
PHYSICAL REVIEW B 95, 165141 (2017)

Deformation-induced spin-orbit interaction in the Hubbard chain
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The effect of the electron-electron coupling of the Hubbard type on the one-dimensional electron system
with the spin-orbit interaction (SOI), caused by the deformation of the elastic subsystem, is studied. As a rule,
the electron-electron repulsion suppresses the deformation-induced SOI. In particular, at half-filling there is no
lattice-induced SOI for the repulsive Hubbard chain. The attraction between electrons, instead, mostly enhances
the deformation-induced SOI. The effect of the external magnetic field on such a SOI, caused by the deformation
of the lattice, is considered.
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In recent years, systems where the spin-orbit interaction
(SOI) plays a crucial role in low-dimensional electron systems,
such as edge or surface states of topological insulators [1] or
semiconductor nanowires [2], have attracted the attention of
researchers. The SOI manifests itself as the effect of an external
or internal electric field on a moving charged particle with spin.
It is of special importance in spintronics [3] where the spin of
electrons in electronic devices is manipulated and detected.
In low dimensions, the semiconductor device structure may
give rise to an internal electric field, and hence a SOI [4] of
the Rashba or Dresselhaus type [5]. In one space dimension
the effects of electron-electron interactions are very important
because they can strongly change the properties of the system.
For example, the Hubbard repulsion can cause a gap for charge
excitations in the half-filled electron band (the Mott gap).
Recently several quasi-one-dimensional correlated electron
systems in which both the SOI and the Hubbard interaction
play a crucial role, have been synthesized and studied, see, e.g.,
Ref. [6]. This is why it is important to investigate the effects
of the SOI together with the interactions between electrons.

Among other low-dimensional electron systems, the ones
where the SOI is connected with the properties of the lattice
(e.g., the quantum spin Hall effect with the strain-induced
SOI [7,8]) recently became a topic of intensive studies. For
example, the SOI plays a major role in mechanically controlled
spin transport [9]. The action of the shear components of the
strain are equivalent to the action of the electric field [7,10],
thus producing the SOI. The lattice-induced SOI can reveal
itself in semiconductor systems [4,7], nanostructures [11], and
ultracold atomic systems [12].

In the present paper the spontaneous onset of the SOI
due to the coupling of one-dimensional electrons with the
elastic subsystem is studied for the interacting electrons.
The electron-electron interaction is considered in the on-site
Hubbard form. Utilizing the exact Bethe ansatz solution we
have shown that the Hubbard repulsion (attraction) between
electrons can drastically change the deformation-induced SOI
in the considered model. We have shown that the repulsion
between electrons mostly reduces the lattice-induced SOI.
For example, for the half-filled band the large repulsion
between electrons destroys the lattice-induced SOI. Instead,
the attraction can enhance the deformation-induced SOI. The

influence of the external magnetic field directed along the
SOI-distinguished direction has been studied.

To start with we study the behavior of electrons with the SOI
on a one-dimensional lattice (for definiteness we consider the
ring or the wire on the xy plane, hence only the z component
of the spin enters the Hamiltonian),

H0 = −
∑
jσ

[t ′(ψ†
j+1,σ ψj,σ + ψ

†
j,σ ψj+1,σ )

+ iασ (ψ†
j+1,σ ψj,σ − ψ

†
j,σ ψj+1,σ ) + μnj,σ ], (1)

where ψ
†
j,σ creates an electron at site j with spin projection

σ, t ′ is the hopping integral (related to the effective mass of
electrons), α is the SOI parameter, caused by the deformation
of the lattice, and μ is the chemical potential. The first two
terms of the Hamiltonian can be combined into an effective
complex hopping parameter [13],

H0 = −
∑
jσ

[tψ†
j+1,σ ψj,σ ei2πσϕ + H.c.], (2)

where t ′ + iασ = t exp(i2πσϕ) (we denote t =√
t ′2 + α2/4) and the phase factor ϕ = (1/π ) arctan(α/2t ′) is

caused by the SOI. A gauge transformation removes the phase
factor from the Hamiltonian for the open chain or transfers it
into a spin-dependent twisted boundary condition for the ring.
Note that this gauge transformation can also be performed
for the Hubbard chain with the SOI. The corresponding
Hamiltonian reads H = H0 + Hint, where

Hint = U
∑

j

nj,↑nj,↓ (3)

represents the on-site interaction between electrons of
strength U and nj,σ ≡ ψ

†
j,σψj,σ .

