and an excess energy resonant with the phonon
transition to the lowest bound state, i.e., E0 ≈ ε1 + ELO with
ELO = 36.4 meV. The QD will be always centered at z = 0,
while the initial position of the wave packet will always be
on the left-hand side of the QD (i.e., z0 < 0), in accordance
with the fact that we are considering an only right-propagating
wave packet (i.e., ρ0

kk ≈ 0 for k < 0); the magnitude of |z0|
will be changed in order to study the locality of the carrier
capture process.

A. Single bound state in a weakly reflecting potential

We start the discussion with a QD with only one bound
state described by the potential

V (z) = V0 sech(z/a) (11)

with V0 = −30 meV and a = 4 nm, which yields ε1 =
−14.4 meV and E0 = 22 meV. Without electron-phonon
interaction, such a smoothly varying potential results in a
negligible reflection coefficient, such that an incident wave
packet will be completely transmitted. In order to study the
locality of the carrier capture interaction, we use four different
initial positions, z0 = {−90,−110,−130,−150} nm.

1. Comparison of LSP and QK approaches

In Fig. 2 we plot the evolution of the spatial charge density
[see Eq. (9)] for z0 = −90 nm, showing the LSP [panel (a)]
and QK [panel (b)] results (solid lines), while the dashed lines
display the free evolution (which is identical in both cases);
the (same) potential profile is reported in the bottom panels,
while the gray shaded background indicates the QD region as
a guide to the eye. In the LSP calculations a broadening of the
DC transitions of ε̄ = 3.5 meV has been used. The role of this
value will be discussed below in Sec. III A 3.

The free evolution allows us to distinguish three phases:
(i) the travel toward the QD (times t � 100 fs);
(ii) the crossing of the QD (100 fs � t � 450 fs);
(iii) the moving away from the QD (t � 450 fs).
Note that, even in the absence of scattering, the Gaussian

shape is lost during phase (ii); however it reshapes in phase
(iii). Now let us consider the case with electron-phonon
interaction. Due to the capture a density peak in the QD region
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FIG. 2. Evolution of the spatial charge density n for a traveling
wave packet impinging on the QD (see potential in the bottom panels);
the solid lines show n in the presence of electron-phonon scattering
mechanisms as described by the (a) LSP and (b) QK approach and
compared to the scattering-free evolution (dashed lines, which are
identical in the two panels).

builds up during phase (ii) which remains there in phase (iii).
In this last phase (iii), both approaches predict remarkable
differences from the phonon-free case for the transmitted
wave packet, in particular the appearance of spatial ripplings.
The shape of the traveling continuous wave packet is thus
altered by the carrier capture process, the latter happening at
a well-defined position (see gray area in Fig. 2) and instant in
time [phase (ii)].

While the overall behavior obtained from the two ap-
proaches is very similar, we can also recognize some differ-
ences between the respective predictions, such as the height
of the spatial rippling of the transmitted wave packet. In
order to better understand the origin of these discrepancies
as well as to better quantify the time scales of the carrier
capture, it is convenient to look at the evolution of the bound
state population. In Fig. 3 we plot f1 ≡ ρ11 normalized with
respect to the preserved total charge

∑
α ραα = ∑

α ρ0
αα , as

predicted by the LSP and QK approaches [panel (a) and
panel (b), respectively] for four different initial positions
z0 of the wave packet. Due to different numerical methods
the final populations (i.e, those after the capture process is
over) are slightly different, although being comparable. Both
approaches predict that the wave packet initially closest to
(farthest from) the QD is also the first (last) one to experience
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FIG. 3. Evolution of the normalized bound state population f1

in a weakly reflecting potential when crossed by wave packets
with different initial positions: z0 = −90 nm (solid black line),
z0 = −110 nm (dashed red line), z0 = −130 nm (dotted blue line),
and z0 = −150 nm (dashed-dotted green line); (a) evolution provided
by the LSP calculations; (b) evolution obtained within the QK
approach.

the capture mechanism, an additional signature of the correct
description of the local nature of carrier capture processes.
The spatial shift of the initial condition essentially leads to a
temporal shift of the bound state occupation.

