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A Fermi liquid (FL) with spin-orbit coupling (SOC) supports a special type of collective modes—chiral spin
waves—which are oscillations of magnetization that occur even in the absence of the external magnetic field. We
study the chiral spin waves of a two-dimensional FL in the presence of both the Rashba and Dresselhaus types
of SOC and also subject to the in-plane magnetic field. We map the system of coupled kinetic equations for the
angular harmonics of the occupation number onto an effective one-dimensional tight-binding model, in which
the lattice sites correspond to angular-momentum channels. Linear-in-momentum SOC ensures that the effective
tight-binding model has only nearest-neighbor hopping on a bipartite lattice. In this language, the continuum
of spin-flip particle-hole excitations becomes a conduction band of the lattice model, whereas electron-electron
interaction, parametrized by harmonics of the Landau function, is mapped onto lattice defects of both on-site
and bond type. The collective modes correspond to bound states formed by such defects. All the features of
the collective-mode spectrum receive natural explanation in the lattice picture as resulting from the competition
between on-site and bond defects.
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I. INTRODUCTION

Spin-orbit coupling (SOC) allows an external electric field
of either dc current or electromagnetic wave to act directly on
electron spins. This phenomenon, known as electric dipole spin
resonance (EDSR) [1–8], enables one to study the dynamics
of electron spins in low-dimensional structures with smaller
number of electrons [9]. In semiconductor heterostructures,
the most relevant types of SOC are Rashba [10,11] and
Dresselhaus [12] mechanisms arising due to the lack of
inversion symmetry, which is broken either by an interface
between two dissimilar materials or by lattice structure,
correspondingly.

In the single-particle picture of EDSR [2–5], SOC provides
coupling between electron spins and the electric field but
does not affect the resonance frequency itself, which is still
given by the Larmor frequency determined by the applied
magnetic field, as in conventional electron spin resonance
(ESR). It has recently been realized, however, that electron-
electron interaction modifies this picture significantly. In the
absence of SOC, the Larmor frequency is the q = 0 end point
of the Silin-Leggett collective mode [13–16] of a partially
polarized Fermi liquid (FL). The Kohn theorem [17,18] states
that this frequency is protected from renormalization by
electron-electron interaction. In the presence of SOC, the Kohn
theorem is not applicable and a number of new phenomena
arise. First of all, a FL with SOC supports a new type of
collective modes—chiral spin waves—even in the absence of
the magnetic field [19–23]. There are three such modes which
correspond to waves of magnetization linearly polarized in
three perpendicular directions. If the magnetic field is applied,
the structure of the collective-mode spectrum becomes fairly
complex [24]. There is a critical value of the field at which
the Zeeman energy is equal to level splitting due to SOC.
At this point, the Fermi surfaces of spin-split states become
degenerate and spin-flip excitations cost no energy. For fields
weaker than the critical one, there are still three collective
modes which disperse down with the field. For fields stronger
than the critical one, there is only one collective mode which

becomes eventually the Silin-Leggett mode in the strong-field
limit.

It is worth pointing out that chiral spin waves (in the strong-
field regime) have been observed in a series of recent Raman
experiments on magnetically doped CdTe quantum wells
[25–27]. The theoretical interpretation of these experiments
has been provided in Refs. [28,29].

The main goal of this paper is to provide a transparent
physical interpretation for the complex behavior of the spin
chiral waves as a function of the magnetic field. We start
off with an observation that there are two systems which,
albeit being completely different from the physical point of
view, have nevertheless very similar excitation spectra. The
first system is a familiar tight-binding model with defects (or
its continuum limit), whose spectrum consists of the band
and discrete levels of bound states located outside the band.
The second system is a FL, whose spectrum consists of the
continuum of particle-hole excitations and collective modes
(plasmon, zero sound, spin waves, chiral spin waves, etc.)
located outside the continuum. One cannot help but ask if there
is a unifying mathematical description for these two systems.

We answer this question affirmatively by considering a
particular type of the FL, relevant in the context of EDSR and
Raman experiments mentioned above, i.e., a two-dimensional
(2D) FL with both Rashba and Dresselhaus types of SOC
and subject to the in-plane magnetic field. We show that
the kinetic equation for such a FL can be mapped onto an
effective one-dimensional (1D) tight-binding model with both
on-site and bond defects. In this mapping, the conduction
band of the lattice model plays the role of the continuum of
spin-flip particle-hole excitations, whereas the bound states
correspond to the collective modes. Furthermore, the spin
part of the nonequilibrium occupation number with angular
momentum m becomes the Bloch wave function localized
on site m of the 1D lattice, the Rashba splitting plays
the role of the on-site energy in an ideal lattice, whereas
Zeeman and Dresselhaus splittings play the role of hopping
amplitudes between the nearest and next-to-nearest neighbors,
correspondingly. Finally, angular harmonics of the Landau
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FIG. 1. Geometry of the system.

function, which parametrizes the interaction in a FL, play the
role of local defects: the mth harmonic of the Landau function
“damages” sites m, m ± 1, and m ± 2, as well as the adjacent
bonds. We show that all features of the collective-mode
spectrum, including the merging of some of its branches with
the continuum, receives a natural explanation with the lattice
model as a result of the competition between on-site and bond
defects. In addition, we also derive analytic results for the
collective modes in a FL with Rashba SOC and in the presence
of the magnetic field for a model (s-wave) form of the Landau
function and compute the spectra numerically for a number of
more general models of the interaction.

The rest of the paper is organized as follows. In Sec. II,
we introduce the model and discuss the FL kinetic equation.
In Sec. III, we discuss the general strategy of mapping
onto an effective lattice model. In Sec. IV, we discuss the
exactly soluble case of a FL with Rashba SOC [19] from
the effective-lattice point of view. In Sec. V, we consider a
FL with Rashba SOC subject to the in-plane magnetic field;
both in the s-wave approximation for the Landau function
(Sec. V C) and for a general case (Sec. V D). In Sec. VI,
we provide a physical interpretation of the collective-mode
spectrum within the effective-lattice model. In Sec. VII, we
consider a FL with both Rashba and Dresselhaus types of SOC.
Our conclusions are given in Sec. VIII. Some computational
details are delegated to Appendices A–C.

II. MODEL AND FORMALISM

We consider a 2D FL in the presence of SOC of both the
Rashba [10,11] and Dresselhaus [12] types, and subject to the
in-plane static magnetic field. For a (001) quantum well, the
single-particle part of the Hamiltonian reads

Ĥ0 = p2

2mb

σ̂0 + α(σ̂1p2 − σ̂2p1) + β(σ̂1p2 + σ̂2p1)

+gμB

2
σ̂1B, (1)

where mb is the band mass, σ̂1...3 are the Pauli matrices, σ̂0 is
the 2 × 2 identity matrix, α (β) is the Rashba (Dresselhaus)
coupling constant, μB is the Bohr magneton, g is the Landé
factor, and B is the magnetic field. Furthermore, indices 1 . . . 3
label the axes of a Cartesian system with the x1 and x2 axes
chosen to be along the [11̄0] and [110] directions, respectively
(see Fig. 1). The magnetic field is chosen to be along the
high-symmetry axis (x1). If the Dresselhaus term is absent

(β = 0), the system is invariant with respect to rotations about
the x3 axis. In this case, the direction of B is arbitrary, and the
x1 axis can be chosen along this direction.

We assume that both SOC and magnetic field are weak, in a
sense that the corresponding energy scales are small compared
to the Fermi energy. In this case, one can neglect the effect of
these perturbations on the Landau interaction function [19,30],
which retains its SU(2)-invariant form:

νF fαβ,γ δ(θpp′) = F s(θpp′)δαγ δβδ + Fa(θpp′)σ̂ αγ · σ̂ βδ, (2)

where θpp′ = θp − θp′ , θk is the azimuthal angle of vector
k, and νF is the renormalized density of states. Only the
spin-dependent part of the Landau interaction function will be
important for what follows. Note that crystalline anisotropy
enters only via the Dresselhaus term in Hamiltonian (1),
whereas the underlying FL is considered as rotationally
invariant.

Both SOC and magnetic field will be treated as weak
perturbations imposed on an SU(2)-invariant FL. The self-
consistent equation for the variation of the quasiparticle energy
reads

δε̂(p) = δε̂s(p) + Tr′
∫

d2p′

(2π )2
f̂pp′δn̂(p′), (3)

where ′ indicates the spin state of the quasiparticle with
momentum p′, δn̂(p) is the variation of the occupation number,
and

δε̂s(p) = 1
2�R(e2σ̂1 − e1σ̂2) + 1

2�D(e2σ̂1 + e1σ̂2)

+ 1
2�Zσ̂1 (4)

is the variation of the quasiparticle energy due to SOC of
both types and external magnetic field. Here �R = 2αpF ,

�D = 2βpF , and �Z = gμBB are the spin-orbit and Zeeman
energy splittings, respectively, and e = p/p. (We choose �Z

to be non-negative, whereas �R and �D can be of either sign.)
In equilibrium, Eq. (3) is solved by an ansatz δε̂(p) = δε̂∗

s (p)
and δn̂(p) = ∂εn0δε̂

∗
s (p), where n0 is the Fermi function and

δε̂∗
s (p) differs from δε̂s(p) in Eq. (4) only in that the bare energy

splittings are replaced by the renormalized ones. Expanding
Fa(θ ) in a series of 2D harmonics,

Fa(θ ) = 
mFa
meimθ , (5)

we obtain the renormalized energy splittings as [19,31,32]

�∗
R = �R

1 + Fa
1

, �∗
D = �D

1 + Fa
1

, �∗
Z = �Z

1 + Fa
0

. (6)