Our goal is to find the equilibrium value of the deformation-
induced parameter of the spin-orbit coupling. To find it, we
consider the balance between the gain of the energy of the
electron subsystem modeled by the Hubbard chain due to the
deformation-induced SOI E = Le, and the loss of the energy
of the elastic subsystem due to that deformation, taken in the
simplest approximation, caused by the nonzero deformation
LAδ2/2 where the parameter A is related to the off-diagonal
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(shear) components of the elastic modulus. Suppose for
the deformation-induced SOI we have α = f δ, where f is
the renormalization constant, related to the electron-lattice
coupling (the gradient of the strain). Then in the equilibrium
we have Aδ + ∂e/∂δ = 0, which is the condition for the
equilibrium value of δ = δs . The deformation-induced SOI in
the equilibrium state is αs = f δs . Obviously for leading order
in 1/L we have (∂e/∂δ) = (∂e/∂t)(f 2δ/4t). Then there can
exist the trivial solution δs = 0, which describes the absence of
the deformation-induced SOI, and nonzero solution(s) (which
show the possibility of the spontaneous onset of the SOI due
to the electron-lattice coupling), of the equation,

4At

f 2
+ ∂e

∂t
= 0. (4)

The solutions depend on the values of A, f , on the hopping
integral t ′, the Hubbard constant U , on the values of the
chemical potential μ, the magnetic-field H (or the number of
electrons and their magnetic moments), and the temperature.
Summarizing, the deformation of the elastic subsystem can
cause the SOI in the one-dimensional correlated electron
system. To find the energy of the Hubbard chain we utilize
the exact solution, see, e.g., Ref. [14].

The Hamiltonian H is diagonalized by Bethe’s ansatz in
terms of two sets of parameters {kj } and {	β}, called rapidities,
which satisfy the following Bethe ansatz equations [15,16] (the
Bethe ansatz for the Hubbard model with twisted boundary
conditions was introduced in Refs. [17,18]; the twist in the
spin sector was first introduced in Ref. [17]):

exp(ikjL + iπϕ) =
M∏

β=1

sin(kj ) − 	β − iu

sin(kj ) − 	β + iu
,

N∏
j=1

	β − sin(kj ) − iu

	β − sin(kj ) + iu

= −ei2πϕ

M∏
γ=1

	β − 	γ − i2u

	β − 	γ + i2u
. (5)

Here u ≡ U/4t, L is the number of sites in the chain, N is
the number of electrons, and M is the number of spin-down
electrons. From now on we consider the most important sector
with 0 � N � L and M � N/2. The generalization for other
sectors can be performed straightforwardly. The energy of the
eigenstate can be expressed as the function of rapidities as

E = −2t

N∑
j=1

cos(kj ). (6)

Note that the Bethe ansatz solution can be obtained only
if the external magnetic field is aligned with the axis of
the SOI [15]. For other directions of the magnetic field,
the SOI together with the magnetic field destroy the exact
integrability and cause a gap for low-energy states, which then
yields an exponential dependence of the correlation functions.
Equation (5) is written for the ring geometry. For the open
chain it has similar structures with standing waves instead
of plane waves for the ring, however the SOI-caused phase
factor is trivially removed by a gauge transformation. Also, it

is known that for the periodic boundary conditions the phase
factors reveal themselves in the finite-size corrections (on the
order of 1/L) [14–16]. We do not consider those corrections
in this paper.

First we concern ourselves with the ground state. Let us
first concentrate on the ground-state behavior of the repulsive
U > 0 Hubbard chain with the deformation-induced SOI. For
leading order in 1/L (in the thermodynamic limit L,N,M →
∞ with the ratios n = N/L and m = M/L fixed) the ground
state of the repulsive Hubbard chain is described by the set
of integral equations for the densities of rapidities or for
the dressed energies of low-energy states, related to those
rapidities [14]. In general for the values of 0 � n � 1 and
m � n/2 the ground state is organized by the filling of two
Fermi seas for unbound electron states with real rapidities
kN
j=1 (such unbound electrons carry charges −e and spins

1/2) and spinons with the rapidities λM
β=1 (spinons carry

zero charges and spin 1/2). Let us denote by ρ(k) [ε(k)]
the density of rapidities (the dressed energies) for unbound
electron states and by σ (λ) [φ(λ)] the density of rapidities (the
dressed energies) for spinons. Then the ground-state behavior
is described by the solution of the second-order Fredholm
integral equations for densities [19],

