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Nonradiating sources, dynamic anapole, and Aharonov-Bohm effect
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We show that for a particular choice of gauge the vector potential of any nonradiating source is spatially localized
along with its electric and magnetic fields. Important on its own, this special property of nonradiating sources
dramatically simplifies the analysis of their quantitative aspects, and enables the interpretation of nonradiating
sources as distributions of the elementary dynamic anapoles. Using the developed approach we identify and dis-
cuss a possible scenario for observing the time-dependent version of the Aharonov-Bohm effect in such systems.
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I. INTRODUCTION

This paper is concerned with properties of nonradiating
(NR) sources within the scope of the classical electrodynamics.
We define an NR source as an oscillating charge-current
configuration of a finite size, which does not generate any
fields outside the volume it occupies. An alternative way
of defining an NR source is to request that no energy is
to be emitted into the far-field zone. However, as shown in
Ref. [1], this seemingly less restrictive definition also implies
that the electromagnetic fields of the NR source are localized,
i.e., they vanish outside the source volume. The interest in
NR sources arose at the beginning of the twentieth century
in the context of extended electron models, electromagnetic
self-force and radiation reaction (see Ref. [2] and references
therein). More recently, NR sources have become the subject
of interest in relation to the inverse scattering problem of
electrodynamics, i.e., reconstruction of sources from radiated
fields (see Refs. [1,3–7] for some representative works, and
Ref. [8] for a review).

An example of a nontrivial yet simple NR source was
theoretically proposed in the context of the so-called toroidal
multipoles, the third independent family of dynamic multi-
poles that complement the conventional electric and magnetic
ones (see, for example, Refs. [9,10]). In particular, it was noted
that the emissions of toroidal and electric dipoles have the same
angular distribution and parity properties. Correspondingly,
the electromagnetic fields radiated by coherently oscillating
point toroidal and electric dipoles placed at the origin could be
made to interfere destructively and disappear everywhere apart
from the origin [11]. This combination of interfering toroidal
and electric dipoles forms a nontrivial pointlike NR source,
which is also known as the elementary dynamic anapole (DA)
[12,13].

Despite its exotic appearance, DA is anything but an abstract
concept. First demonstrated experimentally in a specially
designed microwave metamaterial, it was shown to play a key
role in a new mechanism of electromagnetic transparency and
scattering suppression [14]. More recent works have confirmed
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the importance of DA also in the realms of plasmonics and
nanophotonics, where dominant contributions of DAs were
identified in the optical response of very simple types of
dielectric and metallic nanostructures, such as discs, wires,
etc. [15–23].

In this paper, we show that for a particular choice of gauge
the vector potential of an NR source is localized, just as its
electric and magnetic fields are. Exploiting the localization of
potentials as the defining property of NR sources helps, for
example, to find constraints on the actual current density in a
relatively simple fashion, without using the heavy machinery
of the multipole expansion [24]. It allows one to consider NR
sources as distributions of elementary DAs (in the same way
as any radiating source can considered as a distribution of
point charges), and therefore helps to build intuition about the
internal structure of NR sources enabling the construction of
explicit realizations.

Our approach provides a powerful alternative to that used
by Devaney and Wolf in Ref. [1], who first obtained the
necessary and sufficient condition for an electromagnetic
source to be nonradiating. It was formulated as a constraint
on the Fourier components of oscillating current density.
Since NR sources and their fields are, by definition, localized
in space, the customary language of the Fourier modes,
which are nonlocalized plane waves, may not always be a
convenient choice. Working directly in the coordinate rather
than momentum space (as it is done in the present work) should
simplify the analysis and yield a clearer physical picture.

We also conclude that NR sources provide a viable platform
for observing the time-dependent Aharonov-Bohm effect. This
idea had been originally proposed in Ref. [11] but was met with
skepticism by some authors, who argued that the dynamic
version of the Aharonov-Bohm effect could not exist [25].
Using an explicit design of a finite-size NR source, we show
that some of the assumptions made in [25] may be relaxed,
and that the key signature of the static Aharonov-Bohm effect
will be present in the dynamic case.