In order to be more quantitative on the temporal window in
which most of the carrier capture takes place, in Figs. 4(a) and
4(b) we plot once again the same result of Fig. 3 but expressing
each evolution in terms of

t̃ = t + z0

vk0

, (12)

with vk0 = h̄k0
m∗ being the group velocity associated with k0.

t̃ is thus a rescaled time such that the center of each of the
four wave packets, which is roughly moving at a velocity of
vk0 , reaches the center of the QD at the same time t̃ = 0. In
addition, in Fig. 4 we mark with a background shaded area all
t̃ ∈ It̃ , with

It̃ =
[
−
t

2
,

t

2

]
, (13)

where the value 
t = 
t̃ = 235 fs will be interpreted below
when discussing Fig. 5 in terms of the time evolution of
df1/dt |scat as provided by the LSP approach.

Both approaches predict that most of the capture process
takes place in the temporal window defined in Eq. (13). The
interval It̃ can thus be interpreted as the temporal window in
which the carrier capture takes place. Interestingly, it mostly
coincides with phase (ii), which has been defined through the
scattering-free evolution. Going back to the original time for
the initial position z0 = −90 nm adopted in Fig. 2, in fact, this
interval goes from 138.5 fs to 391.5 fs. However, the behavior
within this interval It̃ is different in the two approaches.

FIG. 4. Same as in Fig. 3 but expressing the evolutions in terms of
the scaled time t̃ of Eq. (12). (a) LSP approach; (b) QK approach; (c)
LSP approach with a reduced energy broadening ε̄ = 0.5 meV. The
interval It̃ defined in Eq. (13) has also been added as a background
shaded area, while an horizontal orange line indicates the stationary
value f1 ≈ 24.5% in the QK calculations.

The evolution provided by the LSP treatment is essentially
symmetric around t̃ = 0, where the population is around one
half of the final f1: this time-symmetric behavior is not
surprising, as the whole Markov procedure in this approach
is based on a temporal symmetrization [47]. On the other
hand, the evolutions provided by the QK treatment seem to be
slightly retarded; here the population at t̃ = 0 is only around
1/5 of the final value. However, in the second half of It̃ the
increase of f1 predicted by QK is extremely steep. All four
lines in Fig. 4(b) in fact reach the stationary value at t̃ = 
t/2.
In phase (ii) also the evolution predicted by the QK approach is
monotonic. The retarded buildup of the bound state occupation
reflects the non-Markovian nature of QK approaches, whose
early-stage dynamics are governed by pseudo-probabilistic
rates [48] with energy selection rules going as sin(ωt)/ω [13]
and, as a consequence, they are negligible in the early stages
of the interaction.

In phase (iii), i.e., when the carrier capture (shaded area)
is over, the QK treatment predicts a nonmonotonic population
evolution, while in the LSP approach the captured density
essentially remains constant. The oscillations in the QK
description have been interpreted as phonon-assisted Rabi
oscillations inside the QD [19]. The occupation oscillates
periodically between the initial electron state in the continuum
and the correlated state consisting of the electron in the ground
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state and the emitted phonon. This behavior is similar to the
case of photon-induced Rabi oscillations of atoms entering a
microcavity [54]. In our case, the switch on of the electron-
phonon interaction is provided by the arrival of the wave packet
at the QD, when phonon emission becomes possible. An abrupt
switch on thus requires a strongly localized wave packet,
which is only possible considering a broad range of continuum
states, whose width in k space is inversely proportional to the
spatial size. The continuum of initial states in turn generates
a continuum of Rabi frequencies with variable detuning. This
leads to the rather strong damping of the oscillations seen in
Figs. 3(b) and 4(b) [19]. As a consequence, these oscillations
tend to vanish in a few hundreds of fs after the capture
process. Rabi oscillations in optically driven atomic systems
are the time-domain counterpart of dressed states, i.e., mixed
atom-light states which are split by the light-matter interaction.
Analogously, the phonon-assisted Rabi oscillations seen here
are the time-domain counterpart of polaronic states in systems
with discrete states such as QDs [55,56] or quantum wells in
strong magnetic fields [57].

Another difference with respect to atoms moving through a
microcavity is the presence of electron-phonon coupling terms
which are diagonal in the electron states. These terms are also
not present in the standard Jaynes-Cummings-like quantum
optics models, while in strongly confined QDs the electron-
phonon coupling of this type gives rise to pure dephasing [58].
Note finally that additional simulations revealed that these
oscillations tend to vanish for increasing size of the initial wave
packet (typically already for widths of the order of 50 nm; not
shown here). More importantly, however, the presence of these
oscillations does not alter the final value of the populations of
the bound states.

Such oscillations are not present in the LSP approach. As
is shown analytically in the Appendix, here the occupation
of the bound state rises monotonically. The absence of Rabi
oscillations is not surprising since, as described above, they
rely on the presence of correlated electron-phonon states,
which are not present in the LSP formalism working com-
pletely in the electronic subspace.

