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The charge dynamical response function of the Hubbard model is investigated on the square lattice in the
thermodynamic limit. The obtained charge-excitation spectra consist of a continuum, a gapless collective mode
with anisotropic zero-sound velocity, and a correlation-induced high-frequency mode at ω ≈ U . The correlation
function is calculated from Gaussian fluctuations around the paramagnetic saddle point within the Kotliar and
Ruckenstein slave-boson representation. Its dependence on the on-site Coulomb repulsion U and density is
studied in detail. An approximate analytical expression of the high-frequency mode, which holds for any lattice
with one atom in the unit cell, is derived. Comparison with numerical simulations, perturbation theory, and the
polarization potential theory is carried out. We also show that magnetic instabilities tend to vanish for T � t/6,
and finite-temperature phase diagrams are established.
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I. INTRODUCTION

Our understanding of excitations in correlated electron
systems has been strongly influenced by the seminal works
of Hubbard [1], Landau [2], and Pines [3]. In his study [1]
of the model Hamiltonian that is now associated with his
name, Hubbard put forward one very important feature of
strongly correlated electrons: the splitting of the bands into the
so-called upper Hubbard band (UHB) and the lower Hubbard
band (LHB). Its origin can be traced back to the atomic limit
where a gap of the order of the interaction strength separates
two sets of states, one at ω ≈ 0 and the other at ω ≈ U .
One then expects that by ramping up the hopping between
the sites, the hybridization of the atomic orbitals results
progressively in the delocalized states forming the dispersive
LHB and UHB. However, Hubbard’s treatment fails to produce
the predicted Fermi liquid for weak coupling. Indeed, in this
regime the self-energy he postulated neither reduces to the
perturbation theory result nor yields the correct Fermi surface
for the metallic phase [4]. In the latter limit, Landau’s theory of
the Fermi liquid [2,5,6] has proved to be a successful paradigm
for understanding a large variety of fermion systems at low
temperature, such as normal liquid 3He, metals or semimetals,
and nuclear matter. This phenomenological approach is based
on the physical intuition that the low-energy properties of
interacting particles can be modeled from a gas of elementary
excitations, referred to as quasiparticles, which are formed
with a lifetime that is infinite on the Fermi surface but
rapidly decays away from it. Alternatively to Landau’s original
formulation, this result can be obtained within perturbation
theory. Using the latter to compute correlation functions
within the random phase approximation (RPA), Pines and
Bohm [3] showed that the response functions are composed
of a continuum generated by the incoherent response of
quasiparticles supplemented by peaks signaling collective
excitations, which arise as dynamical fluctuations of the
ground state. The dispersion and attenuation of the collective
modes are then indicative of the nature of the phase. Prominent
examples are the Goldstone modes, which appear when a
continuous symmetry is spontaneously broken at a phase
transition, such as phonons for rotational and translational
symmetries, or magnons for the spin-rotational symmetry.

Reconciling the Fermi liquid with Hubbard’s local physics
remains an important and largely unsolved problem for
correlated electrons. Indeed, numerical approaches generically
face finite-size effects [7] because the required computing
resources blow up exponentially with increasing system size.
Yet results can be obtained in limiting cases such as the
infinite-coordination lattice where the dynamical mean-field
theory [8,9] catches the Hubbard gap at half-filling. However,
in the doped system a clear picture is still missing, possibly
because of the formation of incommensurate phases with
large unit cells that cannot be captured by the method
and its cluster extensions [10–18]. Furthermore, the above-
mentioned approaches are mainly focused on a self-consistent
calculation of one-particle correlation functions, which can
be directly related to experimental observations such as pho-
toemission. However, other experimental techniques require
knowledge of two-particle quantities such as the charge and
spin response functions that are probed in neutron scattering
experiments. Computing two-particle correlations is more
challenging because of the need to include vertex corrections
[8,19].

The purpose of this work is to compute the charge response
function of the Hubbard model using an extension of the
Kotliar and Ruckenstein slave-boson representation. One of
our main results is that it reduces to the RPA susceptibility
for weak coupling. The obtained charge-excitation spectrum
generically consists of (i) a continuum, the width of which
decreases with increasing interaction strength and density, (ii)
a collective mode with anisotropic zero-sound (ZS) velocity,
and (iii) a high-frequency mode at ω ≈ U , which is the
signature of the UHB. Hence our scheme reconciles the Fermi
liquid physics—including collective modes—with Hubbard’s
local physics embedded in the split bands. The calculation
is carried out in a paramagnetic phase, free of symmetry
breaking, in the thermodynamic limit. It allows us to resolve
the full momentum dependence of the spectra. At first glance,
neglecting magnetic instabilities puts severe constraints on the
parameter range where the calculation may be meaningfully
performed. However, as shown below, the incommensurate
magnetic instabilities are strongly suppressed with increasing
temperature, so that they essentially disappear for T ≈ t/6.
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Since Mott insulating ground states arise at large U and
at half-filling, we perform our investigations in a framework
that is able to capture interaction effects beyond the physics
of Slater determinants. We use an extension of the Kotliar
and Ruckenstein slave-boson representation that reproduces
the Gutzwiller approximation on the saddle-point level [20].
It entails the interaction-driven Brinkman-Rice metal-to-
insulator transition [21]. A whole range of valuable results
have been obtained with Kotliar and Ruckenstein [20] and
related slave-boson representations [22,23], which motivates
the present study. In particular, they have been used to
describe antiferromagnetic [24], spiral [11,25–27], and striped
[12–14,28] phases. Furthermore, the competition between the
latter two has been addressed as well [29]. In addition, it
has been obtained that the spiral order continuously evolves
to the ferromagnetic order in the large-U regime (U � 60t)
[27] so that it is unlikely to be realized experimentally.
Consistently, in the two-band model, ferromagnetism was
found as a possible ground state only in the doped Mott
insulating regime [30]. Yet adding a ferromagnetic exchange
coupling was shown to bring the ferromagnetic instability
line into the intermediate-coupling regime [31]. A similar
effect has been obtained with a sufficiently large next-
nearest-neighbor hopping amplitude [32] or going to the fcc
lattice [33].

The influence of the lattice geometry on the metal-to-
insulator transition was also discussed [34]. For instance, a
very good agreement with quantum Monte Carlo simulations
on the location of the metal-to-insulator transition for the
honeycomb lattice has been demonstrated [35]. Also, strongly
inhomogeneous polaronic states that have been found in
correlated heterostructures have also been addressed using this
formalism applied to the Hubbard model extended with inter-
site Coulomb interactions [36]. Most recently, the approach
has been used to address possible capacitance enhancement in
a capacitor consisting of strongly correlated plates separated
by a dielectric [37]. Furthermore, a comparison of ground-state
energies to existing numerical solutions has been carried out
for the square lattice, too. For instance, for U = 4t it could
be shown that the slave-boson ground-state energy is larger
than its counterpart by less than 3% [11]. For larger values
of U , it has been obtained that the slave-boson ground-state
energy exceeds the exact diagonalization data by less than
4% (7%) for U = 8t (20t) and doping larger than 15%. The
discrepancy increases when the doping is lowered [26]. It
should also be emphasized that quantitative agreement to
quantum Monte Carlo charge structure factors was established
[38].

The paper is organized as follows. In Sec. II we give a brief
presentation of the spin-rotation-invariant (SRI) Kotliar and
Ruckenstein slave-boson representation of the Hubbard model
and the method used to calculate dynamical response functions
(more details can be found in, e.g., Ref. [39]). Section III
presents the paramagnetic saddle-point solution and discusses
its temperature dependence. In addition, phase diagrams
summarizing the temperature dependence of magnetic and
charge instabilities are established. We evaluate the spin and
charge susceptibilities from fluctuations captured within the
one-loop approximation in Sec. IV, and we investigate the
dispersion of their collective modes in Sec. V. Our results are

discussed in comparison with the perturbation Hartree-Fock
(HF)+ RPA prediction, as well as with available numerical
investigations (exact diagonalization and quantum Monte
Carlo method) in Sec. VI. We summarize the paper in the
Conclusion.