II. ELEMENTARY DYNAMIC ANAPOLE

Before discussing general NR sources, we describe the
simplest example known as the elementary dynamic anapole
(DA), which is formed by collocated electric and toroidal
point dipoles. A dynamic electric dipole d corresponds to the
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following spatial distributions of time-dependent charge and
current density:

ρd = −(d · ∇) δ(r), jd = ∂t d δ(r), (1)

while dynamic toroidal dipole τ corresponds to

ρτ = 0, j τ = c rot2 τδ(r). (2)

If d = c−1∂tτ , then these two elementary sources are
known to produce exactly the same electric and magnetic
fields everywhere except for r = 0 [11]. They also give rise to
electromagnetic potentials, which are gauge equivalent beyond
r = 0. In principle, this allows one to create a dynamic source
that does not radiate. Without loss of generality we assume
harmonic time-dependence with frequency ω, and hence we
replace d → de−iωt ,τ → τe−iωt with d and τ now being
constant vectors. Electric and magnetic fields of the two
dipoles, which are placed at the same point, will interfere
destructively provided that

d = −ikτ , (3)

with k = ω/c. It is this configuration that yields the elementary
dynamic anapole. Below, we will characterize elementary DA
by its toroidal dipole moment τ keeping in mind that it is
always accompanied by an electric dipole moment (3).

There is a gauge choice for which the potentials of the
elementary DA become

φDA = φd + φτ = 0, (4)

ADA = Ad + Aτ = e−iωt4πτδ(r). (5)

Electric and magnetic fields of DA can be obtained from the
usual relations:

E = −∇φ − ∂t A, H = rot A, (6)

which, taking into account (4) and (5), give

EDA = e−iωt4πikτδ(r), (7)

HDA = e−iωt4π rot τδ(r). (8)

By substituting (7) and (8) into Maxwell’s equations one
can easily verify that these fields indeed correspond to a
combination of the electric and toroidal dipole currents given
by (1) and (2).

It will prove useful to visualize electric and magnetic fields
of the elementary DA (see Fig. 1). Electric field is confined
to a point and points in the direction of the toroidal moment
τ while the magnetic field is represented by an infinitesimal
loop in the plane orthogonal to the electric field.

III. GENERAL NONRADIATING SOURCES

By definition, an NR source does not produce electric or
magnetic fields outside the volume it occupies. We will now
show that in a certain gauge the vector potential generated by
an NR source is also zero outside the volume of the source.

Indeed, any electromagnetic field can be described by
vector and scalar potentials φ,A. Due to gauge freedom, the
scalar potential can be always chosen vanishing φ = 0 (the
Weyl gauge). Without loss of generality, we restrict the analysis

FIG. 1. An artistic impression of the elementary dynamic
anapole. The anapole is presented in terms of its electric and magnetic
fields, and the volumes they occupy. In an elementary dynamic
anapole, the magnetic field forms an infinitesimal loop, which encirles
the electric field confined to a point.

to the vector potential with harmonic time behavior A(t,r) =
e−iωt A(r). Clearly, these two conditions specify the chosen
gauge uniquely.1 Now, in this gauge the electric field is given
by the time-derivative of the vector potential E = −c−1∂t A =
ik A. Hereby, if the vector potential is nonzero at some point in
space so is the electric field. Therefore the vector potential of
any NR source must vanish everywhere where the electric field
does, i.e., outside the volume that the source occupies.2 The
latter suggests that for time-dependent NR sources the condi-
tion φ = 0 is a natural gauge fixing. It is in some sense the most
economic gauge: the vector potential is only present where the
electric or magnetic fields are nonvanishing. We will use the
Weyl gauge throughout the paper, often without mentioning it
explicitly.

In Ref. [1], the necessary and sufficient condition for a
source to be nonradiating was formulated in terms of the
Fourier components of the charge-current density. We prove
in Appendix A that both formulations are in fact equivalent.
Nevertheless, characterizing NR sources by their potentials
can be advantageous from several standpoints. First of all,
one is free to choose arbitrary localized vector potential and
then find the corresponding current density describing the
NR source at hand using Maxwell’s equations. The latter is
much easier than describing the NR source directly in terms of
the charge-current density, which must satisfy nontrivial (and
nonlocal) conditions derived by Devaney and Wolf in Ref. [1].
This particular advantage of our approach is clearly illustrated
in the previous section: starting with the simplest possible
form of the localized vector potential (5) one discovers the
elementary DA, a quite nontrivial configuration of currents.
Instead of specifying an NR source in terms of localized
potentials one may also attempt to do the same using localized
electric and magnetic fields. That, however, will be typically

1The Weyl gauge is incomplete since it leaves residual gauge trans-
formations A → A + ∇χ with arbitrary time-independent function
χ . The requirement that A must be harmonic in time eliminates this
freedom.