The Rabi oscillations in phase (iii) affect the spatial charge
density as well, as they induce the different amplitudes of
the transmitted wave-packet ripplings predicted by the two
approaches in Fig. 2. The reason is an enhanced transmission
probability each time the electron oscillates back to the
continuum state, which thus results in an additional peak in
the transmitted density seen, e.g., in Fig. 2 at t = 600 fs.

2. Nondiagonal vs diagonal dynamics

In previous works [45], diagonal and nondiagonal QK
density matrix treatments have been compared in terms of
the spatial profiles of the charge density. Here we exploit
the proposed LSP treatment in order to compare diagonal vs
off-diagonal contributions to df1/dt |scat; this will allow us to
better understand the origin of the locality and the value of 
t ,
i.e., the duration of phase (ii).

The dynamics of f1 may be rewritten as

df1

dt

∣∣∣∣
scat

= df1

dt

∣∣∣∣
diag.

scat

+ df1

dt

∣∣∣∣
off-d.

scat

, (14)

FIG. 5. Evolution of the off-diagonal (solid black line), diagonal
(long-dashed red curve), and total (short-dashed blue line) con-
tributions to the scattering-induced time derivative of f1, for the
same potential of Figs. 3 and 4 and z0 = −150 nm; in order to
better show the cancellations between the two terms, the diagonal
contributions are multiplied by (−1). The background shaded area
indicates the temporal window in which df1/dt |scat is bigger than
half its maximum; it has a width of 
t = 235 fs (FWHM).

where the first (second) term is obtained by considering only
the diagonal (off-diagonal) elements of the density matrices
on the right-hand side of Eq. (A1).

In order to understand why the diagonal contributions are
not able to provide the local feature of the capture mechanisms,
in Fig. 5 we plot separately the off-diagonal and diagonal
contributions, multiplying the latter by (−1) in order to
manifest the cancellations between the two. As is evident
from the long-dashed curve, the diagonal contribution to the
time derivative of f1 is finite and positive at any instant, i.e.,
independent from the fact that at a given instant the wave
packet is in the region of the QD or not. In contrast, the
off-diagonal contributions to df1/dt |scat depend strongly on
the position of the wave packet with respect to the QD; they
provide negative (positive) values when the wave packet is
far from (close to) the QD. The negative values, occurring
when the wave packet is far from the dot, are exactly the
opposite of the diagonal contributions, thus providing a net
cancellation which in turn generates a vanishing derivative
of the bound state population (see short-dashed line). It is
thus exactly this different dependence on the wave-packet
position between the diagonal and off-diagonal contributions
in Eq. (14) that gives rise to the local nature of the capture
processes. From a quantitative point of view the contributions
from the off-diagonal elements become much bigger than the
diagonal ones when the wave packet is in the region of the QD,
with the former being about one order of magnitude bigger than
the latter around t̃ = 0.

The steepest rise of the bound state occupation occurs when
the total derivative is maximal, which essentially coincides
with the time when the contribution from the off-diagonal
terms is biggest. As seen in Fig. 5, this maximum almost
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FIG. 6. Energy distribution in the continuous spectrum for the
same potential of Fig. 2 with z0 = −150 nm at (a) t = 450 fs and
(b), (c) t = 700 fs. In (a) and (b) the LSP result with the broadening
parameter ε̄ = 3.5 meV (red dashed line) is compared to the QK
result (blue dash-dotted line). In panel (c) the LSP results for three
different broadenings ε̄ = {0.5,3.5,35} meV are plotted. The solid
line in all three panels shows the initial distribution.

coincides with t̃ = 0, thus inducing the essentially symmetric
behavior in time already discussed above.

Looking at the total contribution df1/dt |scat we may finally
be more quantitative on the duration of phase (ii), i.e., of
the carrier capture process: the temporal length 
t exploited
in Eq. (13) is nothing but the FWHM of the short-dashed
line in Fig. 5. Note that the evaluation of the FWHM of
df1/dt |scat is straightforward in the LSP case because it has
only a single relative maximum, while additional arguments
or fittings would be necessary when f1 oscillates in time.

3. Role of the energy broadening

As has been seen in Figs. 2–5, the LSP approach well
describes carrier capture except for some phenomena related
to electron-phonon correlations like the phonon-assisted Rabi
oscillations, which are, however, only present for very narrow
wave packets. In the calculations a finite broadening of the CD
transitions by ε̄ = 3.5 meV has been used. In this section we
will now analyze the role of this broadening.