II. MODEL AND METHOD

The Hubbard Hamiltonian in the SRI Kotliar and Ruck-
enstein slave-boson representation [20,39] is expressed with
auxiliary boson operators ei , piμ, di (for atomic states
with zero, single, and double occupancy, respectively), and
pseudofermion operators fiσ as

H =
∑
i,j

tij
∑

σ,σ ′,σ ′′
z
†
iσ ′′σ f

†
iσ fjσ ′zjσ ′σ ′′ + U

∑
i

d
†
i di . (1)

Here hopping occurs between nearest-neighbor sites with
amplitude tij = −t . A key feature of the representation lies
in the reduction of the on-site Coulomb interaction into a
term bilinear in bosonic operators, at the expense of a more
complicated hopping term. To preserve spin rotation symmetry
[22,23], the canonical operators piμ build a 2 × 2 matrix in
spin space that is expanded into the identity matrix τ 0 and
the Pauli matrices as p

i
= 1

2

∑3
μ=0 piμτμ. In this space, the

occupancy-change operator z
i

in the hopping term is also a
matrix defined as

z
i
= e

†
i LiMiRi pi

+ p̃†
i
RiMiLi di (2)

with

Mi =
⎡
⎣1 + e

†
i ei +

3∑
μ=0

p
†
iμpiμ + d

†
i di

⎤
⎦

1/2

,

Li = [(1 − d
†
i di)τ

0 − 2p†
i
p

i
]−1/2, (3)

Ri = [(1 − e
†
i ei)τ

0 − 2p̃†
i
p̃

i
]−1/2,

where p̃
i
= 1

2 (pi0τ
0 − pi · τ ).

In the augmented Fock space generated by the auxiliary
boson operators, the subspace of physical states is the
intersection of the kernels of operators,

Ai = e
†
i ei +

3∑
μ=0

p
†
iμpiμ + d

†
i di − 1,

Bi0 =
3∑

μ=0

p
†
iμpiμ + 2d

†
i di −

∑
σ

f
†
iσ fiσ , (4)

BBBi = p
†
i0pi + p †

i pi0 − ip †
i × pi −

∑
σ,σ ′

τ σσ ′f
†
iσ ′fiσ ,

i.e., in this subspace Ai = 0 that is the constraint of one
atomic state per site, and Biμ = 0, which equates the number
of fermions to the number of p and d bosons.

The partition function is calculated as a functional integral
[38,40] with the effective Lagrangian L = LB + LF, where

165127-2



COLLECTIVE MODES IN THE PARAMAGNETIC PHASE OF . . . PHYSICAL REVIEW B 95, 165127 (2017)

the purely bosonic part is

LB =
∑

i

⎡
⎣e

†
i ∂τ ei +

3∑
μ=0

p
†
iμ∂τpiμ + d

†
i (∂τ + U )di

+ αiAi +
3∑

μ=0

βiμBB
iμ

⎤
⎦, (5)

with BB
iμ being the bosonic part of the operator Biμ, and the

mixed fermion-boson part can be written as

LF = −tr

{
ln

[
(∂τ − μ + βi0)δσσ ′δij + β i · τ σσ ′δij

+ tij
∑
σ1

z
†
jσσ1

ziσ1σ ′

]}
(6)

after the fermion fields have been integrated (here μ is the
chemical potential). The constraints that define the physical
states are enforced with Lagrange multipliers αi and βiμ. The
internal gauge symmetry group of the representation allows
us to simplify the problem. The phases of e and pμ can
be gauged away by promoting the Lagrange multipliers to
time-dependent fields [23], leaving us with radial slave-boson
fields [41]. Their values obtained at the saddle-point level may
be viewed as an approximation to their exact expectation values
that are generically nonvanishing [42]. The slave-boson field
corresponding to double occupancy di = d ′

i + id ′′
i , however,

has to remain complex, as emphasized by several authors
[23,43,44]. Since ei and piμ are now real, their kinetic terms
drop out of LB due to the periodic boundary conditions on
boson fields.

Within the approximation of Gaussian fluctuations, the
action is expanded to second order in field fluctuations,

ψ(k) = (δe(k),δd ′(k),δd ′′(k),δp0(k),δβ0(k),δα(k),

δp1(k),δβ1(k),δp2(k),δβ2(k),δp3(k),δβ3(k)), (7)

around the paramagnetic saddle-point solution

ψMF = (e,d,0,p0,β0,α,0,0,0,0,0,0) (8)

as ∫
dτ L(τ ) = SMF +

∑
k,μ,ν

ψμ(−k)Sμν(k)ψν(k) (9)

(the matrix S is given in Appendix A). We have in-
troduced the notation k = (k,νn), where νn = 2πnT , and∑

k = T
∑

νn
L−1 ∑

k, with L the number of lattice sites.
The correlation functions of boson fields are then Gaussian
integrals, which can be obtained from the inverse of the
fluctuation matrix S as 〈ψμ(−k)ψν(k)〉 = 1

2S−1
μν (k). For in-

stance, the slave-boson representation of the spin fluctuation
δSz = δ(p†

0p3 + p
†
3p0) yields the spin susceptibility

χs(k) = 〈δSz(−k)δSz(k)〉 = 2p2
0S

−1
11,11(k). (10)

Similarly, using the density fluctuation δN = δ(d†d − e†e),
the charge susceptibility is

χc(k) = 〈δN (−k)δN (k)〉
= 2e2S−1

1,1(k) − 4e dS−1
1,2(k) + 2d2S−1

2,2(k). (11)

Dynamical response functions are eventually evaluated within
analytical continuation iνn → ω + i0+.

The saddle-point approximation is exact in the large de-
generacy limit, and the Gaussian fluctuations provide the 1/N

corrections [23]. Moreover, it obeys a variational principle
in the limit of large spatial dimensions where the Gutzwiller
approximation (GA) becomes exact for the Gutzwiller wave
function [45].

III. PARAMAGNETIC SADDLE-POINT SOLUTION

A. Characterization of the paramagnetic phase

At the paramagnetic saddle point, the field z
i

reduces to
z0τ

0 with

z0 = p0(e + d)

√
2

1 − δ2
, (12)

where δ = 1 − 〈N 〉 is the hole doping from half-filling. The
factor z2

0 plays the role of a quasiparticle residue, and it also
renormalizes the quasiparticle dispersion as

Ek = z2
0tk − (μ − β0) (13)

with the bare dispersion tk = −2t(cos kx + cos ky) for the
square lattice.

The boson saddle-point values can be expressed with the
doping and the variable x = e + d as

e = x2 + δ

2x
, d = x2 − δ

2x
, p2

0 = 1 − x4 + δ2

2x2
,

α = p2
0x

2U0

2

(
1

x2 + δ
+ 1

1 − δ

)
,

β0 = α − x2U0

4

(
1 + 2p2

0

1 − δ2

)
(14)

(the expressions result from the constraints on physical states
e2 + p2

0 + d2 = 1 and p2
0 + 2d2 = 1 − δ, and saddle-point

conditions). Here the coupling scale

U0 = −8ε0/(1 − δ2) (15)

has been introduced in terms of the semirenormalized kinetic
energy

ε0 = 2

L

∑
k

tknF (Ek) (16)

and the Fermi function nF (ε) = 1/[exp(ε/T ) + 1].
As discussed in Refs. [23,46], the paramagnetic solution

for fixed values of doping δ and coupling U is found by
determining the chemical potential via the filling condition

2

L

∑
k

nF (Ek) = 1 − δ (17)

and the solution of the saddle-point equation

(1 − x2)x4

x4 − δ2
= U

U0
. (18)
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FIG. 1. Doping dependence of kinetic energy ε0 and coupling
scale U0 in the metallic phase at T = 0 and for U = 100t at T = t/10.

The procedure is carried out self-consistently with the
evaluation of z0 since the latter renormalizes the dispersion.
It is, however, simplified at T = 0 because then, for a fixed
filling, ε0 and U0 have the same values for all finite z0. This
implies that they do not vary with the coupling, except at
δ = 0, where they vanish discontinuously above a critical
coupling Uc. Figure 1displays their variations with the doping.
Increasing the temperature from zero reduces their amplitudes,
and it smoothes out the discontinuity at half-filling while
enlarging the collapse around it, as shown by the curves plotted
at temperature T = t/10.