2This argument of course fails in the static case k = 0 where
nontrivial potentials can exist in the absence of fields.
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a more involving task since electric and magnetic fields must
satisfy Maxwell’s equations and therefore cannot be chosen
arbitrarily. In contrast, the electromagnetic potentials are not
constrained and in this sense represent independent degrees
of freedom. Viewing NR sources in terms of potentials also
provides some intuition about their properties and allows to
construct explicit examples, as we will show in the next
section.

Note that the vector potential of the elementary DA is
proportional to the δ-function (5). Hence the potential of the
elementary DA may serve as a building block out of which
an arbitrary potential field can be composed. Indeed, consider
three DAs with their unit moments directed along Cartesian
coordinate axes

Aα
DA = e−iωt r̂αδ(r). (9)

Vector potential of an electromagnetic field can then be
decomposed in coordinate basis as A(t,r) = ∑3

α=1 r̂αAα(t,r).
Correspondingly, for any vector potential A,

A(t,r) =
3∑

α=1

r̂α

∫
d r ′ Aα(t,r ′)δ(r − r ′)

=
3∑

α=1

∫
d r ′ Aα(r ′)Aα

DA(t,r − r ′). (10)

This expression represents an arbitrary vector potential as a
superposition of the vector potentials due to the elementary
DAs. Since this conclusion might seem counter-intuitive, we
make some clarifications in Appendix B.

In Eq. (10), the integration effectively runs over the
domain where the vector potential is nonvanishing. As
shown above, for NR sources, this domain has a finite
volume. The latter implies that the corresponding charge-
current density is composed out of the elementary DA
densities

ρ(t,r) =
3∑

α=1

∫
d r ′ Aα(r ′)ρα

DA(t,r − r ′), (11)

j (t,r) =
3∑

α=1

∫
d r ′ Aα(r ′) jα

DA(t,r − r ′), (12)

where

ρα
DA = e−iωt ik

4π
(̂rα · ∇) δ(r), (13)

jα
DA = e−iωt c

4π
(rot2 r̂αδ(r) − k2 r̂αδ(r)). (14)

Accepting that the vector potential of an NR source is
localized also allowed us to check the validity of (3) for
spatially extended NR sources. Our analysis does not rely
on the multipole expansion but merely uses the definitions of

D and T :

Dα = − 1

iω

∫
d r jα, (15)

Tα = 1

10c

∫
d r (rαrβ − 2r2δαβ)jβ. (16)

In the Weyl gauge, the current density is related to the vector
potential as follows (in tensor notation)

jα(r) = c

4π
(−(k2 + �)δαβ + ∇α∇β)Aβ(r). (17)

Let us substitute (17) to (15):

Dα = − 1

4πik

∫
d r (−(k2 + �)δαβ + ∇α∇β)Aβ

= −ik

4π

∫
d r Aα + 1

4πik

∫
d r (δαβ� − ∇α∇β)Aβ.

(18)

The last integral can be reduced to a surface integral by the
Gauss theorem. Since the vector potential is localized the
surface integral vanishes and one gets

Dα = −ik

4π

∫
d r Aα. (19)

Similarly, substituting (17) to (16), integrating by parts twice,
and disregarding the boundary terms one arrives at

Tα = 1

4π

∫
d r Aα − k2

40π

∫
(rαrβ − 2r2δαβ)Aβ. (20)

The last contribution can be estimated as

k2
∫

(rαrβ − 2r2δαβ)Aβ∫
d r Aα

= O(a2k2), (21)

where a is the spatial extent of the source. Hence we obtain
the relation

D = −ikT (1 + O(a2k2)). (22)

Although somewhat surprising, this result fully agrees with
[24]. In general, relation (3) cannot be satisfied exactly
when reformulated for extended NR sources (unless D = 0),
because T , being a higher order multipole moment, depends
on the origin of the multipole expansion, and so the high-
order correction O(a2k2) in (22) arises as the result of this
uncertainty.