For this purpose, in Figs. 6(a) and 6(b) we plot the
energy distribution f (εα) = ραα/
εα

, with 
εα
being the

discretization-induced energy uncertainty around state α, of
the continuum states at two different times t = 450 fs and
t = 700 fs obtained from the LSP calculations (dashed lines)
and from the QK calculations (dash-dotted lines) for a wave

packet initially located at z0 = −150 nm. The solid line shows
the initial distribution. The first time, t = 450 fs, corresponds
to t̃ = 8.5 fs, i.e., essentially to the time when the maximum
of the wave packet is at the QD center; the second time,
t = 700 fs, corresponds to t̃ = 258.5 fs, i.e., to a time when the
wave packet has passed the QD region and the capture process
is almost completed.

In the LSP calculations we see a sharp cutoff at the
LO phonon energy of 36.4 meV showing that essentially
all carriers above this threshold have emitted a phonon.
Furthermore, at the energy E0 = ε1 + ELO = 22 meV there
is a pronounced dip in the distribution caused by the missing
carriers which have been captured. The width of this dip
reflects the broadening of the transitions by ε̄ = 3.5 meV.
Also in the QK calculations the states above the LO phonon
energy are essentially depopulated due to the strong scattering
efficiency. However, the threshold is less pronounced, in
particular at t = 450 fs when energy-time uncertainty still
plays an important role. At this time there is also no dip due
to the captured electrons visible. In contrast, at t = 700 fs
the threshold behavior builds up and we observe a clear dip
around E0. While in the LSP approach the broadening has been
introduced as a parameter, in the QK approach it is a result
of the quantum dynamics. Here it remains at a finite value
because the capture process has only a limited time window
associated with the passage of the wave packet through the QD
region. The broadening seen here motivated us to the use of
the parameter ε̄ = 3.5 meV in the LSP calculations, because
indeed the widths of the dips in the distribution are very similar
in both approaches.

As can be seen in Figs. 6(a) and 6(b), the QK approach
displays some negativities in the electron distributions, in
particular close to the threshold, which are clearly unphysical.
The possibility to obtain such negativities is a consequence
of the truncation of the hierarchy in the QK treatment [59];
they typically vanish if the truncation is performed at a higher
order of the hierarchy [60] which, however, in many systems
is prohibited by the high numerical effort. Nevertheless, the
magnitude of the negativities should be kept under control, as
bigger values often quickly lead to strong instabilities. In the
present calculations we are still far from such instabilities, as
is evident from the fact that the negativities at t = 700 fs are
even less pronounced than at t = 450 fs.

On the other hand, the symmetric structure of the LSP
superoperator is able to guarantee a positive evolution also
for arbitrary high interaction magnitude [46]. Interestingly,
the proposed approach is Lindblad already at the lowest
approximation level, i.e., uncorrelated phononic and electronic
subspaces, with the former taken as thermalized and the latter
treated within the mean field approximation [46]. Thanks to
this, the LSP approach offers a versatile and extremely light
alternative to QK for those situations in which the phonon
dynamics or the electron-phonon correlations may be disre-
garded. Note that the proposed approach is computationally
light both in terms of memory requirements, as it does not
require the storage of the phonon-assisted density matrices
(necessary on the other hand in QK), and in terms of simulation
time, which for all the results here reported is of the order
of very few minutes for every simulation ran on a common
desktop PC. These computational performances suggest that
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the LSP approach will be able to describe the carrier capture
also in higher-dimensional systems. Note that the original
Lindblad approach has already been applied to CC transitions
between fully three-dimensional states [52].

To get more insight into the role of the broadening in the
LSP calculations, in Fig. 6(c) we plot the energy distribution at
t = 700 fs for three different values of ε̄ = {0.5,3.5,35} meV.
All other parameters are the same as in Figs. 6(a) and 6(b).
When ε̄ = 0.5 meV, the broadening of the dip has a width
of a few meV. For ε̄ = 3.5 meV the width is about 10 meV.
Finally, for ε̄ = 35 meV the broadening is so large that the
capture occurs from all states leading to a reduced distribution
over the whole energy range. Obviously, the calculations with
ε̄ = 3.5 meV exhibit the best agreement with the QK model.