For most values of coupling and doping, the saddle-point
equation possesses one finite solution x > 0 corresponding
to a metallic state. As shown in Fig. 2, saddle-point values
converge in the infinite-coupling limit where x = √|δ| and
z2

0 = 2|δ|/(1 + |δ|). A remarkable phenomenon occurs at
half-filling, where x vanishes above the critical coupling that
is Uc = −8ε0 = 2(8/π )2t ≈ 12.97t at T = 0. This solution
corresponds to an insulating state since z2

0 = 0 results in a
diverging quasiparticle mass and a vanishing quasiparticle
residue: This is the Brinkman-Rice mechanism [21] for
the Mott metal-to-insulator transition. Note that at finite
temperature, for small doping and U < Uc, the equation
can have up to three positive solutions [35], among which
the ground state is determined by minimizing the free
energy,

F = � + μ〈N 〉
= −2T

L

∑
k

ln[1 + e−Ek/T ] + Ud2 + (μ − β0)(1 − δ).

(19)

The degeneracy of solutions gives rise to a first-order transition
when increasing the coupling from a metallic state into either
an insulating state at half-filling [47] or a bad metallic one
characterized by a small quasiparticle residue z2

0 for finite
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δ = 0.9

x

FIG. 2. Saddle-point variable x and renormalization factor z2
0 for

different values of coupling U and doping δ at T = 0 (solid line) and
T = t/10 (dashed line).

doping (see Fig. 2). Figure 3 shows the transition line in the
(δ,U )-phase diagram at different temperatures. It is terminated
by a critical end point at finite doping, and in addition to
the parameter region with multiple solutions, it shrinks with
lowering temperature and vanishes at T = 0 [35,48]. Contrary
to an ordinary band insulator where thermal excitations of
quasiparticles enhance the conductivity, increasing the temper-
ature in the strongly correlated Hubbard model can induce a
transition from a low-temperature metal to a high-temperature
insulator as thermal fluctuations destroy the poor coherence of
the small-z0 metallic state in a fashion similar to the transition
observed in V2O3 [49].
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FIG. 3. Region of the phase diagram with a degeneracy of the
saddle-point solution at different temperatures. The solid line with
its critical end point indicates the metal-to-bad-metal first-order
transition taking place when increasing the coupling.
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FIG. 4. Instability of the paramagnetic phase toward incom-
mensurate magnetic ordering (top) or phase separation (bottom) at
different temperatures. The shaded area corresponds to values of
doping and coupling for which the static spin/charge susceptibility
can take negative values.

B. Instabilities

Let us now look for the parameter range in which the
above solution is stable. In Ref. [50] it was found that the
zero-temperature slave-boson paramagnetic phase is stable at
low density, even at large coupling, while incommensurate

magnetic instabilities develop at large densities. One may then
ask what is the picture at finite temperature, especially since
early estimates at half-filling yield a temperature at which
magnetic instabilities are destroyed to be of order t2/U [35].
Furthermore, while there is a renewal of interest in charge
instabilities at T = 0 [31,37], little attention has been paid
to them at finite temperature. Hence the robustness of the
saddle-point solution against spin and charge fluctuations is
investigated by looking for a divergence of the respective static
response functions [see Eqs. (B1) and (20)]. The instabilities of
the paramagnetic phase at different temperatures are mapped
in Fig. 4. The static spin susceptibility χs(k,ω = 0), given by
Eq. (B1), has no pole at high temperature, but a magnetic
instability appears below T ≈ t around half-filling and for
a finite but not large coupling. Its domain in the (δ,U )-
phase diagram then grows with lowering temperature, with a
significant variation between T = t/6 and t/8. Earlier studies
[26,50] have found that the instability boundary in the phase
diagram at T = 0 signals a magnetic ordering into a spiral
ground state. The doping range of the magnetic phase increases
with the coupling up to the maximum doping δ ≈ 0.63 reached
at U � 60t . Contrary to the magnetic behavior, the domain of
the charge instability shrinks with lowering temperature. It
is limited to small doping and occurs at all coupling above
a moderate threshold value, which increases with lowering
temperature. The charge instability is related to a tendency
toward a phase separation [26] or toward the more complicated
stripe phases [12–14].

IV. EXPRESSIONS OF THE DYNAMICAL
RESPONSE FUNCTIONS

The evaluation of correlation functions is simplified in the
paramagnetic state because the Gaussian fluctuations decouple
into spin and charge channels. This results in a matrix S

that is block-diagonal with a charge 6 × 6 submatrix and
three identical 2 × 2 blocks for the components of the spin.
As discussed in, e.g., Refs. [38,40,51,52], the blocks can be
independently inverted to yield the spin (see Appendix B) and
the charge dynamical response function

χc(k) = e2S55(k)
{
S̃33

[
2p2

0�1(k) − 8dp0�2(k) + 8d2�3(k)
] + 2e2p2

0S55(k)(ω + i0+)2
}

S̃33
[
�2

2(k) − �1(k)�3(k)
] − e2

(e+d)2 S55(k)
[
p2

0�1(k) + 2(e − d)p0�2(k) + (e − d)2�3(k)
]
(ω + i0+)2

(20)

with

S̃33 = − 2ep2
0

d(1 − δ2)
ε0,

�1(k) = −S55(k)[e2S22(k) − 2edS12(k) + d2S11(k)]

+ [eS25(k) − dS15(k)]2,

�2(k) = −S55(k)[e2S24(k) − p0eS12(k) − edS14(k)

+ dp0S11(k)] + [eS25(k) − dS15(k)]

× [eS45(k) − p0S15(k)],

�3(k) = −S55(k)
[
e2S44(k) − 2ep0S14(k) + p2

0S11(k)
]

+ [eS45(k) − p0S15(k)]2. (21)

The susceptibilities are particle-hole symmetric, as expected
for the Hubbard model on the square lattice.

The expression of χc(k) given in Ref. [38] is valid only
at zero frequency because the matrix elements omitted in the
previous work vanish in the static limit. We have checked
that the numerical discrepancies between the charge structure
factors evaluated in Ref. [38] and using Eq. (20) are minor.
They do not alter the previous conclusion that slave-boson
results are in very good agreement with quantum Monte Carlo
calculations [38,53]. However, the missing matrix elements
are crucial in the investigation of charge collective modes.
Without them, the poles of the dynamical response function
(or their residues) would not vanish in the free-particle limit.
Furthermore, their dispersions would depend on the sign of the
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FIG. 5. Real part of the function f s(k) at temperature T = t/100
for different values of coupling and doping, plotted for momenta
along the path linking � = (0,0), X = (π,0), and M = (π,π ).

doping, which is in conflict with the particle-hole symmetry
expected for the Hubbard model on a bipartite lattice.

In the weak-coupling limit, slave-boson expressions yield
the textbook results derived from perturbation methods. This
is obtained by writing the charge susceptibility (20) as

χc(k) = χ0(k)

1 + f s(k)χ0(k)
(22)

and then by expanding the function f s(k) in powers of the
coupling. Here the Lindhard function χ0(k), given by Eq. (24),
solely differs from the charge response function of a Fermi
gas through the quasiparticle mass renormalization z2

0. The
function f s(k) is related to the Landau parameter of Fermi-
liquid theory [31] by F s

0 = χ0(0)f s(0) = NFf
s(0), where NF

is the density of states at the Fermi level. Its expansion to
first order, f s(k) = U/2, is in perfect correspondence with
the expected RPA result. This generalizes Li et al.’s results
[40,52] to arbitrary momentum and frequency. Including the
next order in U yields

f s(k) = U

2

[
1 + U

2U0

(
4 − (1 − δ2)[1 + δγ (k)]

+ U 2
0

16

[(1 − δ2)γ (k) − 8δ]2

(ω + i0+)2 − (U0/2)2

)]
(23)

with the ratio γ (k) = χ1(k)/ε0χ0(k) and

χm(k) = 2

L

∑
q

(tq + tq+k)m
nF (Eq+k) − nF (Eq)

(ω + i0+) − (Eq+k − Eq)
.

(24)

The ratio γ (k) in the second-order expansion has a com-
plex value. Hence the function f s(k) actually possesses an
imaginary part. Its real part becomes negative just below a
critical energy at which it diverges (see Fig. 5). The domain
with Ref s < 0 is largest around M . Its size increases with

the doping and the coupling. As can be inferred from the
structure of f s(k), we show in the next section that the charge
susceptibility (20) has a rich spectrum that cannot be captured
within the conventional HF + RPA framework.