ρ(k) = 1

2π
+ cos(k)

∫ Q

−Q

dλ a1[sin(k) − λ]σ (λ),

σ (λ) =
∫ B

−B

dk a1[sin(k) − λ]ρ(k)

−
∫ Q

−Q

dλ′a2(λ′ − λ)σ (λ′), (7)

where aj (x) = ju/{π [x2 + (ju)2]}. The limits of integration
B and Q are fixed via the conditions,∫ B

−B

dk ρ(k) = n,

(8)∫ Q

−Q

dλ σ (λ) = m ≡ n

2
− Mz,

where Mz is the magnetic moment per site. The dressed
energies are determined from the following set of integral
equations:

ε(k) = −2t cos(k) − μ − (H/2)

−
∫ Q

−Q

dλ a1[sin(k) − λ]φ(λ),

ψ(	) = H +
∫ B

−B

dk cos(k)a1[sin(k) − λ]ε(k)

−
∫ Q

−Q

dλ′a2(λ′ − λ)φ(λ′). (9)

The limits of integration are related to the values of the chem-
ical potential and the magnetic field, μ and H via ε(±B) = 0
and φ(±Q) = 0. It is often useful to determine Fermi velocities
for unbound electron states and spinons. They can be written
as vc = ε′(B)/2πρ(B) and vs = φ′(Q)/2πσ (Q) where primes
denote the derivatives with respect to k and λ, respectively. The
number of electrons in the framework of the grand canonical
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ensemble can be controlled by the chemical potential μ. On the
other hand, for the canonical ensemble, states are determined
by the number (density) of particles n. The ground-state energy
per site can be written as

e0 = −
∫ B

−B

dk ρ(k)

(
μ + H

2
+ 2t cos(k)

)

+H

∫ Q

−Q

dλ σ (λ) = 1

2π

∫ B

−B

dk ε(k). (10)

We are in position now to look for the value of the spontaneous
onset of the deformation-induced SOI in the repulsive Hubbard
chain.

For U = 0 (the noninteracting case) the Bethe ansatz equa-
tions describe periodic boundary conditions for free electrons.
Formally, from the viewpoint of the written above integral
equations, it corresponds to the case of limu→0 aj (x) → δ(x)
with trivial solutions. Notice, however, that in the weak-
coupling limit u � 1 for sin(B) < Q, the solutions are
discontinuous. Hence, in the noninteracting case one needs to
solve integral equations first and only then take the limit U →
0. It yields ρ(k) = π−1 and ε(k) = −2μ − 2t cos k for 0 �
|k| � arcsin(Q), ρ(k) = (2π )−1 and ε(k) = −μ − (H/2) −
2t cos(k) for |k| > arcsin(Q), σ (λ) = [2π cos(arcsin λ)]−1

and φ(k) = −μ − (H/2) − 2t cos(k) for 0 � |λ| � sin B,
and σ (Q) = 0 and φ(λ) = H otherwise. It follows that
n = π−1B + m and m = π−1 arcsin λ0, i.e., B = kF,↑ and
arcsin Q = kF,↓. The ground-state energy per site is well
known e0 = −(2t/π )X, where

X =
∑
±

{sin[π (n ± 2Mz)]

−π (n ± 2Mz) cos[π (n ± 2Mz)]}. (11)

It is easy to obtain the nonzero equilibrium value for the SOI,
caused by the deformation in the noninteracting electron chain,

αs =
√

f 4X2

π2A2
− 4(t ′)2. (12)

The formula obviously makes sense for the non-negative
expression under the square root |X| > 2πAt ′/f 2. It is easy
to check that this configuration has lower energy than the
energy of the configuration with αs = 0. For the empty band
n = Mz = 0 there is no deformation-induced SOI. In the grand
canonical ensemble analytic results can be presented too,
e.g., for zero magnetic-field H = 0. In that case the nonzero
equilibrium value of the SOI is

αs =
√

y

2π2A2
− 4(t ′)2. (13)

where y = 4(f 4 ±
√

f 4 − 4π2A2μ2). Also, such an expres-
sion is valid only for μ � |f 2/2πA|.

Let us turn to the case that is more important to us U 	= 0.
In several limiting cases we can obtain analytic results.