In addition to the agreement with the QK calculations there
is another clear argument against the use of very narrow, or in
the limit delta-like, rates like in FGR for the CD transitions.
This can be seen in Fig. 4(c), where we plot the occupation of
the bound state as a function of time in the LSP approach
for the same four initial positions z0 as in Figs. 4(a) and
4(b), however for the very small broadening of ε̄ = 0.5 meV.
Interestingly, the occupation starts to grow already from the
beginning, long before the wave packet has reached the QD
region. A very small broadening thus also violates the locality
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FIG. 7. Evolution of the spatial charge density n in the presence
of a strongly reflecting square well potential (shown in the two
identical bottom panels) for a traveling wave packet initially located
in z0 = −90 nm as predicted by the LSP [solid lines in panel (a)] and
QK approach [solid lines in panel (b)]. The scattering-free evolution
(dashed lines) is identical in both panels.

of the capture process, much like the neglect of off-diagonal
terms in the density matrix. In addition, the final value of
the bound state occupation is much less than in the QK case
and the LSP case with ε̄ = 3.5 meV. This can be understood
from Fig. 6(c), which shows that the energy distribution is
completely depopulated at the resonance energy for capture
processes. However, because of the very small broadening
there are no more electrons available to be captured in the
bound state, in contrast to the case of larger broadenings when
more electrons are available for the capture process.

B. Two bound states in a strongly reflecting potential

In this part we consider the case of a strongly reflecting
potential with two bound states, namely a square well potential
with depth of −25 meV and a width of 30 nm, which has
two bound states with energy ε1 = −21.4 meV (thus we take
E0 = 15 meV) and ε2 = −11.2 meV. The initial position of
the traveling wave packet is z0 = −90 nm.

In Fig. 7 we plot the evolution of the spatial electron density
[see Eq. (9)], showing the LSP and QK predictions side by side;
the (same) potential profile is reported in the bottom panels,
while a gray background in correspondence to the QD has been
added as a guide to the eye. The first important characteristic is
the shape of the scattering-free distribution, i.e., the (identical)
dashed lines; due to the strongly reflecting nature of the
potential, the wave packet splits between a transmitted and
a reflected component already in the absence of scattering
mechanisms. As a consequence, a fraction of the charge does
not enter into the QD region. The transmitted wave packet has
a kinetic energy Ẽ of around 20 meV [as could be inferred
from the peak position on the right-hand side of the QD in
phase (iii)]; i.e., it is bigger than E0. As will be clearer after
discussing Figs. 9 and 10 below, phase (ii) is centered around
a time t0 ≈ 275.5 fs ≈ |z0|/vẼ < |z0|/vE0 (see also Sec. III A
for comparison). The reflected component is created at the
end of phase (i) and survives for all the remaining evolution.
Already at t = 200 fs we may notice the presence of three
peaks on the left-hand side of the QD (centered respectively
at z = −23 nm, −37 nm, and −50 nm) moving in the left
direction with different velocities (at t = 600 fs they are
centered at z = −41 nm, −79 nm, and −117 nm, respectively).
Both approaches predict that the reflected charge is almost
unaffected by scattering mechanisms, especially in phase (iii).

Except for its mean velocity without scattering, the behavior
of the transmitted wave packet is qualitatively similar to the
one of Sec. III A: both approaches predict once again that
the carrier capture induces some spatial ripplings, which are
not present in a scattering-free evolution. The QK approach
predicts bigger amplitudes than the LSP treatment for these
oscillations, and the reason lies again in the phonon-assisted
Rabi oscillations. However, from a quantitative point of view
we notice that the height of the transmitted peak is particularly
small. Compared to the case of Sec. III A, this smaller
transmitted peak is due to several reasons, such as more
captured charge (as there are more available bound states)
and less charge entering the QD (due to the reflection).

Concerning the charge within the QD, both approaches
predict that it gets captured in phase (ii), i.e., when the
nonreflected component of the wave packet crosses the QD
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(see also Figs. 9 and 10 below). In contrast to Sec. III A, here
the charge inside the QD shows an oscillating behavior in
time. The time scales for these oscillations predicted by the
two approaches are very similar; as an example, Fig. 7 shows
that the left peak becomes the biggest one at around 500 fs
according to both predictions. The oscillations of the captured
charge density are a genuine quantum mechanical effect
induced by the (scattering-induced) correlations between the
bound states.

To study the dynamics of the captured carriers we introduce
the charge density nQD provided by the bound states

nQD =
2∑

i,i ′=1

ρii ′ψi(z)ψ∗
i ′ (z). (15)

Except for the transient contributions of the traveling wave
packet, nQD mostly coincides with the full charge distribution
n within the QD. In order to better understand the oscillatory
behavior, we split this density into two parts according to

nQD = nf + np, (16)

where

nf = f1|ψ1(z)|2 + f2|ψ2(z)|2 (17)

is the charge given by the populations of the bound states,
while

np = 2Re[ρ12ψ1(z)ψ∗
2 (z)] (18)

(Re denoting the real part) is the charge contribution given by
the polarization p = ρ12 describing the coherence between the
two bound states.