A theory going beyond the Landau Fermi liquid model
and the RPA approximation has been developed by Pines and
co-workers [54] for the excitations and transport properties
of quantum liquids. The so-called polarization potential (PP)
theory is a semiphenomenological approach that describes the
collective action of the particles by an averaged self-consistent
field that can be polarized by particle-hole excitations via an
effective screened potential. Using parameters obtained from
static measurements and sum rule considerations, it attempts to
describe both liquid 4He and 3He within a unified formalism.
In particular, the theory can reproduce the experimental
dispersion of the ZS collective mode, beyond the Landau Fermi
liquid regime. They obtained a density response of the form

χpp(k) = χ sc(k)

1 + [
f s

pp(k) + (ω2/k2)gs
pp(k)

]
χ sc(k)

(25)

within the linear-response theory. Two contributions enter the
PP. The first function f s

pp(k) is the Fourier transform of the
potential of an effective static particle interaction. The second
term corresponds to the effect of the so-called backflow, that
is, the additional screening caused by longitudinal current
fluctuations accompanying the density fluctuations. In the
long-wavelength limit, these quantities are related to the Lan-
dau parameters by f s

pp(0) = F s
0 /NF and gs

pp(0) = mFs
1 /3〈N 〉,

where m is the particle mass. A reasonable description of the
neutron-scattering data on 4He and 3He can be obtained by
assuming the PP to be essentially the same for both liquids.
The influence of the statistics is mainly present in the screened
density response function χ sc(k). Using a sum rule argument,
the latter is defined as the weighted sum of the expression for
a free Bose or Fermi gas of particles with an effective mass
m∗, and a structureless multiparticle contribution that is fitted
to the experimental data.

Comparing expression (22) of the density response function
with Eq. (25), one can note two distinguishing features. First
the PP used in χpp(k) appears to be an expansion of the function
f s(k) to second order in the frequency. With such a frequency
dependence, the PP is not singular and χpp(k) possesses one
single pole corresponding to the ZS mode. It cannot then
produce a second collective excitation, contrary to our result.
As shown by Eq. (23), f s(k) can diverge and it can then give
rise to another collective mode. As shown below, for strong
coupling, the latter disperses around ω ≈ U and we therefore
call it the UHB mode. However, the PP theory includes a
phenomenological multiparticle contribution in the screened
density response function χsc(k), which is absent from the
approximation level used in the present work. Multiparticle
processes may have a significant influence on the collective
modes, as, for instance, within the PP theory they soften the
ZS mode at large wave vectors. Including them in our approach
could, in principle, be achieved with an expansion of the action
going beyond the Gaussian fluctuation approximation.
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FIG. 6. Frequency dependence of the charge susceptibility χc(k)
and the Lindhard function χ0(k) for k = ( π

2 , π

2 ) at doping δ = 0.1,
coupling U = 4t , and temperature T = t/100. With z2

0 ≈ 0.91, the
particle-hole continuum ends at ωcont(k) ≈ 5.14t .

V. CHARGE COLLECTIVE MODES

The charge susceptibility possesses two collective modes
that appear at finite coupling. These excitations form narrow
peaks at well-defined energies in the spectrum of the inelastic
response Imχc(k). As shown in Fig. 6, the spectrum is
composed of a broad continuum that results from incoherent
single-particle excitations. Beyond its upper boundary ωcont(k)
lie the peaks of the two modes. The typical evolution of
the charge response function with the coupling is plotted
in Fig. 7 and the effect of doping is shown in Fig. 8. The
continuum contribution to χc(k) is roughly reduced by a
factor ∼(1 + UNF/2) while its energy width shrinks as z2

0.
The mode at lower energy ωZS(k) is the zero-sound mode. It
has a linear dispersion at long wavelength that is around the
k-point �. It appears as a resonance at the upper edge ωcont(k)
and it changes into a well-defined peak that departs from the
continuum when increasing the coupling. The second mode is
the upper-Hubbard-band mode, which occurs at higher energy
ωUHB(k). It appears at small coupling with no dispersion at
ω = U0/2 and it then develops with a gap at k = �, which
grows as U in the strong-coupling limit.

The dispersions of the collective modes are presented below
in more detail. Since our results are best understood at T = 0,
we postpone the discussion of temperature effects to the end
of the section.

A. Zero-sound mode

The conditions under which the collective modes develop
can be discussed with the weak-coupling expressions (22)
and (23) for the susceptibility. To first order in the coupling,
f s(k) ≈ U/2 so the denominator of χc(k) can vanish only

FIG. 7. Imaginary part of the charge susceptibility for U/t = 0,
1, 4, and 12 from top to bottom, plotted for momenta along the
path linking � = (0,0), X = (π,0), and M = (π,π ). Parameters: T =
t/100 and δ = 0.1.

if χ0(k) is real and negative. As shown in Fig. 6, these
conditions are met beyond the upper edge ωcont(k) of the
response continuum, which corresponds to the largest energy
of the particle-hole excitations with momentum k. Generally,
Reχ0(k) has a deep minimum at ωcont(k) that can even
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FIG. 8. Imaginary part of the charge susceptibility for doping
values δ = 0.1, 0.5, and 0.9 from top to bottom. Parameters: T =
t/100 and U/t = 8.

diverge if Imχ0(k) varies discontinuously. Hence, the charge
susceptibility can develop a pole in the vicinity of the upper
edge, which results in the onset of the ZS mode even for a
small coupling. In this regard, the (1,0) and (0,1) directions
are special. The particle-hole susceptibility χ0 takes the form
of a 1D response for k along �-X. On a large range of doping
around half-filling, this results in a square-root singularity at
ωcont(k) that ensures the existence of the ZS mode along the
symmetry axis and around the k-point X. Note, however, that
the mode is suppressed just below the UHB mode energy
because Ref s(k) becomes negative (see Fig. 5).

Close to half-filling, the ZS mode exists for nearly all
momenta. As shown in Figs. 7 and 8, at strong coupling, the

0.1
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103

(a1)

(U = 2t)
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1
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102

103

(b1)
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103

0 1 2 3

(c1)

ω /t|k|

(a2)

(U = 12t)

(b2)

0 1 2 3

(c2)

ω /t|k|

FIG. 9. Imaginary part of χc(k) (solid line) and of χ0(k) (dotted
line) for small momentum k = 0.001(cos θ, sin θ ) with angle θ = 0
(a), π/10 (b), and π/4 (c), at moderate coupling U = 2t and strong
coupling U = 12t . Parameters: δ = 0.1 and T = 0.

intensity of the charge response is largely transferred from the
single-particle processes to the collective modes. Increasing
the doping results in the softening of the ZS mode, while
the response continuum grows as the quasiparticle mass is
less renormalized. Eventually, at large doping, the ZS pole is
suppressed for nearly all wave vectors as the singularity of
Reχ0(k) at the continuum boundary is smoothed out.

At long wavelength, that is, in the vicinity of �, the
dispersion of the pole is proportional to |k|, and one can define
the ZS velocity as

cs(θk) = ωZS(k)

|k| . (26)

For the Hubbard model on the square lattice, the sound velocity
is anisotropic. The maximum is along the M direction, while
the minimum is along the X direction (see Fig. 9). However,
the anisotropy vanishes in two limiting cases: at large doping
|δ| ≈ 1 as the quasiparticle dispersion around the Fermi energy
tends to a parabolic dispersion, and, more surprisingly, close to
half-filling for strong coupling. In the latter case, the isotropy
is approached because the ZS pole is located far above the
strongly renormalized edge ωcont(k), at an energy where the
functions χm(k) at long wavelength are dominated by their
s-wave component.

The sound velocity along the two high-symmetry directions
is plotted in Fig. 10 for different values of coupling and
doping. At small coupling, the collective mode appears
close to the continuum upper boundary, which is ωcont(k) =
z2

0maxv0
F
(v0

F · k) for small momentum. Here v0
F = ∂tq

∂q |
qF

is the
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FIG. 10. Zero-sound velocity at zero temperature as a function of
the coupling in the X and M directions, for doping δ = 0.1 (triangle),
0.5 (dot), and 0.9 (square).

bare Fermi velocity. Hence the weak-coupling approximation
yields the velocity in the M direction, cs(π

4 ) ≈ v0
F(π

4 )[1 +
( 1

(18t)2 − 1−δ2

U 2
0

)U 2], where v0
F(π

4 ) = 2t
√

2[1 − (μ/4t)2]. In the

X direction, for doping |δ| � 0.63, the expression remains
the same, but with v0

F(0) = 2t
√

1 − (1 − |μ|/2t)2. Otherwise,
for smaller doping we find cs(0) ≈ 2t[1 + ( 1

(9t)2 − 1−δ2

U 2
0

)U 2].