IV. EXAMPLE OF A SPATIALLY EXTENDED
NONRADIATING SOURCE

As a particular example let us consider a flat disk D of radius
R uniformly filled with elementary DAs of surface density
σ [see Fig. 2(b)] so that �τ = nσ�S is the toroidal dipole
moment gathered in area �S with normal vector n. The vector
potential of this disk is a superposition of the potentials of the
constituent DAs:

A(t,r) =
3∑

α=1

∫∫
D

d2s σ nα Aα
DA(t,r − rs)

= e−iωtσ n
∫∫

D

d2s δ(r − rs), (23)
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FIG. 2. A schematic of an extended nonradiating source—a disk
uniformly filled with anapoles.

where rs are position vectors of the points on the disk D.
Outside disk D the electric and magnetic fields vanish, and

it is instructive to see how they are distributed within the disk.
Electric field is computed as the time-derivative of the vector
potential

E(t,r) = e−iωt iωσ n
∫∫

D

d2s δ(r − rs). (24)

It is homogeneous and directed along the normal vector n.
The magnetic field is given by

H(t,r) = e−iωtσ

∫∫
D

d2s rot n δ(r − rs)

= e−iωtσ

∮
C

d l δ(r − r l). (25)

Stokes’ theorem was used to rewrite surface integral as the
integral over circle C, which is the boundary of disk D and
consists of points r l . We see that the magnetic field exists only
at the boundary, and is constant in magnitude and oriented
along the tangent line.

These results have a simple geometric explanation. If each
constituent DA is visualized according to Fig. 1, then the
nonradiating disk can be depicted as shown in Fig. 2(a). The
electric fields of the adjacent anapoles do not interfere and
result in a uniform total electric field. The magnetic fields of
the adjacent anapoles are oriented oppositely and cancel each
other, so the net magnetic field is zero everywhere within the
area of the disk. The resulting field configurations are shown
in Fig. 2(b), and are indeed described by expressions (24) and
(25), yielding an extended NR source. Note that the electric
and magnetic fields, as well as the magnetic flux carried by the
boundary magnetic line

� = e−iωtσ, (26)

depend on the density σ but not on the disk radius R.
Figure 2(b) can be regarded as nonradiating generalization

of the field configuration of an ordinary static magnetic
solenoid. In the static case (frequency ω = 0), the electric field
within the disk vanishes and only the boundary magnetic line
with a constant flux remains. In the dynamic case, however,
such a field configuration is supplemented by the electric field
but only in the region encircled by the magnetic field.

Similarly to Fig. 2, it is straightforward to visualize field
configurations of more general NR sources. Indeed, formulas
(23)–(25) are valid for a flat layer D of any shape (not necessar-
ily a disk). Consequently, any three-dimensional domain filled
with elementary anapoles homogeneously distributed over its

volume V can be rendered as a stack of flat layers each of which
is treated as above. It takes all but a small step to conclude
that such a domain will feature homogeneous electric field
in its volume and magnetic field confined to its boundary.
Nonuniform electric field and nonvanishing magnetic field
in the bulk can then be achieved by allowing the density
and orientation of anapoles to vary. Such more complex
configurations can be considered to result from overlaps of
homogeneous extended NR sources.

V. TIME-DEPENDENT AHARONOV-BOHM EFFECT

We now turn to the discussion of the prospects which
dynamic NR sources open in connection with the Aharonov-
Bohm (AB) effect. The AB effect rests on the observation
that particles in the quantum theory can be affected by
electromagnetic interaction even if they do not contact electric
or magnetic fields directly.

The most celebrated example of a system supporting the
AB effect is a solenoid bent into a torus enclosing a constant
magnetic flux, see Fig. 3(a). Magnetic field is only present
inside the torus while electric field is absent everywhere.
Probability amplitudes for a particle of charge e to travel from
point A to B along two paths, one of which lies inside and the
other outside the torus hole, will have additional relative phase
shift due to the vector potential

δφ = e/h̄c

∮
γ

A d r, (27)

where the integral is taken along the contour γ winding on the
torus. By virtue of Stokes’ theorem, this integral is proportional
to the magnetic flux � inside the torus δφ = e�/h̄c. This
phase shift has physically measurable consequences which
were confirmed in many works, see, e.g., Ref. [26].

It is natural to attempt to generalize the AB effect, extending
its reach towards the time-dependent case. In the context of
the NR sources, this question was previously addressed in
Refs. [25,27]. The most clear version of the effect would imply
(i) the existence of some volume V inside which the electric
and/or magnetic field is nonzero (and time-dependent) but
outside which both of them are absent, and (ii) nonvanishing
time-dependent phase shifts for some paths that lie outside V .