FIG. 8. Evolution of nf (first panel), np (second panel), and of
their sum nQD (third panel) as predicted by the LSP approach for the
same case as in Fig. 7. In the fourth panel we report the spatial profile
of |ψi(z)|2 for the two bound states, i = 1,2.

In Fig. 8 we plot nf, np, and nQD as a function of time t and
position z in three different panels. Concerning the diagonal
contribution nf, we see the appearance of two peaks close to
the two maxima of |ψ2(z)|2; despite the fact that |ψ1(z)|2 has
one only peak and that state 1 is more populated than state 2,
nf has two peaks. Due to the even nature of both |ψ1(z)|2 and
|ψ2(z)|2, the spatial distribution nf is completely symmetric
at any time and stationary after the capture, in contrast to the
electronic density n within the QD region of Fig. 7. Since being
proportional to the product of one even and one odd bound state
wave function, np is in turn spatially antisymmetric at any time.
The temporal dependency of np is all included in ρ12, thus
leading to the oscillating behavior with frequency (ε2 − ε1)/h̄
provided by the scattering-free evolution of ρ. Both nf and
np have a well defined spatial symmetry, in contrast to the
electronic distribution n within the QD area shown in Fig. 7.
The discrepancy disappears in nQD, where, as expected, we
recognize the spatiotemporal features of n for small |z|. At
around t = 150 fs we distinguish the appearance of a charge
peak around z ≈ −8 nm; the latter then moves to the right
(following the traveling wave packet) up to around 400 fs,
where it is centered at z ≈ 8 nm. Below we will identify 150 fs
and 400 fs as the edges of phase (ii); see Figs. 9 and 10. A very
similar behavior is seen in the total captured charge within
the QD in Fig. 7; in fact, once the transmitted wave packet
leaves the QD, the spatial charge distribution in the latter is
essentially given by nQD. At times slightly bigger than 400 fs
we are at the beginning of phase (iii) (see also Figs. 9 and 10
below); the traveling wave packet leaves the QD, while nQD

gets reflected due to the interplay between nf and np. As an
example, we examine this interplay looking at what happens
at t ≈ 600 fs, when the peak of nQD is again within the left
half of the QD. This happens because on the right half of
the QD there is a strong cancellation between nf and np; in
contrast, in the left half of the dot the two contributions have
the same sign, thus creating a nQD higher than the one of
nf.

Somewhat similarly to what has been seen in Sec. III A 2,
we thus conclude that the local (oscillating) behavior of the
carrier capture within the QD is given by a proper interplay
and cancellation between the diagonal and off-diagonal con-
tributions (in this case to nQD, i.e., nf and np, respectively).
However, np affects the spatiotemporal dynamics of the
captured charge, but not its total magnitude; in fact, it is known
that the spatial integral of the off-diagonal contributions to the
density matrix vanishes (even in the presence of more bound
states), thus not affecting the total charge brought by nQD,

∫
dz np = 0 →

∫
dz nQD =

∫
dz nf. (19)

As a consequence, the interstate correlations may shift the
charge from point to point, without however modifying the net
amount of total charge.

In order to catch this extremely interesting oscillating
behavior, it is necessary to predict accurately not only the
absolute value of ρ12, but also its complex phase. Since both
the LSP and QK approach agree in describing the oscillating
evolution of the charge within the QD, it is not surprising
that the two approaches predict a very similar phase of
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FIG. 9. Evolution of the real part (solid black line), imaginary part
(dashed red line), and modulus (dotted blue line) of the polarization
ρ12 between the only two bound states for the same case as in
Figs. 7 and 8 as predicted by the (a) LSP and (b) QK approach.
The background shaded area indicates phase (ii).

ρ12. This is shown in Fig. 9 where, as in Sec. III A, we
add a shaded background area indicating phase (ii), which
here is described through the interval It = [t0 − 
t/2,t0 +

t/2], where t0 = 275.5 fs is the time in which df1/dt |scat
(evaluated by the LSP approach and not plotted for the sake
of shortness) is maximal, while 
t = 276 fs is the FWHM of
df1/dt |scat.