The evolution of the velocity with the coupling is complicated
since it is governed by two opposite trends. On the one hand,
the increase of the quasiparticle mass reduces it. On the other
hand, the increase of f s with U moves the ZS pole to higher
energy. As a result, at large doping |δ| ≈ 1 where the mass
renormalization can be neglected, the velocity increases with
increasing coupling. Then at a smaller doping the renormaliza-
tion is more important and the velocity variation depends on
the propagation angle: cs(π

4 ) decreases while cs(0) increases
before eventually decreasing at strong coupling. Lastly, in the
vicinity of half-filling, the variation of cs is nonmonotonic
(see Fig. 11). The velocity reaches a maximum at a coupling

below Uc before collapsing to cs ∼ 2|ε0|
√

|δ|(1 + U0
U

) in the
bad-metal state. The behavior at δ = 0 is even discontinuous:
cs abruptly falls at Uc from its maximum value ≈3.2t to zero.
As previously noted, the velocity around half-filling becomes
isotropic at large coupling.

B. Upper-Hubbard-band mode

Charge excitation with an energy of the order of U

has been predicted as a result of strong correlation effects
since the early days of the Hubbard model. Indeed, in the
vanishing hopping limit t = 0, all particles rest localized
at the energy of the atomic levels ω = 0 or ω = U . A
perturbative inclusion of the hopping, as done by Hubbard
and extended by Pairault et al. [55], results in the broadening
of the atomic levels and the formation of dispersive bands
around each one, the lower and upper Hubbard band. Hence
excitations resting on the UHB are expected from this
physical picture.

0

1

2

3

0 4 8  12  16  20

δ = 0 δ = 0.01

δ = 0.05c s
 /t

U/t

FIG. 11. Evolution of the zero-sound velocity around the metal-
to-insulator transition, in the X (symbols) and M directions (solid
lines).

The slave-boson approach yields such a collective exci-
tation, below denoted the UHB mode, which occurs at an
energy ωUHB(k) that grows as U for strong coupling. Like
the ZS mode, the UHB mode has an energy dispersion with a
minimum at � and a maximum at M , but pushed to a higher
energy (see Figs. 7 and 8). Actually, the excitation energy does
not vanish at �, even at small coupling. Numerical evaluations
find that the peak weight is zero at � and maximum at M .
These features are illustrated in Figs. 12 and 13, where the
dispersion with momenta along �-M is plotted for different

Γ

M

0
1

Im χc

(U/t = 1)

Γ

M

(U/t = 3)

Γ

M
6 7 8

ω/t

(U/t = 5)0 5 10 15 20

U/t

5

10

15

20

25

ω
/t

0 0.2Peak residue

(δ = 0.1)

10-3 10-2 10-1

FIG. 12. Left: Coupling dependence of the UHB mode dispersion
for momenta along the �-M path, at temperature T = t/100 and
doping δ = 0.1; the dashed line shows the maximum energy of the
response continuum, which is reached at M . Right: Imaginary part of
χc(k) at coupling U/t = 1, 3, and 5.
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FIG. 13. Dispersion of the UHB mode for momenta along the
�-M path at temperature T = t/100, and doping δ = 0.5 and 0.9.
The dashed line shows the upper edge of the response continuum
at M .

dopings and couplings. The mode appears at weak coupling
around ω = U0/2, which is the frequency at which f s(k)
diverges [see the second-order expansion (23)]. No dispersion
is observed at the onset of the mode. Although its pole exists
at any finite coupling, the mode disappears in the uncorrelated
limit as its residue vanishes at U = 0. A shift to higher energy
can be observed with increasing doping or coupling. Their
influences on the dispersion width are opposite. A widening
is obtained by increasing the coupling, while the effect of
doping is to narrow the dispersion to the point that it vanishes
at |δ| = 1. On the whole, the mode has its maximum weight
at M and it is most clearly observed for a moderately large
coupling U ∼ 5t at small but finite doping |δ| ∼ 0.1. Indeed,
its weight decreases in close proximity to half-filling, and it
vanishes at δ = 0. We found that it is also vanishingly small at
|δ| = 1.

The UHB mode can be distinguished from the ZS mode and
the response continuum because its energy is generally larger
than ωZS(k). However, this is not necessarily the case at weak
coupling. Spectra of Imχc(k) in Fig. 12 show that it enters the
quasiparticle continuum for momenta around M . This results
in the damping of the excitation by quasiparticle scattering,
and the mode peak is replaced by a depletion around ω ≈
U0/2 in the charge response continuum. At moderate coupling
(U ∼ 3t), the ZS mode that appears just beyond the continuum
edge hybridizes with the UHB mode around M , and there is
only one single peak around M that continuously becomes the
UHB peak as k goes to �. The depletion associated with the
UHB mode moves to higher energy with increasing coupling.
After it exits the continuum, the ZS mode can extend until M ,

where it forms a second well-defined peak below the UHB
one.

Analytical expressions for the dispersion of the UHB mode
can be obtained at weak and strong coupling. The mode mostly
occurs far beyond the continuum where χm(k) ∼ 1/ω2 and in
particular χ0(k) ≈ 2z2

0(ε0 − εk)/ω2 with

εk = 2

L

∑
q

tq+knF (Eq). (27)

To first order in the high-energy expansion, the denominator
(20) behaves as ω2 − ω2

HB. The charge response function then
possesses two poles, one at negative energy, ωLHB = −ωHB,
and one at positive energy, ωUHB = ωHB.

At small coupling U 
 U0, the saddle-point solution can
be approximated with x2 ≈ 1 − (1 − δ2)U/U0 which yields

ωUHB(k) ≈ U0

2

√
1 + U

2U0

(
1 + 7δ2 − (1 − δ2)

εk

ε0

)
. (28)

The weak-coupling expression highlights several features of
the UHB mode dispersion. First, the collective mode appears
around the energy U0/2 with a dispersion that is vanishingly
small. The expression also shows that doping results in a
narrower dispersion that is shifted to a higher energy, as seen in
Figs. 12 and 13. The dispersion width is approximately equal
to (1 − δ2)U/4 and it vanishes for |δ| = 1.

The approximation in the strong-coupling limit is obtained

with x2 ≈ |δ|/
√

1 − U0
U

(1 − |δ|/√1 − U0/U ), which gives

ωUHB(k) ≈ U

√
1 − U0

2U

(
1 − 3|δ| + (1 − |δ|)εk

ε0

)
. (29)

The dispersion thus has its minimum ≈U − U0( 1
2 − |δ|) at �,

and its width is approximately (1 − |δ|)U0/2. Hence at large
coupling, the energy of the mode grows linearly as the on-site
Coulomb interaction U . This genuine strong correlation effect
is one of the most important results of this work. Being
of order U , the mode follows from the UHB, which is not
captured by the conventional HF + RPA approach. It should
also be emphasized that Eqs. (28) and (29) hold for arbitrary
lattices with one atom in the unit cell, irrespective of the
dimensionality.