To derive the equations of motion, it is convenient to
introduce a set of rotated Pauli matrices [19]

τ 1(p) = −σ3, τ 2(p) = e · σ , and τ 3(p) = e2σ̂1 − e1σ̂2,

(7)

and decompose δn̂(p) into the equilibrium and nonequilibrium
parts as

δn̂(p,t) = ∂εn0[δε̂∗
s (p) + u(θp,t) · τ̂ ]. (8)

In a spatially uniform case and in the absence of the residual
interaction between quasiparticles, the occupation number
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satisfies the quantum kinetic equation

i
∂δn̂(p,t)

∂t
= [δε̂(p,t),δn̂(p,t)]. (9)

This seemingly simple equation embodies complex quantum
dynamics and, as will be shown below, allows for a transparent
interpretation in terms of the effective lattice model. Substi-
tuting δn̂(p) from Eq. (8) and δε̂(p) from Eq. (3) into Eq. (9),

and linearizing with respect to u, we obtain

i∂tu·τ̂ = [δε̂∗
s ,Tr′

∫
θp′

Fa(θpp′)(σ̂ ·σ̂ ′)(u′·τ̂ ′)]+[δε̂∗
s ,u·τ̂ ],

(10)

where δε̂∗
s ≡ δε̂∗

s (p), u ≡ u(θp,t), u′ ≡ u(θp′ ,t), τ̂ ′ ≡ τ̂ ′(p),
and

∫
θk

≡ ∫
(dθk/2π ). Using the identities σ̂ · Tr(σ̂ τ̂ ′

i ) = 2τ ′
i

and [τ̂3,τ̂
′
2] = −2iτ̂1 cos θpp′ [19], we find that the components

of vector u(θp,t) satisfy the following system of equations:

∂u1(θp)

∂t
= −[�∗

R + �∗
Z sin θp − �∗

D cos 2θp]u2(θp) + [�∗
Z cos θp + �∗

D sin 2θp]u3(θp)

−
∫

θp′
Fa(θpp′)[�∗

R cos(θp,p′) + �∗
Z sin θp′ − �∗

D cos(θp + θp′ )]u2(θp′)

+
∫

θp′
Fa(θpp′)[�∗

R sin(θp,p′) + �∗
Z cos θp′ + �∗

D sin(θp + θp′)]u3(θp′), (11a)

∂u2(θp)

∂t
= [�∗

R + �∗
Z sin θp − �∗

D cos 2θp]u1(θp) + [�∗
R + �∗

Z sin θp − �∗
D cos 2θp]

∫
θp′

Fa(θpp′ )u1(θp′), (11b)

∂u3(θp)

∂t
= −[�∗

Z cos θp + �∗
D sin 2θp]u1(θp) − [�∗

Z cos θp + �∗
D sin 2θp]

∫
θp′

Fa(θpp′)u1(θp′). (11c)

[From now on, the argument t of u(θk,t) will be suppressed.] At the next step, we expand u and Fa over a basis of angular
harmonics [u = 
meimθ um and Fa(θ ) is given by Eq. (5)] to obtain a system of finite-difference equations for um

i :

∂um
1

∂t
= −�∗

Rum
2

[
1 + 1

2

(
Fa

m−1 + Fa
m+1

)] − 1

2i
�∗

Z

[
um−1

2 − um+1
2

][
1 + Fa

m

] + 1

2
�∗

D

[
um−2

2

(
1 + Fa

m−1

) + um+2
2

(
1 + Fa

m+1

)]

+ 1

2i
�∗

Rum
3

[
Fa

m−1 − Fa
m+1

] + 1

2
�∗

Z

[
um−1

3 + um+1
3

][
1 + Fa

m

] + 1

2i
�∗

D

[
um−2

3

(
1 + Fa

m−1

) − um+2
3

(
1 + Fa

m+1

)]
, (12a)

∂um
2

∂t
= �∗

Rum
1

[
1 + Fa

m

] + 1

2i
�∗

Z

[
um−1

1

(
1 + Fa

m−1

) − um+1
1

(
1 + Fa

m+1

)] − 1

2
�∗

D

[
um−2

1

(
1 + Fa

m−2

) + um+2
1

(
1 + Fa

m+2

)]
,

(12b)

∂um
3

∂t
= −1

2
�∗

Z

[
um−1

1

(
1 + Fa

m−1

) + um+1
1

(
1 + Fa

m+1

)] − 1

2i
�∗

D

[
um−2

1

(
1 + Fa

m−2

) − um+2
1

(
1 + Fa

m+2

)]
. (12c)

Solution of Eqs. (12a)–(12c) is the main subject of this
paper. An analytic solution is possible in special cases, when
only one of the three couplings—Rashba, Dresselhaus, and
Zeeman—is present [33]. If both types of SOC are absent, the
problem reduces to the well-studied case of a partially spin-
polarized FL, which supports the Silin-Leggett collective mode
[13–16]. If the magnetic field is absent and only one type of
SOC is present, the system (12a)–(12c) is also exactly soluble.
This is the case of chiral spin waves—collective oscillations of
magnetization in the absence of magnetic field—which have
recently been studied in Refs. [19–23]. In all other cases,
Eqs. (12a)–(12c) do not allow for an analytic solution
for a general form of the Landau function. A numer-
ical solution is, of course, possible, and will be dis-
cussed below. However, an important insight into the na-
ture of solutions is gained by noticing that the orig-
inal problem can be mapped onto an effective lattice
model.

III. QUANTUM KINETIC EQUATION FOR A FERMI
LIQUID AS AN EFFECTIVE LATTICE MODEL

Inspecting Eqs. (12a)–(12c), we notice that they are similar
to the Schrödinger equations for the tight-binding model on a
1D lattice. In this analogy, the angular momentum (m) plays
the role of the lattice site index, while um

1...3 can be viewed
as orbitals located on site m, with three orbitals per site.
Furthermore, the Rashba terms (those proportional to �∗

R)
are “local,” in a sense that the time derivative of the orbital
on site m is proportional to another orbital on the same site.
Therefore, the Rashba terms play the role of on-site energies.
On the other hand, the Zeeman terms (those proportional to
�∗

Z) connect the time derivative of the orbital on site m to those
on sites m ± 1. One can then view those terms as generating
“hopping” between the nearest neighbors. In the same way,
the Dresselhaus terms (those proportional to �∗

D) generate
hopping between next-to-nearest neighbors.
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TABLE I. Mapping of the Fermi-liquid kinetic equation onto an effective 1D
tight-binding model.

Fermi-liquid kinetic equation 1D tight-binding model

Angular momentum m Lattice site m

Azimuthal angle of momentum p (θp) Quasimomentum
Harmonic m of occupation number um

1...3 Orbitals on site m

Rashba spin-orbit coupling On-site energy
Zeeman splitting Nearest-neighbor hopping
Dresselhaus spin-orbit coupling Next-to-nearest-neighbor hopping
Continuum of spin-flip particle-hole excitations Conduction band
Harmonics of the Landau function Local defects
Collective modes Bound states

It will be shown in more detail in Sec. V A that, in the
absence of the FL interaction, the system is mapped onto a
standard 1D tight-binding model. The band arising naturally
in this model is nothing but the continuum of spin-flip particle-
hole excitations. The width of the band is determined by the
combinations of the three energy scales: �R, �D , and �Z .

Harmonics of the Landau function, Fa
m, enter system

(12a)-(12c) in two ways: some of them affect the Rashba
terms, responsible for on-site energy shifts, while others affect
the Zeeman and Dresselhaus terms, responsible for hopping
between nearest- and next-to-nearest neighbors, correspond-
ingly. The effect of Fa

m is local, i.e, harmonic Fa
m affects

only sites m, m ± 1, and m ± 2. Here comes another step in
mapping: in the effective lattice model, the FL interaction plays
the role of local “defects,” which affect both on-site energies
and adjacent bonds.

Defects of a 1D lattice produce bound states with energies
outside the band. These bound states are nothing but the
collective modes lying necessarily outside the continuum of
particle-hole excitations. Therefore, studying a much simpler
problem of bound states in 1D lattice, one can understand a
more complicated case of a FL with SOC and in the presence
of the magnetic field.

The harmonic content of Fa(θ ) determines how many
defects are created. For example, if the Landau function
contains only the zeroth harmonic (the s-wave approximation),
i.e.,

Fa(θ ) = Fa
0 or Fa

m = δm,0F
a
0 , (13)

only up to three central sites of the lattice (m = 0, ± 1) are
replaced by defects. In the opposite case of a sharply peaked
Landau function, i.e., when Fa(θ ) ∝ δ(θ ) and Fa

m does not
depend on m, all impurities are identical and occupy all the
sites. In this case, each site contains an identical defect. This
means that the original lattice is simply replaced by a different
one, and the bands of single-particle excitations and collective
modes merge into a single band of the new lattice. A more
realistic Landau function monotonically decreases with θ , and
thus Fa

m decrease with m as well. In the lattice language, this
is equivalent to having a nonuniform ordered alloy, in which
stronger defects are located in the central region of the lattice,
while weaker ones are located at the edges.

The key elements of mapping between the two models are
summarized in Table I. We found it less instructive to present
the details of mapping in the most general case, when all three

couplings—Rashba, Dresselhaus, and Zeeman—are present.
Instead, we will show how this mapping works for a number
of special cases.