Requirement (ii) can be alternatively formulated as the
nontriviality of electromagnetic potentials outside V . Despite
the fact that the AB effect is an essentially quantum phe-
nomenon, our focus is on the classical electromagnetic fields

FIG. 3. Contours in the Aharonov-Bohm effect: (a) static and
(b) dynamic cases.
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and potentials. Thus we are referring to phase shifts for brevity,
as we mainly discuss the properties of classical fields.

As claimed in Sec. III, it is not possible to radiate the
vector potential without also radiating the electric field, hence
conditions (i) and (ii) are not possible to satisfy simultaneously.
This leads to an immediate conclusion that the time-dependent
version of the AB effect is simply not possible, at least not in
its original form. However, such sharp contrast with the static
case calls for an explanation.

One of the reasons behind discontinuity between static
and dynamic situations originates from the fact that different
contours must be considered. As mentioned earlier, the
configuration in Fig. 2 serves as a dynamic nonradiating
counterpart of a static toroidal solenoid.3 In the dynamic
case, the absence of radiation implies that the electric field
is localized within the hole of the torus. Correspondingly, any
contour penetrating the hole (as considered in the static case)
will cross the region of nonzero electric field and therefore
become ineligible in the context of the original effect. Other
contours, which do not cross the field lines [similar to γ̃ shown
in Fig. 3(a)], will produce phase shifts neither in static nor in
dynamic cases. This is because these contours do not encircle
the region of nonzero magnetic field and therefore the integral
(27) has to vanish in accordance with Stokes’ theorem.

Let us consider a nontrivial contour γ in the dynamic case,
as show in Fig. 3(b) (electric-field arrows are suppressed).
Assume that the particles in the Aharonov-Bohm experiment
fly through the NR fast enough so that the fields do not change
much during the flight. Then, we could use the same formula
for the phase shift as in the static case (27) provided that the
vector potential is taken at the appropriate instant. Applying
Stokes’ theorem to integral (27) in the time-dependent case
yields

δφ(t) = e�(t)

h̄c
= e−iωt eσ

h̄c
. (28)

This phase shift is proportional to the time-dependent magnetic
flux (26). Therefore one can maintain the same interpretation
for this phase shift as in the static case, i.e., conclude that it is
solely due to the magnetic flux in the excluded region.

This observation is also interesting for the following reason.
The naive way of producing a time-dependent phase shift
would be to take an ordinary wire solenoid and vary the
magnetic field with time, for example, by varying electric
current in the windings. However, as noticed in Ref. [28],
this trick would not work as the phase shift in fact remained
constant. This is due to the fact that these time-varying
currents are bound to produce electromagnetic field outside the
solenoid. Its contribution to the phase shift appears to cancel
exactly the time-dependent part resulting from the magnetic
flux inside the torus. This again highlights the peculiarity of NR
sources where the time-dependent phase shift arises naturally.

One might raise a natural objection to calling the described
thought experiment as time-dependent AB effect. After all,
the local impact of the electric field is still present. It is easy

3Instead of infinitesimally thin solenoid, one is free to consider
its realistic three-dimensional prototype. This has no effect on our
conclusions but unnecessarily complicates the computations.

to see though, that this impact cannot account for the phase
shift (28). To make the arguments precise let us consider
another nonradiating source, which is characterized by zero
scalar potential and the following vector potential:

Acap(t,r) = −iωtσ n
∫∫

D

d2s δ(r − rs). (29)

Notation here is the same as in formula (23). The electric
field derived from (29) is time-independent and coincides with
the electric field of the disk-shaped dynamic anapole (24)
taken at the moment t = 0, Ecap(r) = E(r,0). Since electric
field is static and homogeneous, such a nonradiating source
resembles an ordinary electric capacitor. However, by insisting
that the fields outside the capacitor are strictly zero, we have
also incorporated magnetic field at the boundary

Hcap(r,t) = −ωtσ

∫
C

d l δ(r − r l). (30)

The phase shift for the contour penetrating the capacitor is
given by magnetic flux, which linearly grows with time

δφcap(t) = −ωt
eσ

h̄c
. (31)

Hereby, the oscillating anapole and nonradiating capacitor
have the same electric field at t = 0, but different magnetic
fluxes leading to different phase shifts (28) and (31).