C. Effect of temperature

Within our theory, the impact of temperature on the
collective modes manifests itself in two different ways.
First, the collective mode dispersion shrinks with increasing
temperature. This results from the decrease of the saddle-point
values, most notably for doping |δ| � 0.1 and strong coupling.
As shown in Figs. 1 and 14, the averaged kinetic energy ε0,
the coupling scale U0, and the inverse-mass renormalization
factor z2

0 vary significantly with temperature for this regime
of parameters. However, in this region of the phase diagram
(Fig. 4) the paramagnetic solution is unstable toward phase
separation or incommensurate magnetic ordering. Outside this
regime, where our investigation is of better relevance, the
effect of temperature is a mild reduction of the amplitudes
of the saddle-point values. Thus increasing the temperature
up to T = t/3 slightly scales down the spectrum along the

165127-10



COLLECTIVE MODES IN THE PARAMAGNETIC PHASE OF . . . PHYSICAL REVIEW B 95, 165127 (2017)

0

4

8

 12

 16

(U = 4t)

U
0 

/t

0

4

8

 12

 16

(U = 8t)

U
0 

/t

0

4

8

 12

 16

0 0.5 1

(U = 16t)

U
0 

/t

δ

0

 0.5

1

(U = 4t)

z 0
2

0

 0.5

1

(U = 8t)

z 0
2

0

 0.5

1

0 0.5 1

(U = 16t)

z 0
2

δ

FIG. 14. Doping dependence of the coupling scale U0 and the
inverse-mass renormalization factor z2

0 at temperature T = 0 (dotted
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energy axis. We will not discuss the regime of high temperature
where the approximation of Gaussian fluctuations certainly
becomes insufficient. For instance, we expect that incoherent
multiparticle processes, which are not taken into account
here, get more prominent and modify significantly the charge
response of the system, as exemplified by the physics of liquid
helium.

The second notable effect of temperature is the broadening
of the collective mode peak, which results from scattering of
thermally excited quasiparticles. Let us first remark that in
the absence of incoherent multiparticle processes, the peak
is not damped above the energy �Emax(k) = 4tz2

0(| sin kx

2 | +
| sin ky

2 |) of the most energetic one-particle transition with
momentum transfer k. The UHB peak generally lies above it,
so its shape is hardly affected by increasing the temperature.
This is not the case of the ZS mode for small wave vectors at
large doping, and in the vicinity of � at any finite doping. The
ZS peak is broadened because the charge response continuum
does not extend up to �Emax(k) for small wave vectors.
The reason comes from the Fermi statistics, which, at zero
temperature, excludes some one-particle transitions, among
which can be found the most energetic one that occurs between
the states of momenta (π−kx

2 ,
π−ky

2 ) and (π+kx

2 ,
π+ky

2 ). As a
result, the ZS peak can be located between the continuum
upper edge ωT =0

cont (k) at T = 0 and �Emax(k). Increasing
the temperature then smears the Fermi distribution, which
populates the response continuum in this energy range, and
eventually broadens the ZS peak.

VI. COMPARISON WITH OTHER APPROACHES

A. Comparison with the HF + RPA result

In the weak-coupling limit, the charge response obtained
within the slave-boson method is mostly similar to the standard
HF + RPA result. But, as stated earlier, the former possesses
a supplementary collective mode at high energy, the UHB
mode. And, although the perturbation method also produces
a ZS mode, it fails to account for the correlation effects,
which strongly renormalize the quasiparticle mass around
half-filling, and for the dynamical screening of the electron
interaction. This is shown in Fig. 15, where the slave-boson
charge response is compared with the HF + RPA response,

χRPA(k) = χ
(0)
0 (k)

1 + U
2 χ

(0)
0 (k)

. (30)

Here χ
(0)
0 (k) is the charge response function of a Fermi gas, i.e.,

with no mass renormalization. At moderate coupling U = t

the only observable difference between the two responses
is the dispersionless UHB mode. The contribution of the
latter is small and the weight of its peak actually vanishes
in the limit U = 0. However, at large coupling U = 8t , the
two spectra are quite different. The slave-boson response has
two well-separated collective modes, while the perturbation
method only yields the ZS mode. Furthermore, the continuum
width and the ZS dispersion shrink due to the quasiparticle
mass enhancement, whereas such a correlation effect is not
captured by χRPA(k). The mass renormalization is not the
only effect of correlations. At large doping, the ZS peak in
χc(k) disappears around k = M , in contrast to the HF + RPA
prediction. This is because the bare electron interaction U/2
of the perturbation result is replaced by the complex function
f s(k) within the slave-boson approach. The latter depends on
frequency and momentum, and it can have a negative real part
near ωcont(k) (see Fig. 5), which thus suppresses the ZS pole.

B. Comparison with the time-dependent GA

The Kotliar and Ruckenstein slave-boson approach has
historically been designed to reproduce the Gutzwiller approx-
imation at the saddle-point level [20], thereby strongly linking
both schemes. Later on, a method to calculate excitations at
zero temperature was proposed based on the GA and the RPA
[56]. It takes the form of the above RPA series with an effective
interaction, therefore missing the physics of the Hubbard split
bands in the charge response function. Yet a refined treatment
has been proposed in Ref. [57], which we now compare to the
slave-boson result.

We restrict the analysis to the double-occupancy excitations
for which the comparison is simplified. We note that all three
terms in Eq. (11) contribute to the particle-hole continuum,
implying a damping in the double-occupancy excitation
spectra that is absent from the time-dependent Gutzwiller
approximation (TDGA) [57]. From a quantitative point of
view, one can observe that the pole of the double-occupancy
propagator found by the TDGA (see Eq. (100) in [57]) is
located at an energy smaller that the slave-boson one. The
discrepancy is largest at k = M , for small doping, and strong
coupling. For instance, the TDGA (slave-boson) pole disperses
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FIG. 15. Comparison between the imaginary part of χc(k) (top) and χRPA(k) (bottom) at moderate coupling U = t and strong coupling
U = 8t . Parameter: T = t/100.

from ω/t = 7.1 to 8.8 (7.2 to 10) for U = 8t and δ = 0.2,
and from ω/t = 14.4 to 17.8 (14.6 to 20.1) for U = 20t and
δ = 0.1. Hence the excitations computed within the TDGA
exhibit both qualitative and quantitative differences from our
results, which are controlled by the 1/N expansion [23].

C. Comparison with numerical methods

We have compared the charge response function evaluated
with the slave-boson method to exact diagonalization (ED)
data [57–59] and quantum Monte Carlo (QMC) simulations
[38,53,60–66] available in the literature. The low-temperature
phase found by the numerical methods at half-filling is
an antiferromagnetic insulator. But, as confirmed by our
investigation of instabilities, the paramagnetic solution be-
comes predominant with increasing doping and temperature.
Keeping this in mind when comparing our evaluation of
the charge response, we note that the spectra computed at
finite doping by both numerical approaches show salient
features that can be naturally explained by the two col-
lective modes found in the present work. In particular,
the variations of their dispersions with the coupling and
the doping agree qualitatively with the behavior we have
described.

ED is performed on finite clusters, and the small size
of the system enhances the energy level separation. As a
result, the obtained spectrum is a set of peaks rather than a
continuous function of the frequency. The energy quantization
is visible in the spectra of the charge susceptibility calculated
in Ref. [57] at small density 〈N 〉 ≈ 0.03. They show two
distinctive peaks at the energies where we have found the ZS
peak at k = X and the UHB peak. Confirming our results, the
first peak is exactly in the middle of the main contribution

to the momentum-integrated response, which corresponds to
the continuum of single-particle excitations. As for the second
peak at higher energy, we note that the dispersion of the ED
computation is narrow and the peak weight is vanishingly
small, which can be explained by the UHB mode found by our
theory close to doping |δ| = 1. The charge response function
has also been computed around half-filling, but for the Hubbard
model including hopping between next-nearest-neighbor sites
[58,59]. The latter is known to break particle-hole symmetry.
So the comparison with our results for the simple Hubbard
model should be taken with caution. One can nevertheless
remark that there is encouraging agreement for hole doping.
For the large value of coupling, U = 10t , the ZS-like structure
at the boundary of the continuum is found to decrease in
energy with increasing hole doping, which is also predicted by
the slave-boson method. In addition, the high-energy feature
increases in energy as the UHB mode does.

Early QMC simulations of the Hubbard model focused
mainly on the static spin and charge structure factors [60–62].
As previously discussed in Ref. [38], the SRI slave-boson
approach is in very good quantitative agreement with the
numerical evaluations of these quantities. Concerning the
dynamical response functions, and in particular the search for
collective modes, the analysis of the QMC results must over-
come two hurdles. Firstly, statistical averages computed by
QMC simulations yield the values of the correlation functions
on the imaginary-frequency axis. Their values on the real-
frequency axis are then approximated by different numerical
schemes, such as the maximum entropy method, which limits
the obtained frequency definition. Secondly, the simulations of
a doped system are restricted to the high-temperature regime
T � t/3 by the sign problem. As a consequence, QMC spectra
may lack the necessary energy resolution to distinguish fine
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structures, such as several collective-mode peaks close to one
another, or a peak with a small weight, which is the case of the
UHB mode for a large set of parameters.