IV. FERMI LIQUID WITH RASHBA
SPIN-ORBIT COUPLING

To begin with, we consider the case when only Rashba
SOC is present. Although this case allows for an exact solution
[19], it is instructive to understand it within the effective lattice
model. With �∗

Z = �∗
D = 0, Eqs. (12a)–(12c) are reduced to

∂tu
m
1 = −γ m

1
�∗

R

2
um

2 ; ∂tu
m
2 = γ m

2
�∗

R

2
um

1 ; ∂tu
m
3 = 0,

(14)

where γ m
1 = 2 + Fa

m+1 + Fa
m−1 and γ m

2 = 2(1 + Fa
m). In the

absence of the Zeeman and Dresselhaus terms, there is no
hopping between the sites of the effective lattice: the time
evolution of um

1,2 is determined by um
2,1 on the same site. In

this case, one can think of vector um as a classical spin on
site m. Spins do not interact with each other but are subject
to a fictitious “magnetic field” due to Rashba SOC, directed
along the x3 axis and of magnitude �∗

R/2. The effective
Landé factor of these spins is anisotropic in the (x1,x2) plane
with components γ m

1 and γ m
2 given above. The lattice is also

nonuniform because γ m
1 and γ m

2 depend on the lattice site.
Both anisotropy and site dependence of the g factor arise from
the FL interaction. With um

3 = const, the spins precess around
the Rashba field [see Fig. 2(a)].

A spin on site m precesses with frequency

�m = �∗
R

√[
1 + 1

2

(
Fa

m+1 + Fa
m−1

)](
1 + Fa

m

)
. (15)

These are the frequencies of the collective modes—chiral spin
resonances [19]. The continuum of particle-hole excitation in
the Rashba-only case is represented by a single frequency
� = �∗

R [34]. For any realistic interaction, harmonics of
Fa(θ ) decrease with m; also, for a repulsive electron-electron
interaction, Fa

m < 0 and thus �m � �∗
R . Hence the discrete

spectrum of the collective modes converges to the point of
continuum, �∗

R , from below [see Fig. 2(b)].
The macroscopic magnetization is related to u(θp) via

M = gμB

4
νF Tr

∫
θ

σ̂ (u · τ̂ ). (16)
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(a)

(b)

FIG. 2. (a) Effective lattice model for the collective modes
of a Fermi liquid with Rashba spin-orbit coupling. Lattice sites
0, ± 1, ± 2 . . . correspond to angular momenta parametrizing the
nonequilibrium part of the occupation number, u [Eq. (8)]. Each
vector um represents a classical spin coupled to an effective spin-
orbit magnetic field (vertical red arrows) via an anisotropic and
site-dependent Landé factor. Spins precess independently of each
other with site-dependent frequencies, which are the frequencies of
the collective modes [Eq. (15)]. (b) The spectrum of the system
consists of an infinite number of discrete levels, converging toward
the continuum at �∗

R .

As is obvious from the form of the τ matrices [Eq. (7)], M
contains only the m = 0 and m = ±1 harmonics of u. In other
words, external magnetic and electric fields couple only to
the effective classical spins on sites m = 0, ± 1. These spins
precess with frequencies

�0 = �∗
R

√(
1 + Fa

1

)(
1 + Fa

0

)
(17)

and

�+1 = �−1 = �∗
R

√[
1 + 1

2

(
Fa

0 + Fa
2

)](
1 + Fa

1

)
. (18)

These are the frequencies that should be observable by ESR
or EDSR in zero magnetic field.

V. PARTIALLY POLARIZED FERMI LIQUD
WITH RASHBA SPIN-ORBIT COUPLING

A. Noninteracting electrons

Hopping between the sites of the effective lattice arises if
at least two out of three couplings—Rashba, Dresselhaus, and
Zeeman—are present. To understand the effect of hopping,
we first consider the noninteracting case, when Fa(θ ) = 0. To
simplify the problem even further, we eliminate Dresselhaus
SOC at first and restore it at the end of this section. With these
simplifications, Eqs. (12a)–(12c) are reduced to

∂tu
m
1 = −�Rum

2 − �Z

(
um−1

2 − um+1
2

2i
− um−1

3 + um+1
3

2

)
,

∂tu
m
2 = �Rum

1 + 1

2i
�Z

(
um−1

1 − um+1
1

)
,

∂tu
m
3 = −1

2
�Z

(
um−1

1 + um+1
1

)
. (19)

One can interpret these equations as an effective tight-binding
model with three orbitals, um

1...3, per site [see Fig. 3(a)]. The
Rashba spin-orbit field (shown by vertical red arrows) couples
to the u1 and u2 orbitals but not to the u3 one. The Zeeman
term gives rise to orbital-selective hopping between the nearest
neighbors; allowed hoppings are indicated by slanted orange

arrows. For example, orbital u1 is coupled to the orbitals u2

and u3, but there is no hopping between the orbitals u2 and u3.
The tight-binding picture is simplified considerably by

eliminating the orbitals um
2 and um

3 in favor of um
1 . Doing so,

we arrive at a much simpler equation for temporal Fourier
transform of um

1 :

�2um
1 = (

�2
R + �2

Z

)
um

1 + i�R�Z

(
um+1

1 − um−1
1

)
. (20)

Equation (20) is reduced to a standard tight-binding form by
introducing the “Bloch wave function”

ψm ≡ i−mum
1 , (21)

which satisfies [35]

�2ψm = (
�2

R + �2
Z

)
ψm − �R�Z(ψm+1 + ψm−1). (22)

The eigenfrequency of Eq. (20)

�(θp) = [
�2

R + �2
Z − 2�R�Z cos θp

]1/2
(23)

disperses with θp ∈ (0,2π ), which is a conjugate variable to m.
Therefore, θp plays the role of “quasimomentum” confined to
the first Brillouin zone (0,2π ). At the same time, θp is nothing
but the azimuthal angle of p, so we worked our way back
to original system (11a)–(11c), which can now be viewed as
written down in the “momentum representation.”

The minimum and maximum values of �(θp) mark the
edges of the “band,” which represents the continuum of
spin-flip excitations [the shaded rectangular in Fig. 3(b)]. The
bandwidth is given by

�c = |�R| + �Z − ||�R| − �Z|. (24)

Likewise, with both SOC present but in the absence of the
magnetic field, the band occupies an interval from ||�R| −
|�D|| to |�R| + |�D|.

Of course, one can obtain the same results in the momentum
representation, i.e., directly from Eqs. (11a)–(11c). Setting
Fa(θ ) = 0 and �D = 0 in these equations, we obtain

∂tu1(θp) = −(�R + �Z sin θp)u2(θp) + �Z cos θpu3(θp),

∂tu2(θp) = (�R + �Z sin θp)u1(θp),

∂tu3(θp) = −�Z cos θpu1(θp). (25)

Eliminating u2 and u3 from the equations above, one obtains
a second-order equation for u1 which is an equivalent of
Eq. (20) in the momentum space. [The only difference between
the two results is a π/2 shift of θp which is effected by
transformation (21).]

The physical reason for the continuum to have a finite
width is anisotropy of the electron spectrum in the presence
of at least two couplings. At q = 0, particle-hole excitations
correspond to vertical transitions between spin-split subbands
with frequencies

�c = |ε+ − ε−|, (26)

where

ε± = p2

2mb

±
[

(α2 + β2)p2 + �2
Z

4

+ (α + β)p2�Z − 2αβ
(
p2

1 − p2
2

)]1/2

(27)
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B

(a)

(b)

(c)

(d)

FIG. 3. (a) Three-orbital tight-binding model for a noninteracting electron gas with Rashba spin-orbit coupling and in the presence of
the in-plane magnetic field (B). As in Fig. 2, lattice sites 0, ± 1, ± 2 . . . correspond to angular momenta parametrizing the nonequilibrium
part of the occupation number, u [Eq. (8)], except for now components um

1...3 play the role of on-site orbitals. The Rashba field (red vertical
arrows) is coupled to orbitals um

1 and um
2 , while B leads to nearest-neighbor hopping with orbital-selective matrix elements. Allowed hoppings

between sites −1, 0, and +1 are indicated by orange arrows, and similar for other sites. (b) The spectrum consists of a finite-width band
(shaded rectangular), which corresponds to the continuum of spin-flip particle-hole excitations. (c) Same as in (a) but for the FL case. The FL
interaction, parametrized by the harmonics of the Landau function, F a

m, create defects of both on-site and bond type. If F a has only the m = 0
harmonic, the defects (open and open-dotted circles) are located at m = 0 and m = ±1, as shown in the figure; higher harmonics of Fa affect
other sites. (d) The spectrum consists of the continuum (shaded) and discrete bound states, which are the collective modes of the FL.

are the eigenenergies of Hamiltonian (1). As p spans the Fermi
surface, the eigenenergies vary between the minimum and
maximum values. This variation determines the width of the
continuum. Setting β = 0 and p = pF in Eq. (27), we see that
Eq. (26) gives the same result as Eq. (23).

Restoring Dresselhaus SOC in the equations of motion
does not lead to qualitative changes. With all three couplings
present, Eq. (23) for the eigenfrequency is replaced by

�(θp) = [
�2

R + �2
D + �2

Z + 2(�R + �D)�Z sin θp

−2�R�D cos 2θp
]1/2

. (28)

As before, the maximum and minimum values of
�(θp) determine the bandwidth, but its explicit form is
now more complicated and we refrain from presenting
it.

In the special case when two out of the three couplings
are absent, the spectrum becomes isotropic and the continuum
shrinks to a single point. One case of this type was discussed
in Sec. IV.