Taking a slightly shifted perspective one can say that the
essence of the AB effect is that the experimental setups
equivalent in the classical sense do not in general exhibit
the same behavior at the quantum level. Indeed, the standard
AB experimental configuration with static magnetic field
confined to an excluded region is classically equivalent to
the complete absence of electromagnetic fields, yet it causes
a measurable phase shift in probability amplitudes of a
charged particle. Comparison of the oscillating anapole and
nonradiating capacitor shows that a similar discrepancy is
expected in the time-dependent experiment. Charged particles
traveling fast enough would feel the same electric field in
both cases (hence the classical equivalence) but would acquire
different phase shifts resulting in observable discrepancies.
Thus we conclude that in the dynamic case the main signature
of the AB effect will still be present.

VI. SUMMARY AND DISCUSSION

We have shown that in the Weyl gauge the vector potential
of an arbitrary NR source is spatially localized. We have
also proven that this apparently local condition for an elec-
tromagnetic source to be nonradiating is equivalent (although
in a nontrivial way) to the nonlocal criterion formulated in
Ref. [1] by Devaney and Wolf. Using the obtained local
nonradiating condition, we confirmed that the relation D =
−ikT , which holds for point NR sources, is also valid for
spatially extended but physically small NR sources, where D
and T are correspondingly the total electric and toroidal dipole
moments of the system.

We have shown that any NR source can be viewed as
a distribution of elementary dynamic anapoles—NR point
sources of the most fundamental type. Such an approach
allows one to build concrete examples of spatially extended
NR sources and study their properties. As an illustration, we
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considered a simple scenario for the dynamic version of the
Aharonov-Bohm effect in the context of nonradiating sources.
We came up with an explicit example of an NR source for
which the phase shift in a dynamic experiment would arise
exactly as in the static case, while retaining its dependence on
time.

Apart from the electrodynamics in general, the formalism
developed here will be of particular importance for the fields
of metamaterials and nanophotonics, which currently witness
a surge of interest in the properties of the dynamic anapole and
nonradiating systems (see [13] and references therein). Indeed,
a number of recent works have already confirmed the key role
of anapole excitations in controlling scattering properties of
very simple electromagnetic systems, such as nanodisks and
nanowires [15–23]. Correspondingly, one may want to revisit
the analysis of the electromagnetic response of structurally
more complex metamaterials, where the dynamic anapoles
could underpin, for example, the microscopic mechanisms of
electromagnetic transparency [14] and high-Q effects. Our
approach to nonradiating sources could be also useful in the
analysis of nonradiating modes of antennas and scattering
suppression in stealth applications. In particular, it might
aid in designing stealth antennas and minimizing the radar
cross-section of other elements that protrude from the airframe
(such as meteorological sensors, guns, landing gear, etc).
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APPENDIX A: CRITERION FOR NONRADIATING
SOURCES ACCORDING TO DEVANEY AND WOLF

In Ref. [1], the necessary and sufficient condition for a
source to be nonradiating was established. It is formulated as
follows. Expand harmonic current density j (r,t) = e−iωt j (r)
in terms of spatial Fourier modes J( p),

j (r,t) = e−iωt

∫
d p ei pr J( p), (A1)

and divide these into longitudinal and transverse components
J( p) = J⊥( p) + J‖( p), where J⊥( p) and J‖( p) are orthog-
onal and parallel to vector p, respectively. The current is
nonradiating if and only if all the transverse components
J⊥( p) with p, such that | p| = k = ω/c, are zero.

We now prove that the above condition is equivalent to
the vector potential being spatially localized in the gauge
φ = 0. If the vector potential A(r) is localized, its Fourier
components Ã( p) are well-defined and simply related to
the Fourier components of the current by the counterpart of
equation (17), namely,

Jα( p) = c

4π
((p2 − k2)δαβ − pαpβ)Ãβ( p). (A2)

The transverse components of J( p) are proportional to p2 −
k2 and hence vanish at | p| = k.