In addition to the matching in terms of complex rotational
phase, in Fig. 9 we observe a similar magnitude |ρ12|, which
is negligible in phase (i), increases in phase (ii), and finally
stabilizes in phase (iii). Interestingly, in phase (ii) the increase
of |ρ12| predicted by QK is monotonic, similarly to what
happens for the population f1 in Sec. III A.

Figure 9 then shows that the period of the oscillations agrees
with the Bohr period given by the energy separation between
the two states [19], i.e., 2πh̄/(ε2 − ε1). Both the off-diagonal
elements shown in Fig. 9 and the spatial oscillations of the
captured charge shown in Figs. 7 and 8 thus demonstrate
that after the capture process the carriers are in a coherent
superposition of the bound states. As a consequence, neither of
the two characteristics would be present in a diagonal density
matrix approach.

Finally, in Fig. 10 we report the evolution of the population
of the bound states. Once again, the evolution of f1 in phase (ii)
(i.e., t ∈ It ) predicted by QK is asymmetric with respect to t0,
although once again it reaches the stationary values at the end
of phase (ii) and the Rabi oscillations of f1 start only in phase
(iii). Both approaches predict that the evolution of f2 stops
earlier than the end of phase (ii). This is due to the two peaks
present in |ψ2(z)|2; when the wave packet reaches the second
one, it has already given to state 2 most of its energetically
favorable charge while crossing the first one, and thus the
carrier capture into state 2 is less efficient for times bigger

FIG. 10. Evolution of the normalized populations of the bound
states f1 (dashed red line) and f2 (dash-dotted blue line) as well as of
their sum f1 + f2 (solid black line) as predicted by the (a) LSP and
(b) QK approach for the same case as in Figs. 7–9. The background
shaded area indicates phase (ii).

than t0. As in Sec. III A, also here we find a good agreement
between the LSP and QK approach.

IV. SUMMARY AND CONCLUSIONS

We have presented a single-particle density matrix approach
which, due to its Lindblad-type nature, can describe the
spatiotemporal quantum dynamics of carrier capture processes
also in more complicated systems. The LSP approach is
fully nondiagonal, thus able to describe the locality of
the capture process, but also closed in the density ma-
trix and positive-definite, thus stable and computationally
light. The proposed approach is obtained by tailoring a
recently introduced Lindblad-based equation to the specific
case of carrier capture processes, in particular including
the broadened energy selection rules shown by the QK
studies.

By comparing the predictions provided by the LSP and
QK approaches, we have identified the role played by various
interstate correlations in carrier capture processes. Most of the
essential features of the spatiotemporal quantum dynamics of
the carrier capture provided by the LSP and QK treatment are
comparable: This is the case for the locality of the interaction
(see, e.g., Fig. 4), the magnitude of the captured populations
(see Figs. 3 and 10), the magnitude of inter-bound-states
correlations (see Fig. 9), and the spatial evolution (see Figs. 2
and 7). In particular, the very good similarity between the
two predicted quantum coherences between bound states
represents a clear fingerprint of the quantum nature of the
approaches, which in turn has a big impact also in terms of the
dynamics of the spatial charge density (see the oscillations of
the captured charge in Figs. 7 and 8).
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In addition to these large similarities, two differences have
also been shown. The first one is a differently distributed
efficiency within the interaction time window; in particular,
the evolution predicted by the LSP approach is symmetric
around the time in which the center of the wave packet reaches
the center of the QD, a symmetry stemming from the fully
time-symmetric derivation of the many-body superoperator
[47]. The QK approach exhibits a retardation related to its
non-Markovian nature. The second difference is the absence,
shown also analytically, of the oscillations of the bound
states population after the passage of the wave packet by
the QD in the LSP treatment: these phonon-assisted Rabi
oscillations, which tend to vanish in a few hundreds of fs after
the capture process, stem from electron-phonon correlations
[19], which are included in the QK treatment but not in the
LSP approach (and more in general in most of the Markov
approaches).