B. Interacting electrons

We now turn to a FL with Rashba SOC and in the presence of
the magnetic field. This case is described by Eqs. (12a)–(12c)
with �∗

D = 0. Pictorially, the equations of motion for um
i are

shown in Fig. 3(c). A harmonic m of the Landau function
changes both on-site energies on sites m and m ± 1 (shown
by open and dotted-open circles for m = 0) and the adjacent
bonds (shown by dotted arrows). Both on-site and bond defects
leads to the formation of bound states with energies below the
continuum [see Fig. 3(d)].

To analyze this case quantitatively, we eliminate again um
2

and um
3 from Eqs. (12a)–(12c) in favor of um

1 and obtain
an equation for the Bloch wave function ψm, defined by

Eq. (21):

�2ψm =
[
�∗2

R

(
1+Fa

m

)(
1+Fa

m+1+Fa
m−1

2

)
+�∗2

Z

(
1+Fa

m

)2
]
ψm

−�∗
R�∗

Z

[(
1 + Fa

m + Fa
m+1

2

)(
1 + Fa

m+1

)
ψm+1

+
(

1 + Fa
m−1 + Fa

m

2

)(
1 + Fa

m−1

)
ψm−1

]
. (29)

Both the on-site and hopping terms are renormalized by the
FL interaction. The equation above is the key one from which
all the limiting cases can be derived, which is what we will be
doing in the rest of this section. Before going into particular
models for Fa

m though, we make one general observation. An
attractive impurity on a 1D lattice has at least one bound
state below the band, while a repulsive one has at least one
bound state above the band. If all Fa

m < 0, the on-site energies
in Eq. (29) are reduced compared to the noninteracting case
[cf. Eq. (22)]. This case corresponds to attractive impurities,
with bound states (collective modes) below the band (con-
tinuum); it is vice versa for Fa

m > 0, when the impurities are
repulsive and the bound states are above the band. On the other
hand, the number of bound states and their relative spacings
will be specific for particular models, which we are now going
to study.

C. s-wave approximation for the Landau function

The first case is the s-wave approximation for the Landau
function [Eq. (13)], when Eq. (29) is reduced to

�2ψm = (
�2

R + �∗2
Z

)
ψm + δm,0F

a
0

[
�2

R + �∗2
Z

(
2 + Fa

0

)]
ψm

+ (δm,1 + δm,−1)
Fa

0

2
�2

Rψm

−�R�∗
Z

{
ψm+1 + ψm−1 + δm,0

Fa
0

2
(ψ1 + ψ−1)

+(δm,1 + δm,−1)
Fa

0

2

(
3 + Fa

0

)
ψ0

}
. (30)
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FIG. 4. Single-orbital tight-binding model for a two-dimensional
FL in the presence of Rashba spin-orbit coupling and in-plane
magnetic field, and in the s-wave approximation for the Landau
function [Eq. (13)]. Lattices m = 0 and ±1 are defective. Defective
bonds, connecting these sites, are chiral: the amplitude of hopping
from m = 0 to m = ±1 (dotted red arrows) is not the same as from
m = ±1 to m = 0 (dotted magenta arrows).

We rearranged the equation above in such a way that the
first two lines of its right-hand side (RHS) correspond to
on-site energies while the last two lines correspond to hopping.
[According to Eq. (6), �R is not renormalized in the s-wave
approximation.] Equation (30) is shown pictorially in Fig. 4.
The first term on the RHS describes on-site energies of
undistorted lattice, while the second and third terms account
for energy shifts due to impurities at sites m = 0 and m ± 1
(open and dotted-open circles). Next, the first two terms in
the curly brackets describe hopping via regular bonds (solid
arrows), while the remaining terms describe hopping via
defective bonds (dashed arrows) which connect the m = 0
and m = ±1 sites. The bond defects are chiral: the amplitude
of hopping from m = 0 to m = ±1 is not the same as from
m = ±1 to m = 0, as indicated by one-headed arrows. This
means that the effective Hamiltonian corresponding to the

equations of motion (30) is non-Hermitian: bond defects
are described by a non-Hermitian term J�

†
0�±1 + J ′�†

±1�0

with J �= J ′. This does not present any difficulties, however,
because the eigenvalues of Eq. (30) are real.

Equation (30) can be solved by a slight modification of
the standard method for finding the bound states on 1D
lattices [36]. Namely, we choose wave functions ψ0 and ψ±1

as independent variables. Starting from sites m = ±2, we
assume that the wave function of the bound state decreases
exponentially with m, i.e.,

ψ±(|m|+2) = e−(|m|+1)λψ±1 (31)

with Reλ > 0. It is worth pointing out that eigenstates are
localized in the angular-momentum space rather than real
space. The localization radius of ψm defines the harmonic
content of a given collective mode, i.e., a state localized within
1/Reλ around m = 0 contains effectively m � 1/Reλ first
harmonics. Applying Eq. (31) to any three nearest neighbors
of the undistorted lattice, we obtain a relation between �2

and λ:

�2 = �2
R + �∗2

Z − 2�R�∗
Z cosh λ (32)

or

e−λ = (1 + x2 − y2) ±
√

(1 + x2 − y2)2 − 4x2

2x
, (33)

where y = �/�R and x = �∗
Z/�R . (To simplify the formulas,

we will assume that �R > 0.) Substituting m = 0, ± 1 into
Eq. (30) and using ansatz (31) to exclude ψ±2, we obtain a
closed system for ψ0 and ψ±1:

⎡
⎢⎢⎣

1 + x2 − y2 + 1
2Fa

0 − xe−λ −x
[
1 + 1

2Fa
0

(
3 + Fa

0

)]
0

−x
(
1 + 1

2Fa
0

)
1 + x2 − y2 + Fa

0

[
1 + (

2 + Fa
0

)
x2

] −x
(
1 + 1

2Fa
0

)
0 −x

[
1 + 1

2Fa
0

(
3 + Fa

0

)]
1 + x2 − y2 + 1

2Fa
0 − xe−λ

⎤
⎥⎥⎦

⎡
⎢⎣

ψ−1

ψ0

ψ1

⎤
⎥⎦ = 0. (34)

Equating the determinant of this system to zero and using
Eq. (33), we obtain a transcendental equation for eigen-
frequencies. Although the equation does have an analytic
solution, its explicit form is quite lengthy, and we delegate it to
Appendix B, focusing here on Fig. 5 obtained by plotting the
results in Eq. (B1) of that appendix.

The inset in Fig. 5(b) shows the spectrum for a broad range
of the magnetic field, while panels (a) and (b) focus on the
regions of weak and strong magnetic fields, correspondingly.
A prominent feature of the spectrum is the gap-closing point,
�∗

Z = �R , at which the continuum extends all the way down
to zero energy leaving no room for collective modes. This
happens when the spin-split Fermi surfaces touch and thus a
spin-flip excitation costs no energy. To the left of this point,
for �∗

Z < �R , there are up to three collective modes which,
at �∗

Z = 0 coincide with chiral spin modes, considered in
Sec. IV. The frequencies of these modes at �∗

Z = 0 are given
by Eqs. (17) and (18) with Fa

1 = Fa
2 = 0, i.e.,

�0 = �R

√
1 + Fa

0 , (35a)

�+1 = �−1 = �R

√
1 + Fa

0 /2. (35b)

A finite magnetic field lifts the degeneracy of the
m = ±1 modes which now disperse with �∗

Z , as shown in
Fig. 5 (left). At some critical values of the field, the m = ±1
modes run into the continuum, while the m = 0 mode disperses
all the way down to the gap-closing point. To the right of this
point, for �∗

Z > �R , there is only one mode which approaches
asymptotically the Silin-Leggett mode in the limit B → ∞.
The frequency of this mode is given by the bare Zeeman
energy, in agreement with the Kohn theorem [17,18].

D. Beyond s-wave approximation for the Landau function

In the previous section, we focused on the s-wave approxi-
mation for the Landau function. In this section, we analyze a
more general case, beginning with the Landau function which
contains both the m = 0 and m = 1 harmonics [(s + p)-wave
approximation]:

Fa(θ ) = Fa
0 + 2Fa

1 cos θ. (36)
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FIG. 5. Collective modes of a FL with Rashba SOC and in the presence of the in-plane magnetic field. The Landau function is taken in the
s-wave approximation: F a(θ ) = F a

0 = −0.3. �∗
Z is the (renormalized) Zeeman energy and �R is the Rashba energy splitting. Left: Weaker

magnetic fields (�∗
Z < �R). Right: Stronger magnetic fields (�∗

Z > �R). Inset: Same as in main panels for a wider range of fields.

In the effective lattice model, this case corresponds to
five impurities on sites m = 0, ± 1, ± 2. The spectrum of
the collective mode for this case is plotted in Fig. 6. There
are five chiral spin resonances in zero magnetic field, which
evolve into up to five collective modes as �∗

Z is increased
up to �∗

R (the left panel). A zoom below the main panel
emphasizes a (numerically) small but finite splitting of the
two highest-energy modes. As the field increases, four out
of the five modes run into the continuum, following the
same mechanism as for the three-impurity case discussed in
Sec. VI B 1. On the opposite side of the spectrum, for �∗

Z →
∞, we now have two Silin-Leggett modes. At finite but small
ratio of �∗

R/�∗
Z , the higher-energy Silin-Leggett mode splits

into two, both of which run into the continuum at some critical
values of �∗

R/�∗
Z . The remaining low-energy mode grazes the

continuum and touches it at the gap-closing point. The same
happens to the low-energy mode approaching the gap-closing
point from the weak-field side. Details of the computational
procedure can be found in Appendix C.