The charge response function of a doped system is com-
puted in the QMC simulations [63–66] at temperature T = t/3
for coupling values U = 4t and 8t . At this temperature, a
sensible comparison with our theory may be made for doping
|δ| � 0.1 at which the paramagnetic phase should prevail.
The slave-boson results are consistent with the obtained QMC
spectra. The latter show that the continuum response is strongly
reduced at low doping, and the intensity is mainly located
beyond it, around the energies of the ZS and the UHB modes.
For instance, for k = M and U = 8t , the intensity mainly
spreads from ω ≈ 4t to ω ≈ 12t . This can be interpreted
as the response of the collective modes that interact with
the background of incoherent multiparticle processes. By
increasing the doping, the UHB mode energy increases, and
because of its small weight, its signature can no longer
be distinguished from the structureless background in the
QMC spectra. Meanwhile, the continuum response is less
renormalized away from half-filling, and the ZS mode energy
decreases. The most satisfying comparison is found with the
QMC simulations of Ref. [65] performed for U = 4t . The
spectra show two clear structures, one similar to the ZS peak
at the edge of the continuum response, and the other one
around ω ≈ 8t which possesses a slight dispersion as the UHB
mode.

VII. CONCLUSION

We have derived the expression of the charge susceptibility
of the Hubbard model in its Kotliar and Ruckenstein slave-
boson representation. We have shown that it reduces to the
conventional HF + RPA result when expanded to lowest order
in U . They depart markedly from one another already to next
order in U . We then investigated spin and charge instabilities
as well as charge collective modes of the two-dimensional
Hubbard model in the thermodynamic limit. To that end,
we used the spin rotation invariant formulation of the above
representation. Extending previous work, our calculations
showed that magnetic instabilities of the paramagnetic phase
essentially disappear for temperature T � t/6, which lays
ground for the computation of the charge susceptibility in this
regime. In the strong-coupling regime, the charge-excitation
spectrum splits into a low-frequency branch and a high-
frequency collective mode. En passant, an approximated
analytical form of the latter has been derived. It applies to
arbitrary lattices containing one site in the unit cell. This
mode, which may not be accounted for within the conventional
HF + RPA framework or self-consistent perturbative schemes
such as FLEX, disperses around ω � U and therefore follows
from the upper Hubbard band.

At low energy, the charge excitations form a continuum, the
width of which scales with the quasiparticle residue z2

0, again
in contrast to the conventional HF + RPA framework result. A
collective mode lies above its upper boundary. The velocity of
this zero-sound mode is anisotropic both off half-filling and
away from the low-density limit. We did not find a universal
behavior in its dependence on the coupling strength because
it results from two opposite trends: on the one hand the

increase of the effective mass reduces it, while on the other
hand the zero-sound excitation is shifted to higher energy.
Nevertheless, some trends could be identified; for instance, it
exhibits a very small dependence on U in the small density
regime. Furthermore, for small to intermediate doping, the
zero-sound velocity decreases once U exceeds the bandwidth.
To some extent, our results could be interpreted within Pines’
polarization potential theory. Indeed, striking similarities are
found at low frequency when the ZS and UHB modes are well
split. Yet the polarization potential theory does not entail a
UHB mode, and it therefore fails to describe the regime where
the ZS and the UHB modes strongly hybridize. We also studied
the temperature dependence of the charge-excitation spectrum.
We found the small wave-vector zero-sound excitation to
broaden with increasing temperature, while the other features
show little temperature dependence.
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APPENDIX A: ELEMENTS OF THE FLUCTUATION
MATRIX Si j

The fluctuation matrix is symmetric except for off-diagonal
elements Sμ3(k) = −S3μ(k). It is composed of four blocks,
one for the charge fluctuations and three for the spin
fluctuations.

As emphasized in [23,44], it is essential to notice the
absence of a full radial gauge in order to describe the
UHB mode. Indeed, in the early calculations [24,51,52,67]
the erroneous conclusion that the phase of all slave-boson
fields could be gauged away resulted in a 5 × 5 matrix
for the fluctuation matrix in the charge channel. However,
following the observation that one slave-boson field has
to be complex yields a 6 × 6 matrix that possesses the
supplementary dynamics introduced by the time derivative of
this boson field [43]. As a result, the charge susceptibility
acquires an ω2 dependence in addition to the frequency
dependence contained in the fermionic bubbles χm(k), and a
second pole describing the UHB mode. The charge fluctuation
matrix has thus been obtained in the limit q = 0 and δ = 0
where the softening of the UHB mode has been found at the
Mott-Hubbard transition [44]. Later a general expression of
χc(k) for arbitrary momentum and density has been derived
within the SRI representation [38]. But, as stated earlier, it
does not include several matrix elements that are present in the
correct expression (20). It turns out that the missing terms do
not contribute to the correlation functions in the limits ω = 0
or q = 0, which may explain why they have been overlooked
until now. However, they are crucial to reproduce the RPA
result at weak coupling.
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The nonzero terms of the charge part are

S1,1(k) = α + s1,1(k),

Sμν(k) = sμν(k) for μ,ν = 1,2,4 with μ �= ν,

Sμ3(k) = −S3μ(k) = − iνn

2
χ1(k)

∂z

∂ψμ

∂z

∂d ′′ for μ = 1,4,

S1,5(k) = −1

2
χ1(k)z0

∂z

∂e
,

S1,6(k) = e,

S2,2(k) = α − 2β0 + U + s2,2(k),

S2,3(k) = −S3,2(k) = νn

(
1 − i

2
χ1(k)

∂z

∂d ′
∂z

∂d ′′

)
,

S2,5(k) = −2d − 1

2
χ1(k)z0

∂z

∂d ′ ,

S2,6(k) = d,

S3,3(k) = α − 2β0 + U + s ′
3,3(k),

S3,5(k) = −S3,5(k) = − iνn

2z0
χ0(k)

∂z∗

∂d ′′ ,

S4,4(k) = α − β0 + s4,4(k),

S4,5(k) = −p0 − 1

2
χ1(k)z0

∂z

∂p0
,

S4,6(k) = p0,

S5,5(k) = −1

2
χ0(k). (A1)

The spin blocks are given by

S7,7(k) = S9,9(k) = S11,11(k) = α − β0 + s11,11(k),

S8,8(k) = S10,10(k) = S12,12(k) = −1

2
χ0(k),

S7,8(k) = S9,10(k) = S11,12(k) = −p0 − 1

2
χ1(k)

∂z↑
∂p3

z0.

(A2)

We have used

sμν(k) = ε0z0
∂2z

∂ψμ∂ψν

+
[
εk − 1

2
z2

0χ2(k)

]
∂z

∂ψμ

∂z

∂ψν

,

(A3)

s ′
3,3(k) = ε0z0

∂2z

∂d ′′∂d ′′ +
[
ε0 + ν2

n

2z2
0

χ0(k)

]∣∣∣∣ ∂z

∂d ′′

∣∣∣∣
2

, (A4)

with the fermionic bubbles

χm(k) = 2

L

∑
q

(tq+k + tq)m
nF (Eq+k) − nF (Eq)

iνn − (Eq+k − Eq)
, (A5)

and εk is given by Eq. (27).
The expressions of the derivatives of z may be gathered

from Refs. [38,40]. Note, however, that there is a misprint in
[38], which should be corrected as

∂2z

∂d ′2 = 2
√

2p0η

1 + δ

(
2d + x + 6xd2

1 + δ

)
. (A6)

APPENDIX B: SPIN SUSCEPTIBILITY χs(k)

As shown by [38,40,51], inverting the fluctuation matrix S

yields the spin dynamical response function

χs(k) = χ0(k)

1 + Akχ0(k) + Bχ1(k) + C
[
χ2

1 (k) − χ0(k)χ2(k)
] ,

(B1)

where

Ak = 1

2p2
0

[
α − β0 + ε0z0

∂2z↑
∂p2

3

+ εk

(
∂z↑
∂p3

)2]
,

B = z0

p0

∂z↑
∂p3

,

C =
(

z0

2p0

)2(
∂z↑
∂p3

)2

. (B2)

Similarly to the charge dynamical response function, we
have found that in the weak-coupling limit, the expression can
be simplified as

χs(k) = χ0(k)

1 + f a(k)χ0(k)
, (B3)

where f a(k) can be expanded to second order in U as

f a(k) = U

2

[
− 1 + U

2U0
(3 + 5δ2 − (1 − δ2)δγ (k))

]
(B4)

with γ (k) = χ1(k)/ε0χ0(k). Reducing this result to first order
in U yields an exact agreement with the perturbation theory,
and Landau’s Fermi-liquid spin parameter is obtained with
Fa

0 = NF f a(0).
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224410 (2015).
[32] R. Frésard and W. Zimmermann, Phys. Rev. B 58, 15288 (1998).
[33] P. A. Igoshev, M. A. Timirgazin, V. F. Gilmutdinov, A. K.