To prove the equivalence in backward direction we start
with the standard formulas for the retarded potentials

φ(r) =
∫

d r ′ eik|r−r ′|

|r − r ′|ρ(r ′), (A3)

A(r) = 1

c

∫
d r ′ eik|r−r ′|

|r − r ′| j (r ′). (A4)

Making the gauge transformation, which renders φ vanishing
and using the continuity equation −iωρ + div j = 0, one
arrives at the following expression for the vector potential:

A(r) = 1

k2c

∫
d r ′ eik|r−r ′|

|r − r ′| (k2 j (r ′) + grad div j (r ′)). (A5)

The latter features a convolution of co-ordinate functions,
which can be re-written in terms of their Fourier components:4

A(r) = 4π

k2c

∫
d p

ei pr

p2 − k2
[k2 J( p) − p( p · J( p))]. (A6)

The integrand is an analytic function of | p| and if it decays fast
enough at the complex infinity, the integral in | p| reduces to the
residue at | p| = k. It is easy to check that the integrand decays
for sufficiently large r . Indeed, since the current is spatially
localized, its Fourier transform grows at most as e−i prmax for
some fixed rmax, which defines the extent of the localization.
For |r| > |rmax|, this growth is not enough to compensate for
the decay of the factor ei pr in equation (A6). One therefore
concludes that integral (A6) only receives contributions from
p such that | p| = k. Note that for such p one has

k2 J( p) − p( p · J( p))

= (k2 − p2) J‖( p) + k2 J⊥( p) = k2 J⊥( p). (A7)

By assumption J⊥( p) = 0 at | p| = k and hence the integral
(A6) vanishes for |r| > |rmax| rendering A(r) as localized.

We would like to point out that the localization of the vector
potential can be proven with very little effort, directly from the
definition of an NR source (see Sec. III). Our argument above
basically yields another proof for the criterion of Devaney and
Wolf, which, unlike the original work [1], does not refer to the
multipole expansion.

APPENDIX B: ARBITRARY POTENTIAL FROM
ELEMENTARY DYNAMIC ANAPOLES

Relation (10) implies that an arbitrary vector-potential field
can be obtained as a superposition of the vector potentials of
the elementary dynamic anapoles. The same result may be
derived, perhaps with more comfort, by considering the chain
of arguments in the reverse order. Indeed, any vector-potential
field can be formally represented as a superposition of the delta
functions (9). To understand what source produces a vector
potential in the form of the delta-function one needs to substi-
tute the latter into Maxwell’s equations. This yields a distinct
oscillating charge-current configuration, which corresponds
to a combination of collocated electric and toroidal dipoles.

4Fourier representation of the Helmholtz equation Green’s function

reads eik|r−r′ |
|r−r ′ | = 4π

∫
d p ei p(r−r′ )

p2−k2 .
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By construction the vector potential (and hence electric and
magnetic fields) of such a configuration is confined to a single
point, which renders it as a pointlike nonradiating source, i.e.,
the elementary dynamic anapole.

One may detect a seeming contradiction here. More specif-
ically, there is a strict relation between electric and toroidal
dipoles in the DA, as defined by (3). Given that electromagnetic
field of an arbitrary charge-current distribution can be ex-
pressed in terms of the fields of spatially distributed DAs, does
this not imply that in fact any charge-current distribution has to
satisfy (3)? The caveat here is that two distinct charge-current
distributions can produce the same electromagnetic fields (and
potentials) if one of the distributions is not spatially localized.

As the simplest example, consider the electric field of an
extended static dipole formed by two charges of opposite sign
separated by distance L. The positive charge is placed at the
origin, r = 0, and the negative at r = L, see Fig. 4(b). For large
L, the influence of the negative charge in the vicinity of the
positive charge (depicted by dashed circle) is negligible, and
the electric field there is equivalent to the field of an isolated
positive charge, Fig. 4(a). In the formal limit of infinite L,
the electric fields of the two charge configurations will also
coincide in the rest of space. On the other hand, an “infinite”
dipole can be thought of as an assembly of infinitesimal dipoles
arranged head to tail, Fig. 4(c). Thus an infinite number of point
dipoles each carrying zero charge is able to precisely mimic
the field of an isolated charged particle.

FIG. 4. Equivalence between the fields of a point charge and
infinite dipole: (a) single charge, (b) large dipole, and (c) large dipole
as a chain of infinitesimal dipoles.

The above considered example makes it clear that the
relation (10) is rather formal. However, when the integration
domain is finite, which is exactly the case for nonradiating
sources, (10) becomes much more useful and straightforward.
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