If the Landau function contains all harmonics, one has
to resort to numerical diagonalization of Eq. (29) for a
particular form of the Landau function. We choose an artificial
but physically reasonable model with Fa

m = Fa
0 e−m2/m2

0 . The
numerical results for Fa

0 = −0.3 and m0 = 10 are shown in
Fig. 7. The spectrum is denser at lower energies because the
harmonics of the Landau function with m < m0 are close to
Fa

0 . Equation (15) shows that the frequencies of such modes
at �Z = 0 are close to the bare Rashba splitting, �R . At
the same time, the continuum at �Z = 0 corresponds to a
single energy equal to the renormalized Rashba splitting �∗

R =
�R

(1+Fa
1 ) ≈ �R

(1+Fa
0 ) > �R . The modes with m > m0 fill in the gap

between �R and �∗
R . Although the collective mode spectrum is

very dense, the modes remain discrete as long as m0 is finite.
In the effective lattice language, the system is equivalent to
an alloy. The central region of this alloy, −m0 � m � m0,
is occupied by impurities of comparable strength. Outside
the central region, there are semi-infinite domains of weaker
impurities whose strengths decrease rapidly away from the
center.

VI. PHYSICAL INTERPRETATION WITHIN
THE EFFECTIVE LATTICE MODEL

A. Effective tight-binding model

Even in the simplest case of the s-wave approximation for
the Landau function, the spectrum of the collective modes
shown in Fig. 5 is fairly complex and exhibits a number of
distinct features. Namely, the two higher-energy modes in the
region �∗

Z/�R < 1 merge with the continuum at certain values
of the magnetic field; the lowest-energy mode runs into the
continuum precisely at �∗

Z/�R = 1; there is only one mode for
�∗

Z/�R > 1. The goal of this section is to provide a transparent
physical interpretation of these features within the effective
lattice model.

The effective tight-binding model corresponding to Eq. (30)
is depicted graphically in Fig. 4. Equation (30) is an eigenvalue
problem for the square of the frequency, and its RHS contains
the squares of the various energy scales. To make an analogy
with the tight-binding model complete, we will be referring to
quantities with units of [energy]2 simply to as “energies.” In
this way, �2 becomes the energy of the bound state E while
the energy of hopping between normal sites is

J = �R�∗
Z. (37)

The potential energies on the defective sites will be measured
relative to the on-site energy of undistorted lattice, �2

R + �∗2
Z .

Then the potential energies on the defective sites m = 0 and
m = ±1 are given by

U0 = Fa
0 �2

R + Fa
0

(
2 + Fa

0

)
�∗2

Z and

U1 = (
Fa

0 /2
)
�2

R, (38)

correspondingly. Finally, the hopping amplitudes between the
defective sites (m = 0 and m = ±1) are

t =
(

1 + Fa
0

2

)
J, for 0 → ±1;

t ′ =
[

1 + Fa
0

2

(
3 + Fa

0

)]
J, for ± 1 → 0. (39)

165140-8



EFFECTIVE LATTICE MODEL FOR THE COLLECTIVE . . . PHYSICAL REVIEW B 95, 165140 (2017)

FIG. 6. Collective modes of a FL with Rashba SOC and in the presence of the in-plane magnetic field. The Landau function is taken in the
s + p approximation, Eq. (36). In the main panels, F a

0 = −0.4 and F a
1 = −0.2. The zooms show two almost degenerate higher-energy modes

for F a
0 = −0.4 and F a

1 = −0.4. The magnitude of F a
1 was increased to resolve the splitting.

For Fa
0 < 0, the impurities are attractive, i.e., U0,U1 < 0,

while the defective bonds are weaker than the normal ones,
i.e., t,t ′ < J .

B. Simplified lattice models

To explain every detail of the spectrum in Fig. 5, one needs
to take into account all of the elements listed above. However,

certain features can be understood by considering simplified
versions of the tight-binding model, which is what we are
going to do in the next sections as well as in Appendix A.

1. Three attractive impurities

The merging of the two higher-energy modes with the
continuum can be understood qualitatively by ignoring bond

FIG. 7. Collective modes of a FL with Rashba SOC and in the presence of the in-plane magnetic field for a model form of the Landau
function: F a

m = F a
0 exp(−m2/m2

0) with F a
0 = −0.3 and m0 = 10.
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(a)

(b)

(c)

FIG. 8. One-dimensional tight-binding models. (a) Three attrac-
tive impurities (U0,U1 < 0) at m = 0 and m = ±1. (b) Two defective
bonds between sites m = 0 and m = ±1 with hopping amplitudes
J ′. (c) A single attractive impurity at m = 0 and two defective bonds
between sites m = 0 and m = ±1 with hopping amplitudes J ′.

defects, i.e., by setting t = t ′ = J . In this case, we have a
tight-binding model with normal bonds between all sites and
with three impurities on sites m = 0, ± 1 [see Fig. 8(a)]. It is
also convenient to measure all energies in units of J , i.e., to
set J = 1.

For an even simpler case of a single on-site defect, it is well
known that there always exists a bound state located either
below (for U0 < 0) or above (for U0 > 0) the conduction band.
In the context of semiconductors, these states are known as
donors and acceptors, i.e., the bound states of electrons and
holes, correspondingly. In the tight-binding model, the states
with energies below the inflection point are electronlike (with
positive effective mass) while the states with energies above
the inflection point are holelike (with negative effective mass),
therefore, the donor and acceptor states occur in this case as
well. Since our impurities are attractive, we will focus on this
case from now on.

Given that a single impurity has one bound state, it is natural
to expect that three impurities will have up to three bound
states. In the continuum limit, the three-impurity complex
corresponds to a 1D potential well of finite width (a) and
depth (U ), which has at least one bound state but may also
have two, three, etc., states, if the product −Ua exceeds some
critical values. The lattice case is analyzed in Appendix A1b
and summarized in the phase diagram shown in Fig. 9. There is
indeed at least one and up to three bound states, depending on
the impurity strength. The lowest-energy eigenstate is of even
parity (ψ1 = ψ−1), the next one is odd (ψ1 = −ψ−1), and the
highest one is again even.

Our original problem corresponds to a tight-binding model
with parameters given by Eqs. (37)–(39). In the limit �∗

Z �
�R , the potential energies of all three impurity sites are of
the order of �2

R , which is much larger than the bandwidth
2J = 2�R�∗

Z . Thus we have three strong impurities with
the maximum number of bound states, which is equal to
three. As �∗

Z is increased, the bandwidth increases as �∗
Z

but the potential energies increase only as �∗2
Z . Therefore, the

impurities get relatively weaker (compared to the bandwidth),
and we lose first the highest and then next-to-highest-energy
bound state, when the ratio of the potential energy to the
bandwidth falls below some critical values. This explains why

FIG. 9. Phase diagram for bound states in a one-dimensional
tight-binding model with three attractive on-site impurities, as shown
in Fig. 8(a).

two out of the three collective modes merge with the continuum
at certain values of �∗

Z/�R < 1.

2. Competition between on-site and bond defects

The three-impurity model is unable to explain an interesting
feature of the spectrum in Fig. 5: the lowest-energy collective
mode approaches the continuum either from the left [panel
(a)] or from the right [panel (b)] and touches the continuum at
one particular point, where �∗

Z = �R . From the lattice point
of view, it means that a 1D tight-binding model does not have
a bound state for a certain choice of parameters, which cannot
happen if only on-site defects are present. The reason for such
a behavior is the competition between impurities and adjacent
defective bonds, which we discuss below.

To understand how this competition works, we first consider
a toy model with no impurities but with two defective bonds
[Fig. 8(b)]. As shown in Appendix A 2, a bound state occurs
in this case only if the defective bonds are stronger than the
normal ones, i.e., J ′ > J . (There are actually two bound states:
one above and one below the conduction band.)

The difference between the cases of weaker and stronger
defective bonds can be understood by going to the continuum
limit, where a local change in J leads to spatial variations in
both the bandwidth and effective mass. The latter does not
give rise to a bound state by itself. Indeed, the Schrödinger
equation with a steplike variation in the mass does not have
an evanescent solution, which means that there are no bound
states. On the contrary, a local variation in the bandwidth
gives rise to a bound state, only if the band is wider in the
central region. Indeed, neglecting the spatial variation of the
effective mass, the Schrödinger equation corresponding to
the tight-binding model reads

[E + 2J (x)]ψ(x) = − 1

2m

d2ψ(x)

dx2
, (40)

where m = 1/2J (the lattice constant is set to unity). An
electron with energy E > −2J (x) is free to move, while an
electron with energy E < −2J (x) is localized. Now consider
an interface between two materials with hopping amplitudes
J1 and J2, to the left and to the right of the interface,
correspondingly (see Fig. 10). An electron with energy in
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FIG. 10. A bound state in a junction between a wide-band and
narrow-band materials. Electrons with energies J2 < |E| < J1 are
confined to the central region.

the interval −2J1 < E < −2J2 is free to move in the left
half-space but cannot propagate into the right half-space. The
condition −2J1 < E < −2J2 implies that J1 > J2, i.e., the
band is wider in the central region. Adding another interface
leads to the formation of a bound state within the material with
larger J , i.e., with a wider band. A similar reasoning works for
the states with energies near the top of the band (holes). This
effect is dual to a bound state in a narrow-gap semiconductor
sandwiched between two wide-gap semiconductors [37].

Next, we add a single attractive impurity to the model
and connect it by two weak bonds to the rest of the lattice,
as shown in Fig. 8(c). Because no bound state exists in the
presence of weak bonds only, there should be a competition
between the impurity, which would like to have a bound state,
and weak bonds, which do not. As the bonds get weaker, the
bound state becomes shallower until, at some critical value
of J ′, it merges with the band. (As shown in Appendix A3a,
this happens if |U0| � 2J and at the critical bond strength of
|Jc| = J

√
1 − |U0|/2J .)