Consider the situation of zero magnetic-field H = 0 in
which Mz = 0. This case is related to Q = ∞. Then the
ground state of the Hubbard chain with repulsion is described

by the following integral equations:

ρ(k) = 1

2π
+ cos(k)

2π

∫ B

−B

dk′K[sin(k) − sin(k′)]ρ(k′),

ε(k) = −μ − 2t cos(k)

+ 1

2π

∫ B

−B

dk′ cos(k′)K[sin(k) − sin(k′)]ε(k′),

(14)

where the kernel is given by

K(x) =
∫ ∞

0
dω cos(ωx)

2

1 + exp(−2uω)
. (15)

At the half-band filling n = 1 we have B = π , and since
the number of electrons is fixed, the chemical potential can
be chosen to be zero μ = 0. The charge excitations (unbound
electron states) are gapped. The contribution from spinons is
equivalent to the one of the spin-1/2 isotropic Heisenberg
chain with the antiferromagnetic interaction. The behavior of
spinons in this case can be described via the solution of the
following integral equations:

σ (λ) =
∫ π

−π

dk a1[sin(k) − λ]

− 1

2π

∫ Q

−Q

dλ a2(λ − λ′)σ (λ′),

φ(λ) = H − t

∫ π

−π

dk cos2(k)a1[sin(k) − λ]

−
∫ Q

−Q

dλ′a2(λ − λ′)φ(λ′). (16)

The density and the dressed energy of the unbound electron
states can be written as

ρ(k) = 1

2π
+ cos(k)

∫ Q

−Q

dλ a1[sin(k) − λ]σ (λ),

ε(k) = −H

2
− 2t cos(k) +

∫ Q

−Q

dλ a1[sin(k) − λ]φ(λ). (17)

The density of the ground-state energy for the half-filled
band is

e0h = −U

2
− 4t

∫ ∞

0
dω

J0(ω)J1(ω)

ω[1 + exp(2uω)]
, (18)

where Jn(x) are the Bessel functions.
For the small Hubbard repulsion u � 1 in zero magnetic-

field H = 0 one gets [20]

e0 ≈ −4t

π
− U

4
− 7ζ (3)U 2

16π3t
+ · · · , (19)

where ζ (3) ≈ 1.20 is the Riemann ζ function. It implies the
equilibrium value of the deformation-induced SOI,

αs =
√

f 4

π2A2
− 4(t ′)2. (20)

It means that the weak Hubbard coupling in the main approxi-
mation yields a similar value of the equilibrium lattice-induced
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SOI as in the noninteracting case. Analyzing other terms we
obtain

αs =
√

f 4y2
1

π2A2
− 4(t ′)2, (21)

where y1 ≈ 1 − 7ζ (3)A2U 2/64f 4. We can conclude that the
small Hubbard repulsion suppresses the deformation-induced
SOI.

On the other hand, for the large Hubbard repulsion u �
1 the ground state is described by the following integral
equations:

σ (λ) = na1(λ)u=1 −
∫ Q/u

−Q/u

dλ′a2(λ − λ′)u=1σ (λ′),

φ(λ) = H − πHsa1(λ)u=1

−
∫ Q/u

−Q/u

dλ′a2(λ − λ′)u=1φ(λ′), (22)

where for the large u we have Hs ≈ (t/πu)[2πn − sin(2πn)].
The density and the dressed energy of unbound electron states
can be written as (k � B)

ρ(k) = 1

2π
+ cos(k)

u

∫ Q/u

−Q/u

dλ a1(λ)u=1σ (λ),

(23)
ε(k) = −2t[cos(k) − cos(B)].

The ground-state energy per site in this case is equal to

e0 = −2t

π
[sin(B) − 2B cos(B)], (24)

where B is determined from the equation,

n = B

π
+ 2 sin(B)

u

∫ Q/u

−Q/u

a1(λ)u=1σ (λ). (25)

Finally we get for the ground-state energy at the half-filling
for u � 1 [21],

e0 ≈ −U

2
− 4t2 ln 2

U
− [6ζ (3)t4]

U 3
+ · · · . (26)

For leading order in the u−1 approximation, it yields αs = 0,
i.e., at the half-filling in the zero magnetic field the large
Hubbard repulsion destroys the lattice-induced SOI in the
chain.