In summary, semiclassical treatments are the fastest ones
for predicting the captured charge from homogeneous dis-
tributions, while QK approaches offer the possibility to
study the spatiotemporal dynamics including also electron-
phonon correlations and phonon dynamics. The proposed
LSP approach offers an intermediate solution for studying
the spatiotemporal quantum dynamics of the electronic wave
packets also in more complicated schemes. Thanks to its
stable and computationally much less demanding nature, it
is extendible to higher-dimensional systems, to longer times,
and to phenomena involving different interaction mechanisms.
In particular, strain-induced QDs [30–33] could give rise
to interesting applications where, thanks to the possibility
of a dynamical strain engineering of the shape of the QD,
they could lead to dynamical modifications of the shape
of the wave packet, a key ingredient in a quantum infor-
mation protocol based on the electronic charge degree of
freedom.
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APPENDIX: LINDBLAD APPROACH TO CARRIER
CAPTURE

In this appendix we explicitly write the form of the
LSP superoperator and show that it always provides a
monotonic rise of the bound states population. The starting
point is the previously reported [46] nonlinear single-particle
superoperator, which for the specific case of electron-phonon
scattering and in the low-density regime, i.e., |ραα′ | � 1,
may be rewritten omitting the generalized Pauli factors [i.e.,
(δαα′ − ραα′ ) ≈ δαα′ ] as

dραα′

dt

∣∣∣∣
scat

= 1

2

∑
ᾱᾱ′,s

(
P s

αα′ᾱᾱ′ρᾱᾱ′ −P s∗
ᾱᾱαᾱ′ρᾱ′α′

) + H.c. (A1)

In principle s = (ξ,q,±) could label a generic scattering
mechanisms, but in this paper we focus on LO phonon coupling
in the T = 0 K limit in GaAs QWRs, i.e., s = (LO,q,+) ≡ q.
The generalized scattering rates Ps ≡ Pq may thus be written

as

Pq
αα′ᾱᾱ′ = A

q
αᾱA

q∗
α′ᾱ′ , (A2)

with

A
q
αᾱ =

√
2π

h̄
g

q
αᾱ

e−( εα−εᾱ+ELO
2ε̄

)2

(2πε̄2)
1
4

, (A3)

where the energetic broadening parameter ε̄ is given by (see
discussion in Sec. II)

ε̄ →
{

0, CC, min(α,ᾱ) > nB,

ε̄ = 0, CD, max(α,ᾱ) > nB � min(α,ᾱ), (A4)

with g
q
αᾱ ≡ g

LOq+
αᾱ and nB denoting the number of bound states.

Note that in this work we have considered a QD with energetic
separations between localized states strongly different from
ELO; as a consequence, we have disregarded all DD transitions
(i.e., scattering mechanisms between bound states). In general,
quasibound states may lead to polaronic contributions [61];
however, in this work we focus only on transitions between
clearly delocalized states (e.g., energies bigger than 10 meV)
and deeply bound states (e.g., energies smaller than −10 meV),
which then allows us to neglect similar polaronic contributions
in first approximation. The set of the Eqs. (A1), (A2), (A3),
and (A4) constitutes the LSP approach that we have used.

We now also prove analytically that the LSP approach
always provides monotonic evolutions of the bound state
populations; for this purpose we focus on the lowest bound
state |1〉, i.e., ε1 < εα for all α = 1, and we rewrite its
scattering-induced time derivative provided by Eq. (A1) as

df1

dt

∣∣∣∣
scat

= 1

2

∑
ᾱᾱ′,q

(
Pq

11ᾱᾱ′ρᾱᾱ′ − Pq∗
ᾱᾱ1ᾱ′ρᾱ′1

) + H.c. (A5)

Recalling Eqs. (A3) and (A2), we note that the generalized
rates entering the second term in the sum of Eq. (A5) are
proportional to Gaussian functions in energy which provide
negligible contributions; in fact,

Pq∗
ᾱᾱ1ᾱ′ ∝ A

q
ᾱᾱ′g

q∗
ᾱ1e

−( εᾱ−ε1+ELO
2ε̄

)2

� A
q
ᾱᾱ′g

q∗
ᾱ1e

−( ELO
2ε̄

)2 ≈ 0, (A6)

where in the first inequality we used that ε1 � εᾱ by definition,
while in the last approximation we used ELO � ε̄. Inserting
Eq. (A6) into Eq. (A5), the latter reduces to

df1

dt

∣∣∣∣
scat

=
∑
ᾱᾱ′,q

Pq
11ᾱᾱ′ρᾱᾱ′

=
∑
λ,q

f̃λ

∣∣Gq
1λ

∣∣2 � 0, (A7)

where |λ〉 are the eigenstates of ρ̂ with eigenvalues f̃λ ∈ [0,1],
i.e., ρ̂|λ〉 = f̃λ|λ〉, and G

q
1λ = ∑

ᾱ A
q
1ᾱUᾱλ, with Uᾱλ = 〈ᾱ|λ〉.

Although strictly valid for the deepest bound state, the proof
can easily be extended to all the bound states when the DD
transitions are of minor importance, as is the case in this work.
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