C. Weak magnetic fields: �∗
Z < �R

Since the defective bonds in our case are indeed weak
[see Eq. (39)], we now understand qualitatively the mechanism
by which the lowest-energy collective mode runs into the
continuum. However, it does not explain why this happens
precisely at �∗

Z = �R rather than at some arbitrary value
of �∗

Z . To understand this, we need to return to the full
tight-binding model in Fig. 4(a), which contains all elements of
the original problem, i.e., three impurities, and two defective
and chiral bonds with t �= t ′, with parameters exactly as in
Eqs. (37)–(39).

In this case, the eigenvalue problem is reduced to a 3 × 3
system of equations

Eψ0 = U0ψ0 − t(ψ−1 + ψ1),

Eψ±1 = U1ψ±1 − t ′ψ0 − Jψ±1e
−λ,

(41)

where we used ansatz (31) to eliminate ψ±2 in favor of ψ±1.
The same ansatz, being applied to any three adjacent sites of
the undistorted lattice, yields E = −2J cosh λ.

Selecting even- and odd-parity solutions, we obtain equa-
tions for the corresponding eigenvalues

(E − U1 + Je−λ)(E − U0) = 2t t ′, even; (42a)

E − U1 + Je−λ = 0, odd. (42b)

The lowest-energy bound state must be of even parity.
Therefore, the condition for its disappearance must follow
from Eq. (42a). The bound state coincides with the band
edge if E = −2J = −2�R�∗

Z . Substituting this value of E

along the rest of the parameters from Eqs. (38) and (39) into
Eq. (42a), we find that one of its two solutions is �∗

Z = �R ,
which is indeed the gap-closing point. The second solution
is �∗

Z = −Fa
0 /[2(2 + Fa

0 )]�R . This is precisely the point
where the highest-energy collective mode, which is also of
even parity, runs into the continuum [cf. Fig. 5(a)]. Finally,
substituting the same parameters into Eq. (42b), we find
that the odd-parity collective mode runs into the continuum
at �∗

Z = −Fa
0 �R/2. These analytic results are in precise

agreement with the exact solution in Appendix B.
It is worth pointing out that the disappearance of the

collective mode precisely at the point where �∗
Z = �R is

not coincidental. The parameters of the tight-binding model
are derived from the FL kinetic equation and thus bear the
information about the symmetries of the underlying model,
i.e., the SU (2) symmetry of the original FL (in the absence of
SOC) and the C∞v symmetry of the Rashba Hamiltonian. It
is thus no accident that the bound state of the effective lattice
model disappears precisely at the point where the gap in the
continuum closes.

D. Strong magnetic field: �∗
Z > �R

As Fig. 5 shows, there is only one bound state for �∗
Z >

�R . It is easier to understand this case starting from the limit
of �∗

Z → ∞, where the Rashba term is negligibly small. In
this limit, hopping disappears and we have decoupled sites
with energies �∗2

Z on all sites but at m = 0, where the on-site
energy is given by bare Zeeman splitting, �2

Z . This energy
gives the frequency of the Silin-Leggett collective mode, while
sites with m �= 0 form a continuum at �∗

Z . It is intuitively
obvious that small �R cannot change the picture qualitatively:
we must still have just one bound state with a renormalized
frequency. Indeed, expanding the exact solution in Eq. (B1) for
�∗

Z 
 |�R|/|Fa
0 |, we obtain

�L = �Z +
(
2 + 3Fa

0

)(
1 + Fa

0

)
4Fa

0

�2
R

�Z

+ . . . , (43)

which coincides with the random-phase approximation result
of Ref. [24] upon replacing the dimensionless coupling
constant u by −Fa

0 . Notice that the Kohn theorem, which
states that the Larmor frequency is not affected by the
electron-electron interaction, holds for the leading term in
Eq. (43) but is violated already for the first correction due
to the presence of SOC.

As �∗
Z decreases, the impurity at m = 0 remains relatively

strong (the ratio of its potential energy to the bandwidth is
on the order of �Z/�R 
 1), while the impurities at m ± 1
remain weak (the corresponding ratio is on the order of
�R/�Z � 1). In this case, there is only one bound state
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(cf. phase diagram in Fig. 9). As �∗
Z becomes comparable to

�∗
R , the strengths of all three impurities become comparable

both to each other and to the bandwidth, and more bound states
may appear. However, as we explained above, our model is
fine-tuned by the choice of parameters corresponding to the
original FL kinetic equation, and with this choice there is only
one bound state for �∗

Z > �R , which touches the continuum
at �∗

Z = �R .
To conclude this section, we reiterate that all the features of

the collective-mode spectrum are accounted for in the effective
lattice description.

VII. FERMI LIQUID WITH RASHBA AND DRESSELHAUS
SPIN-ORBIT COUPLING

In this section, we consider the case when both Rashba and
Dresselhaus SOCs are present but there is no external magnetic
field. This situation is similar to that of the magnetic field and
Rashba SOC, considered in Sec. V, except for hopping is
now of the next-to-nearest-neighbor type. This will lead to
important differences in the collective-mode spectrum.

Setting �∗
Z = 0 in Eqs. (12a)–(12c), reducing the system of

equations to a single equation for um
1 as before, and introducing

the Bloch wave function via Eq. (21), we obtain the effective
tight-binding model as

�2ψm = (
�∗2

R + �∗2
D

)(
1 + Fa

m

)[
1 + 1

2

(
Fa

m+1 + Fa
m−1

)]
ψm

−�∗
R�∗

D

(
1 + Fa

m−2

)(
1 + Fa

m−1

)
ψm−2

−�∗
R�∗

D

(
1 + Fa

m+2

)(
1 + Fa

m+1

)
ψm+2. (44)

The effective lattice is now bipartite: every even (odd) site
is coupled to the nearest even (odd) sites but there is no
coupling between sites of different parity. It is convenient then
to consider the lattice as being composed of two decoupled
sublattices which contain only even or only odd sites, with
nearest-neighbor hopping within each sublattice. Introducing
the sublattice wave functions as χl = ψ2l and ξl = ψ2l+1, we
obtain two independent equations

�2χl = (
�∗2

R + �∗2
D

)(
1 + Fa

2l

)[
1 + 1

2

(
Fa

2l+1 + Fa
2l−1

)]
× χl − �∗

R�∗
D

(
1 + Fa

2l−2

)(
1 + Fa

2l−1

)
χl−1

−�∗
R�∗

D

(
1 + Fa

2l+2

)(
1 + Fa

2l+1

)
χl+1,

�2ξl = (
�∗2

R + �∗2
D

)(
1 + Fa

2l+1

)[
1 + 1

2

(
Fa

2l+2 + Fa
2l

)]
× ξl − �∗

R�∗
D

(
1 + Fa

2l−1

)(
1 + Fa

2l

)
ξl−1

−�∗
R�∗

D

(
1 + Fa

2l+3

)(
1 + Fa

2l+2

)
ξl+1. (45)

The on-site energies of the ideal lattice are given by �∗2
R + �∗2

D ,
while the hopping amplitude is J = �∗

R�∗
D .

The effective lattice model in the s-wave approximation
for the Landau function is depicted graphically in Fig. 11.
The even sublattice (top) has a single attractive impurity at
l = 0. The bonds between the l = 0 and l = ±1 sites are
chiral (t �= t ′): the bond in the forward direction (from 0 to
±1) is undistorted (t = J ), while the bond in the backward
direction (from ±1 to 0) is weak (t ′ < J ). If not for the bond
defects, the even sublattice would have had a single bound state
with an even-parity wave function. The odd sublattice has two
impurities (on sites l = −1 and l = 0) connected by a weak

FIG. 11. Effective lattice model for a FL with both Rashba and
Dresselhaus spin-orbit couplings in the s-wave approximation.

nonchiral bond. The odd sublattice can have up to two bound
states, with even- and odd-parity wave functions. As in the case
of Rashba SOC plus magnetic field (R + B), the maximum
number of bound states is three. The difference is that, in
the R + B case, two out of the three states are the “extra”
states, which occur only if impurities are sufficiently strong.
As the magnetic field increases, the impurities get weaker
(relative to the bandwidth), and these extra states merge with
the continuum one by one. In the Rashba plus Dresselhaus
case, the three bound states come as a singlet from the even
sublattice and a doublet from the odd sublattice. Only one of
the components of the doublet is an extra state, which can
merge with the continuum. The remaining component of the
doublet and the singlet are the lowest-energy bound states,
which can only be eliminated by a competition between on-site
and bond defects. Therefore, one should expect both these
states to graze the continuum and touch it at a special point,
where the Rashba and Dresselhaus couplings compensate each
other.

This qualitative picture is indeed confirmed by an ex-
act solution of Eq. (45), shown in Fig. 12. The spec-
trum is symmetric about the SU (2)-symmetric point, where
�R = �D [see Fig. 12 (inset)] [38,39]. There are up to three
collective modes to each side of this point. The highest-energy
mode runs into the continuum at some value of �R/�D , while
the two lower-energy modes graze the continuum and touch
it at �R = �D . The conditions for touching can be derived
in the same way as was done in the previous section for the
R + B case.