Now let us turn to the situation with almost half-band filling
n ∼ 1. In this case the ground-state energy can be written as

e0 = e0h − tC1(1 − n) − tC2(1 − n)3

3
+ · · · , (27)

where

C1 = 2 − 2u − 4
∫ ∞

0
dω

J1(ω)

ω[1 + exp(2uω)]
, (28)

and

C2 = 1

4π2

(
1 −

∫ ∞

0
dω

J0(ω)

[1 + exp(2uω)]

)

×
(

1 − 2
∫ ∞

0
dω

ωJ1(ω)

[1 + exp(2uω)]

)
. (29)

Considering the leading in the (1 − n) approximation we
can see that the deviation from the half-filling of the band
enhances the equilibrium deformation of the lattice and,
thus, the lattice-induced SOI in the repulsive Hubbard chain,
comparing to the half-filled band. In the framework of
the grand canonical ensemble it is useful to connect the
density of electrons with the number of electrons, yielding
1 − n ≈ √

C1t − μ/
√

C2t .
In the opposite case of the small filling of the band n � 1,

the ground-state energy of the repulsive Hubbard chain is

e0 = −
(

2t + U

2

)
n + πtn3

3
+ · · · . (30)

For the leading order in n it implies the following value for the
lattice-induced SOI:

αs =
√

f 4n2

A2
− 4(t ′)2. (31)

For the grand canonical ensemble one can use the connec-
tion between the band filling and the chemical potential
n ≈ (π t)−1√μ − 2t − (U/2).

Consider now the case of the nonzero magnetic field. For
H > Hs where

Hs = 8U

π

∫ πn

−πn

dk cos(k)
cos(k) − cos(πn)

sin2(k) + u2
, (32)

the system is in the spin-polarized state with ρ(k) = (2π )−1

and B = πn (the Fermi sea for spinons is empty, i.e., Q = 0).
The ground-state energy per site is e0 = −(2t/π )[sin(πn) −
πn cos(πn)]. We get for the equilibrium deformation-induced
SOI,

αs =
√

f 4[sin(πn) − πn cos(πn)]2

π2A2
− 4(t ′)2. (33)

For small band filling we obtain αs = 0, i.e., the strong
magnetic field destroys the lattice-induced SOI in the repulsive
Hubbard chain for this case. For small magnetic fields using
the Wiener-Hopf method one gets Q = (2u/π ) ln(H/aHs),
where a = π3/2/

√
(2e). On the other hand, for H > Hs we

have Q = 0 and B = πn, hence, getting the same situation
as considered above. Near and below the spin-saturation point
we get Q = u[(Hs − H )/Hs]1/2. Hence, for 0 � H � Hs , the
lattice-induced SOI is decaying to zero at H → Hs with the
growth of the field value H for small band fillings.

Now let us turn to the consideration of the on-site attraction
between electrons. For the attraction U < 0 the ground state is
organized by the filling of Fermi seas with N − 2M unbound
electron states with real kj rapidities and M Cooper-like
pairs with complex conjugated rapidities sin(kβ) = 	β ± iu.
In the thermodynamic limit the ground state is given by the
solution of the second-order Fredholm integral equations for
the density of unbound electron states ρ(k) and density of
pairs σ ′(	),

ρ(k) = 1

2π
− cos(k)

∫ Q

−Q

d	a1[sin(k) − 	]σ ′(	),

σ ′(	) = 1

π
Re[1 − (	 − i|u|)2]−1/2
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−
∫ Q

−Q

d	′a2(	′ − 	)σ ′(	′)

−
∫ B

−B

dk a1[sin(k) − 	]ρ(k). (34)

Here we have to use the change u → |u| in the definition of
aj (x). The limits of integration, which play the role of Fermi
points for the Fermi seas B and Q, are determined from the
following conditions:

n − 2m =
∫ B

−B

dk ρ(k), m =
∫ Q

−Q

d	σ ′(	). (35)

We also can introduce the ground-state dressed energies for
unbound electron states ε(k) and pairs ψ(	), which are
determined from the following set of integral equations:

ε(k) = −2t cos(k) − μ − H/2

−
∫ Q

−Q

d	a1[sin(k) − 	]ψ(	),

ψ(	) = −4t Re[1 − (	 − iu)2]1/2 − 2μ

−
∫ Q

−Q

d	′a2(	′ − 	)ψ(	′)

−
∫ B

−B

dk cos(k)a1[sin(k) − 	]ε(k). (36)

The ground-state energy per site can be obtained as

e0 = −2t

∫ B

−B

dk cos(k)ρ(k)

− 4t

∫ Q

−Q

d	 Re[1 − (	 − iu)2]1/2σ ′(	) . (37)

For external magnetic-field H < Hc only paired states are
populated and have a Fermi sea (i.e., B = 0) where

Hc = −4t − 2μ − 2
∫ Q

−Q

d	a1(	)ψ(	). (38)

There is also a saturation field Hs so that for H > Hs the
ground state consists of only spin-polarized unpaired particles
and the system has a magnetization of Mz = n/2.