VIII. CONCLUSIONS

In conclusion, we showed that the quantum kinetic equation
for a Fermi liquid can be mapped onto an effective one-
dimensional tight-binding model, in which the lattice sites
correspond to the angular-momentum channels of the nonequi-
librium part of the occupation number. In this mapping, the
Rashba term plays the role of the on-site energy, while the
Zeeman and Dresselhaus terms are responsible for nearest and
next-to-nearest-neighbor hopping between the sites of an ideal
lattice, correspondingly. Consequently, the continuum of spin-
flip particle-hole excitations becomes the conduction band of
the lattice model. The Fermi-liquid interaction, characterized
by the harmonics of the Landau function, produces defects of
both on-site and bond type. The collective modes correspond
to the bound states produced by these defects. We showed
that all the features of the collective-mode spectrum can be
explained naturally within the lattice model as a result of the
competition between on-site and bond defects.
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FIG. 12. Collective modes of a FL with Rashba and Dresselhaus spin-orbit couplings. The Landau function is taken in the s-wave
approximation with F a

0 = −0.4. Left: Weaker Dresselhaus SOC (�D < �R). Right: Stronger Dresselhaus SOC (�D > �R). Inset: Same as in
main panels for a wider range of Dresselhaus coupling.

Although we focused on a particular example of a partially
spin-polarized Fermi liquid with spin-orbit coupling and
considered only the spatially uniform (q = 0) limit, we believe
that mapping onto an effective lattice model can be useful in
other cases as well. For example, consider a kinetic equation
describing the zero-sound modes in a neutral two-dimensional
Fermi liquid [15]

(ω − v∗
F q cos θ )u(θ ) = v∗

F q cos θ

∫
dθ ′

2π
F s(θ − θ ′)u(θ ′),

(46)
where v∗

F is the renormalized Fermi velocity. In the harmonic
representation, the equation above reads

ωum = 1
2v∗

F q(um+1 + um−1)

+ 1
2v∗

F q
(
F s

m+1um+1 + F s
m−1um−1

)
. (47)

As before, we can view this equation as an effective tight-
binding model. The v∗

F q term induces hopping between nearest
neighbors. In a noninteracting system, this hopping forms
a band of width vF q which corresponds to the continuum
of particle-hole excitations with energies 0 � ω � vF q (we
consider excitations with positive energies). The Fermi-liquid
interaction plays the role of bond defects (there are no
on-site defects in this case). For example, in the s-wave
approximation, the bonds between m = 0 and m = ±1 sites
and defective and chiral: the hopping amplitude from m = 0 to
m = ±1 is the same as for an ideal lattice but that in the reverse
direction is multiplied by a factor of 1 + F s

0 . As we showed
in Sec. VI B2 and Appendix A2, a bond defect forms a bound
state only if it is strong, i.e., its hopping amplitude is larger than
that for an ideal lattice. Therefore, there should a bound state
above the continuum if F s

0 > 0. This bound state is nothing
but the zero-sound wave with velocity v∗

F (1 + F s
0 )/

√
1 + 2F s

0
(Refs. [40,41]).

It is also easy to understand within the lattice picture why
a plasmon in a charged Fermi liquid never merges with the
continuum but always stays above its boundary [42]. This is
so because a one-dimensional lattice with single type of defects
(of the bond type in this case) must have at least one bound
state which corresponds to the plasmon mode.

We believe that the lattice interpretation will be also
useful for the analysis of more complicated cases, e.g.,
of Raman spectroscopy of semiconductor heterostructures
[25–29], which measures spatial dispersion of chiral spin
waves formed in the presence of both Rashba and Dresselhaus
types of spin-orbit coupling, and also of the in-plane magnetic
field.
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APPENDIX A: ONE-DIMENSIONAL TIGHT-BINDING
MODEL WITH ON-SITE AND BOND DEFECTS

In this appendix, we present solutions of a number of one-
dimensional tight-binding models with impurities and bond
defects, discussed in the main text.

1. On-site defects only

a. Single on-site defect

To set the stage, we review briefly the solution of the
simplest model with a single on-site defect (“impurity”). Given
that an impurity with potential energy U0 occupies the m = 0
site, the system of Schrödinger equations reads

Eψ0 = U0ψ0 − ψ−1 − ψ1, (A1a)

Eψ±(|m|+1) = −ψ±|m| − ψ±(|m|+2). (A1b)

(The hopping amplitude J is set to unity.) We assume that the
bound-state wave function decays exponentially away from
the central site:

ψ±(|m|+1) = ψ±|m| exp(−|m|λ) (A2)

with Reλ > 0. Substituting this ansatz into Eq. (A1b), we
obtain

E = −2 cosh λ (A3)
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or

e−λ± = −E

2
±

√
E2

4
− 1. (A4)

The root with the minus sign corresponds to a bound state
below the conduction band, because Reλ− > 0 for E < −2.
Conversely, the root with the plus sign corresponds to a
bound state above the conduction band, because Reλ+ > 0 for
E > 2. Substituting these roots into Eq. (A1a), we obtain for
the bound-state energy

E = sgnU0

√
U 2

0 + 4. (A5)

For E < −2, the exponent λ− is real. Correspondingly, the
wave function decreases with m in a purely exponential
manner: ψm ∝ exp(−|m|λ−). For E > 2, the exponent λ+
has an imaginary part equal to iπ . Consequently, the wave
function decreases exponentially and oscillates with m: ψm ∝
(−)m exp(−|m|Reλ+).

b. Three on-site defects

Here, we consider the case of three attractive impurities
at m = 0 and m = ±1 with energies U0 < 0 and U1 < 0,
correspondingly [see Fig. 8(a)]. We use ansatz (31) to write
down a closed system of equations for the three defective sites

Eψ0 = U0ψ0 − ψ1 − ψ−1, (A6a)

Eψ±1 = U1ψ±1 − ψ0 − ψ±1e
−λ, (A6b)

complemented again by Eq. (A3). Since the impurities are
attractive, the bound states have energies in the interval
E < −2. Correspondingly, we choose λ+ for the exponent
of the wave function in Eq. (A4).

For even-parity solutions, ψ1 = ψ−1. Substituting this
relation into Eqs. (A6a) and (A6b) and using Eq. (A4), we
obtain an equation for the corresponding eigenenergies

E2

2
−

(
U0

2
+ U1

)
E + U0U1 − 2 = (E − U0)

√
E2

4
− 1.

(A7)
The graphic solution of Eq. (A7) is shown in Fig. 13. The bound
states are below the band edge, which means that E < −2.
Consequently, the RHS of Eq. (A7) is negative-definite for
−2 < U0 < 0, as shown in Fig. 13(a). The left-hand side
(LHS) is a parabola which is equal to P = U1(U0 + 2) + U0

at E = −2. For U1 < 0 and −2 < U0 < 0, P is negative, and
therefore Eq. (A7) has only one root. This is the lowest-energy
bound state, which occurs even for an infinitesimally small
U0. If U0 < −2, the RHS of Eq. (A7) vanishes at E = −2
and E = U0, and has a maximum in between these two
points. For −U0/(U0 + 2) < U1 < 0, P is still negative and
thus the equation has only one root [see Fig. 8(b)]. For
U1 < −U0/(U0 + 2), P is positive and the equation has two
roots [see Fig. 8(c)].

For odd-parity solutions, ψ1 = −ψ−1. Substituting this
relation into Eq. (A6a), we obtain Eψ0 = U0ψ0, which has
two solutions: E = U0 and ψ0 = 0. However, substituting
ψ1 = −ψ−1 into Eq. (A6b), we find that equations for ψ± are
compatible only if ψ0 = 0. Therefore, ψ0 for an odd-parity
solution and each of the two equations in Eq. (A6b) combined

(a)

(b)

(c)

FIG. 13. Graphic solution of Eq. (A7).

with Eq. (A4) yields

E = U1 + 1/U1, (A8)

which corresponds to a bound state if U1 < −1. This is one
of the two “extra” bound states which occur only if impurities
are strong enough.

Combining all these cases together and restoring J , we
obtain the phase diagram shown in Fig. 9.

2. Bond defects only

Here, we consider a model with two defective bonds
connecting the m = 0 site with two adjacent sites at m = ±1
[see Fig. 8(b)]. The Schrödinger equations read

Eψ0 = −J ′(ψ−1 + ψ1),

Eψ±1 = −J ′ψ0 − ψ±2,

Eψ±(|m|+2) = −(ψ±(|m|+1) + ψ±(|m|+3)), (A9)

where J ′ > 0 is the amplitude of hopping between the m = 0
and m = ±1 sites, and the hopping amplitude for normal
bonds (J ) is set to unity. A simple check shows that a
nontrivial solution is possible only for an even-parity state with
ψ1 = ψ−1, in which case we can set ψ0 = 1. This yields

E = ± 2J ′2
√

2J ′2 − 1
. (A10)
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FIG. 14. One-dimensional tight-binding model with three identi-
cal impurities connected by defective bonds. All the other bonds are
normal, i.e., J = 1.

The energies of the bound states are outside the band only if
|J ′| > 1, i.e., only if the defect bonds are stronger than the
normal ones.

3. Both on-site and bond defects

a. Single on-site and two bond defects

To understand the competition between on-site and bond
defects, we consider here a model with a single on-site defect
connected by defective bonds to the rest of the lattice, as
depicted in Fig. 8(c). The Schrödinger equations in this case
read

Eψ0 = U0ψ0 − J ′(ψ−1 + ψ1), (A11a)

Eψ±1 = −J ′ψ0 − ψ±2, (A11b)

Eψ±(|m|+2) = −(ψ±(|m|+1) + ψ±(|m|+3)), (A11c)

where again we set J = 1. It can be readily seen that
Eqs. (A11a)–(A11c) have no odd-parity solutions. Indeed,
such a solution corresponds to ψ0 = 0 which, upon sub-
stituting into Eq. (A11b) and using ψ±2 = e−λψ±1, yields
E + e−λ = 0. However, the last equation is not compatible
with Eq. (A3). We thus focus on the even-parity solution
with ψ1 = ψ−1 and set ψ0 = 1. We are interested in bound
states below the conduction band, whose wave function decays
exponentially with exponent λ− defined by Eq. (A4).

Eliminating ψ1 from Eqs. (A11a) and (A11b), we obtain an
eigenvalue equation

E(1 − J ′2) − U0 = 2J ′2
√

E2

4
− 1. (A12)

There is a negative-E solution if J ′2 > 1 and U0 < 0. Indeed,
the RHS of Eq. (A12) vanishes at E = −2, whereas the
LHS is positive. On the other hand, the RHS behaves as
−EJ ′2 for −E → ∞, while the LHS is always below this
value. Therefore, an intersection of the two curves must have
happened at finite −E. For J ′2 < 1, a solution exists only
if U0 < −2(1 − J ′2). If U0 < −2, this condition is always
satisfied but, if −2 < U0 < 0, the bound state disappears if
J ′2 < 1 + U0/2. To conclude, there is always a bound state
below the conduction band for any J ′, if the impurity is
sufficiently strong, i.e., U0 < −2. However, if the impurity
is sufficiently weak, i.e., −2 < U0 < 0, there is no bound state
for J ′2 < 1 + U0/2.

b. Three on-site and two bond defects

Here, we consider a slightly more complicated model with
three identical and attractive impurities connected by defective
bonds, as shown in Fig. 14. This model illustrates a transition
in the number of bound states, from three to two and eventually
to one.

The system is described by the following set of equations:

Eψ0 = U0ψ0 − J ′(ψ−1 + ψ1),

Eψ±1 = U0ψ±1 + J ′ψ0 − ψ±2,

Eψ±(|m|+2) = −(ψ±(|m|+1) + ψ±(|m|+3)), (A13)

complemented by Eqs. (A2) and (A4) for exp(−λ−). The
eigenvalues of even- and odd-parity states satisfy

(E − U0)(E − U0 + e−λ− ) − 2J ′2 = 0, (A14a)

E − U0 + e−λ− = 0, (A14b)

correspondingly. Equation (A14b) yields E = U0 + 1/U0,
which satisfies the condition for the bound state to be
below the band edge, i.e., E < −2, for U0 < −1. Since
the odd-parity eigenvalue does not depend on J ′, it is not
affected by the competition between on-site and bond defects.
Equation (A14a) for the even-parity eigenvalue is reduced to

E2

2
− 3

2
EU0 + U 2

0 − 2J ′2 = (E − U0)

√
E2

4
− 1. (A15)

To solve this equation, we use the same argument as given
in Sec. A 1 b for the case of three attractive impurities.
The RHS is negative-definite for E < −2 and −2 < U0 < 0
and vanishes at E = −2. The LHS is an upward parabola
which takes a value of P̃ = U 2

0 + 3U0 + 2 − 2J 2 at E = −2.
For J ′2 > J 2

c ≡ (U 2
0 + 3U0 + 2)/2, P̃ is negative and hence

Eq. (A15) has only one root. For U0 < −2, the RHS of
Eq. (A15) vanishes at E = −2 and E = U0, and has a
maximum in between these two points. For J ′2 > J 2

c , P̃ is
still negative and thus the equation still has only one root. If
U0 < −2 and J 2 < J 2

c , P̃ is positive and the equation has two
roots. Combining these arguments with the odd-parity case, we
conclude that for −1 < U0 < 0 and J 2 > J 2

c , the system has
only one bound state. For U0 < −1 and J ′2 > J 2

c , the number
of bound states increases to two. Finally, there are three bound
states for U0 < −1 and J ′2 < J 2

c .

APPENDIX B: EXPLICIT EXPRESSIONS
FOR THE FREQUENCIES OF CHIRAL SPIN MODES

IN THE s-WAVE APPROXIMATION

In this appendix, we present explicit expressions for the fre-
quencies of chiral spin modes within the s-wave approximation
for the Landau function [Eq. (13)]. Equating the determinant
of the 3 × 3 matrix in Eq. (34) to zero, we find

�̃2
0 = P − 1

6 × 22/3

1

Fa
0

[
Q

(Re{Z})2 + (Im{Z})2
− 2−2/3

]

× [Re{Z} +
√

3 Im{Z}],

�̃2
+1 =

[
1 + Fa

0

2

]
�2

R +
[

1 + 2

Fa
0

]
�∗2

Z ,

�̃2
−1 = P + 1

3 × 22/3

1

Fa
0

[
Q

(Re{Z})2 + (Im{Z})2
− 2−2/3

]

× Re{Z}, (B1)

where Z = (R +
√

4Q3 + R2)1/3 and
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P = 1

6

[
6 + 5Fa

0

]
�2

R − 1

3Fa
0
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2 + 5Fa

0 + (
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0

)2 − (
Fa

0

)3]
�∗2

Z ,

Q = −(
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0

)4
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(
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0

)2[
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0 + 7
(
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0
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(
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0

)3]
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0
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(
Fa

0
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(
Fa
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(
Fa

0
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(
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Fa

0
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Fa
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,
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Fa

0
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0
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(
Fa
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�2

R�∗4
Z + 8

[
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0 + 792
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Fa

0
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(
Fa

0
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(
Fa

0
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(
Fa

0
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(
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(
Fa

0
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(
Fa
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(
Fa
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)9]
�∗6

Z . (B2)

The modes are labeled according to Eq. (15) for the case of zero magnetic field. In the limit of B = 0, �̃0 approaches �0 in
Eq. (35a), while �̃±1 become degenerate and equal to �±1 in Eq. (35b). The mode frequencies in Eq. (B1) are plotted in Fig. 5
as a function of the magnetic field.

APPENDIX C: FERMI-LIQUID INTERACTION IN THE m = 0 AND m = 1 CHANNELS

In this appendix, we provide the details of deriving the equations of motion for the case of the Landau function in the
(s + p)-wave approximation, as specified by Eq. (36). For simplicity, we consider a situation when only the in-plane magnetic
field and Rashba SOC are present but Dresselhaus SOC is absent. Applying Eq. (36) to Eq. (29), we obtain

− �2ψ0 = −{
�∗2

R

(
1 + Fa

1

)(
1 + Fa

0

) + �∗2
Z

[
1 + Fa

0

(
2 + Fa

0

)]}
ψ0 + �∗

R�∗
Z

[
1 + 1

2Fa
1

(
3 + Fa

1

) + 1
2Fa

0

(
1 + Fa

1

)]
(ψ−1 + ψ1),

−�2ψ±1 = −{
�∗2

R

(
1 + Fa

1

)(
1 + 1

2Fa
0

) + �∗2
Z

[
1 + Fa

1

(
2 + Fa

1

)]}
ψ±1 + �∗

R�∗
Z

[
1 + 1

2Fa
1

(
1 + Fa

0

) + 1
2Fa

0

(
3 + Fa

0

)]
ψ0

+�∗
R�∗

Z

[
1 + 1

2Fa
1

]
ψ±2,

−�2ψ±2 = −[
�∗2

R

(
1 + 1

2Fa
1

) + �∗2
Z

]
ψ±2 + �∗

R�∗
Z

[
1 + 1

2Fa
1

(
3 + Fa

1

)]
ψ±1 + �∗

R�∗
Z ψ±3,

−�2ψ±(|m|+3) = −[
�∗2

R + �∗2
Z

]
ψ±(|m|+3) + �∗

R�∗
Z(ψ±(|m|+2) + ψ±(|m|+4)). (C1)

To close the system, we assume that the wave functions of bound states fall off with distance exponentially: ψ±(|m|+3) =
e−(|m|+1)λψ±2 for m � 0, where e−λ is given by Eq. (33). To reduce the system size from 5 × 5 to 3 × 3, we eliminate ψ2 in favor
of ψ1, i.e., we set ψ±2 = γψ±1, where

γ = �∗
R�∗

Z

[
1 + 1

2Fa
1

(
3 + Fa

1

)]
(
�∗2

R + �∗2
Z − �2

) − �∗
R�∗

Ze−λ + 1
2�∗2

R F a
1

. (C2)

The frequencies of the collective modes are given by zeros of the determinant of the resulting 3 × 3 system:

Det

⎡
⎢⎣

G11 G12 0

G21 G22 G23

0 G32 G33

⎤
⎥⎦ = 0,

where G11 = G33 = �2 − {
�∗2

R

(
1 + Fa

1

)(
1 + 1

2Fa
0

) + �∗2
Z

[
1 + Fa

1

(
2 + Fa

1

)]} + �,

G12 = G32 = �∗
R�∗

Z

[
1 + 1

2Fa
1

(
1 + Fa

0

) + 1
2Fa

0

(
3 + Fa

0

)]
,

G21 = G23 = �∗
R�∗

Z

[
1 + 1

2Fa
1

(
3 + Fa

1

) + 1
2Fa

0

(
1 + Fa

1

)]
,

G22 = �2 − {
�∗2

R

(
1 + Fa

1

)(
1 + Fa

0

) + �∗2
Z

[
1 + Fa

0

(
2 + Fa

0

)]}
,

and � = 2�∗2
R �∗2

Z (1 + 1
2Fa

1 )
[
1 + 1

2Fa
1 (3 + Fa

1 )
]

(
�∗2

R + �∗2
Z − �2

) + �∗2
R F a

1 +
√(

�∗2
R + �∗2

Z − �2
)2 − 4�∗2

R �∗2
Z

.

(C3)
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