For the most important case of H < Hc we have B = 0
and Mz = 0. The ground-state energy per site of the Hubbard
chain with attraction between the electrons for the small band
filling n � 1 is equal to

e0 = −4tn
√

1 + u2. (39)

Then the equilibrium deformation-induced SOI is

αs = 2

√
f 4n2(1 + u2)

A2
− (t ′)2. (40)

Clearly, the attractive Hubbard interaction in this case
enhances the lattice-induced SOI. In the grand canonical
ensemble we can use the connection between the chemical
potential and the filling n,√

(1 + u2)μ

2t
= −1 − π2n2(1 − 2u2)

8(1 + u2)
. (41)

For H > Hs we have Q = 0 and m = 0. All electrons are
unbound with the density ρ = (2π )−1. Then the ground-state
energy is e0 = −2t sin(πn)/π , and the equilibrium lattice-
induced SOI is

αs = 2

√
4f 4 sin2(πn)

π2A2
− (t ′)2. (42)

Notice that, for the Hubbard chain with attraction between
electrons, the spin saturation does not destroy the deformation-
induced SOI as for the repulsive case. For the grand canonical
ensemble we can use the connection between the band filling
and the chemical potential n = 1 − π−1 arccos[(2μ + H )/2t].

For nonzero temperatures we have to minimize the free
energy instead of the ground-state one for T = 0. It is not
difficult to show using the Bethe ansatz solution [14] that,
at high temperatures of T � t , only the trivial equilibrium
configuration with δs = 0 exists. At low temperatures the
free energy per site can be approximated by flow ≈ e0 −
γ T 2/2 + · · · , where γ is the Sommerfeld coefficient, which
can be calculated in the case of two Fermi seas as γ =
(π/3)[v−1

c + v−1
s ] for the repulsive Hubbard chain and γ =

(π/3)[v−1
c + v−1

p ], where vp is the Fermi velocity of pairs
vp = ψ ′(Q)/2πσ ′(Q). If one of the Fermi seas is absent
(for some ranges of the values of the band fillings/chemical
potential or the magnetization/magnetic field), the contribution
to the free energy from the related eigenstates becomes
exponentially small. [At the critical points of quantum phase
transitions the contribution is proportional to T −1/2.] In a zero
magnetic field at half-filling for the repulsive Hubbard chain
and for the attractive Hubbard chain for H < Hc we have
vc = 0 and vs = vp = 2tI1(2π/|u|)/I0(2π/|u|). Minimization
of the free energy yields the condition for the equilibrium
deformation and, hence, for the deformation-induced SOI
at low temperatures. We can see that at low temperatures
a nonlinear (e.g., the cubic) equation for the equilibrium
deformation-induced SOI can appear. The analysis shows that
the phase transition to the low-temperature phase with the
spontaneous SOI, induced by the deformation of the lattice,
can take place in the attractive Hubbard chain at H < Hc

and for the repulsive Hubbard chain for the non-half-filled
case.

Our results are generic for one-dimensional fermion sys-
tems with the deformation-induced SOI. In particular, in the
continuum limit (where one has the gas of fermions with the
δ-function repulsion/attraction instead of the Hubbard chain)
our results remain essentially the same (for the gapless phases
because the phase with the Mott gap is absent in the continuum
limit).

To summarize, we have studied the spontaneous onset of
the spin-orbit interaction due to the deformation of the lattice
in the correlated electron chain. We have shown that the on-
site Hubbard repulsion between electrons mostly suppresses
the deformation-induced SOI in the ground state. On the
other hand, the attraction between electrons mostly enhances
the lattice-induced SOI. The external magnetic field in the
repulsive Hubbard chain also suppresses the lattice-caused
SOI, whereas it does not destroy the deformation-induced
SOI even in the spin-saturated phase for the attraction
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between electrons. The analysis of thermodynamics implies
the presence of a phase transition between the nonzero value
of the deformation-induced SOI at low temperatures and the
zero SOI at high temperatures. The predicted effect of the
electron-electron interaction on the deformation-induced SOI
can be very important, e.g., in the application of quantum

nanowires with mechanically controlled spin transport in
spintronics.
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