Arzhnikov, and V. Yu. Irkhin, J. Phys: Condens. Matter 27,
446002 (2015).

[34] G. Kotliar, E. Lange, and M. J. Rozenberg, Phys. Rev. Lett. 84,
5180 (2000).

[35] R. Frésard and K. Doll, in Proceedings of the NATO ARW, The
Hubbard Model: Its Physics and Mathematical Physics, edited
by D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea,
and E. Louis (Plenum, New York, 1995), p. 385.

[36] N. Pavlenko and T. Kopp, Phys. Rev. Lett. 97, 187001 (2006).
[37] K. Steffen, R. Frésard, and T. Kopp, Phys. Rev. B 95, 035143

(2017).
[38] W. Zimmermann, R. Frésard, and P. Wölfle, Phys. Rev. B 56,

10097 (1997).

[39] R. Frésard, J. Kroha, and P. Wölfle, in Theoretical Methods
for Strongly Correlated Systems, edited by A. Avella and
F. Mancini, Springer Series in Solid-State Sciences Vol. 171
(Springer-Verlag, Berlin, 2012), pp. 65–101.

[40] T. Li, Y. S. Sun, and P. Wölfle, Z. Phys. B 82, 369 (1991).
[41] R. Frésard and T. Kopp, Nucl. Phys. B 594, 769 (2001).
[42] R. Frésard, H. Ouerdane, and T. Kopp, Nucl. Phys. B 785, 286

(2007).
[43] Th. Jolicoeur and J. C. Le Guillou, Phys. Rev. B 44, 2403(R)

(1991).
[44] Y. Bang, C. Castellani, M. Grilli, G. Kotliar, R. Raimondi, and

Z. Wang, Int. J. Mod. Phys. B 6, 531 (1992); Proceedings of
the Adriatico Research Conference and Miniworkshop, Strongly
Correlated Electrons Systems III, edited by Y. Lu, G. Baskaran,
A. E. Ruckenstein, and E. Tossati (World Scientific, Singapore,
1992).

[45] W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989);
Phys. Rev. B 37, 7382 (1988); W. Metzner, Z. Phys. B 77, 253
(1989).

[46] D. Vollhardt, P. Wölfle, and P. W. Anderson, Phys. Rev. B 35,
6703 (1987).

[47] R. Frésard and G. Kotliar, Phys. Rev. B 56, 12909 (1997).
[48] A. Camjayi, M. J. Rozenberg, and R. Chitra, Phys. Rev. B 76,

195108 (2007).
[49] D. B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and

T. M. Rice, Phys. Rev. B 7, 1920 (1973).
[50] K. Doll, M. Dzierzawa, R. Frésard, and P. Wölfle, Z. Phys. B

90, 297 (1993).
[51] M. Lavagna, Phys. Rev. B 41, 142 (1990).
[52] T. Li and P. Bénard, Phys. Rev. B 50, 17837 (1994).
[53] M. Dzierzawa (unpublished).
[54] D. Pines, in Quantum Fluids, edited by D. F. Brewer (North-

Holland, Amsterdam, 1966), p. 257; C. H. Aldrich and D. Pines,
J. Low Temp. Phys. 32, 689 (1978); for a review, see D. Pines,
Lect. Notes Phys. 142, 202 (1981).

[55] S. Pairault, D. Sénéchal, and A.-M. S. Tremblay, Eur. Phys. J.
B 16, 85 (2000).

[56] G. Seibold and J. Lorenzana, Phys. Rev. Lett. 86, 2605 (2001).
[57] J. Bünemann, M. Capone, J. Lorenzana, and G. Seibold, New J.

Phys. 15, 053050 (2013).
[58] C. J. Jia, C.-C. Chen, A. P. Sorini, B. Moritz, and T. P. Devereaux,

New J. Phys. 14, 113038 (2012).
[59] See the supplemental material of Y. Wang, C. J. Jia, B. Moritz,

and T. P. Devereaux, Phys. Rev. Lett. 112, 156402 (2014).
[60] Y. C. Chen, A. Moreo, F. Ortolani, E. Dagotto, and T. K. Lee,

Phys. Rev. B 50, 655 (1994).
[61] C. Buhler and A. Moreo, Phys. Rev. B 59, 9882 (1999).
[62] F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700

(2000).
[63] R. Preuss, W. Hanke, C. Gröber, and H. G. Evertz, Phys. Rev.

Lett. 79, 1122 (1997).
[64] C. Gröber, R. Eder, and W. Hanke, Phys. Rev. B 62, 4336

(2000).
[65] M. Kohno, X. Hu, and M. Tachiki, Physica C 412-414, 82 (2004).
[66] Y. F. Kung, E. A. Nowadnick, C. J. Jia, S. Johnston, B. Moritz,

R. T. Scalettar, and T. P. Devereaux, Phys. Rev. B 92, 195108
(2015).

[67] J. W. Rasul and T. Li, J. Phys. C 21, 5119 (1988).

165127-15

https://doi.org/10.1103/PhysRevB.57.6937
https://doi.org/10.1103/PhysRevB.57.6937
https://doi.org/10.1103/PhysRevB.57.6937
https://doi.org/10.1103/PhysRevB.57.6937
https://doi.org/10.1103/PhysRevLett.89.136401
https://doi.org/10.1103/PhysRevLett.89.136401
https://doi.org/10.1103/PhysRevLett.89.136401
https://doi.org/10.1103/PhysRevLett.89.136401
https://doi.org/10.1103/PhysRevLett.90.066404
https://doi.org/10.1103/PhysRevLett.90.066404
https://doi.org/10.1103/PhysRevLett.90.066404
https://doi.org/10.1103/PhysRevLett.94.107006
https://doi.org/10.1103/PhysRevLett.94.107006
https://doi.org/10.1103/PhysRevLett.94.107006
https://doi.org/10.1103/PhysRevB.73.174525
https://doi.org/10.1103/PhysRevB.73.174525
https://doi.org/10.1103/PhysRevB.73.174525
https://doi.org/10.1103/PhysRevB.73.174525
https://doi.org/10.1103/PhysRevB.76.140505
https://doi.org/10.1103/PhysRevB.76.140505
https://doi.org/10.1103/PhysRevB.76.140505
https://doi.org/10.1103/PhysRevB.76.140505
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevLett.104.116402
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.40.7391
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1103/PhysRevB.39.9749
https://doi.org/10.1051/jphys:0198900500180283300
https://doi.org/10.1051/jphys:0198900500180283300
https://doi.org/10.1051/jphys:0198900500180283300
https://doi.org/10.1051/jphys:0198900500180283300
https://doi.org/10.1103/PhysRevLett.64.1445
https://doi.org/10.1103/PhysRevLett.64.1445
https://doi.org/10.1103/PhysRevLett.64.1445
https://doi.org/10.1103/PhysRevLett.64.1445
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1016/0921-4534(89)90316-X
https://doi.org/10.1103/PhysRevB.44.4415
https://doi.org/10.1103/PhysRevB.44.4415
https://doi.org/10.1103/PhysRevB.44.4415
https://doi.org/10.1103/PhysRevB.44.4415
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1103/PhysRevLett.113.046402
https://doi.org/10.1088/1367-2630/17/10/103023
https://doi.org/10.1088/1367-2630/17/10/103023
https://doi.org/10.1088/1367-2630/17/10/103023
https://doi.org/10.1088/1367-2630/17/10/103023
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevB.90.235105
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevLett.57.1362
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/PhysRevB.2.4302
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1103/PhysRevB.40.6817
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292000414
https://doi.org/10.1142/S0217979292002395
https://doi.org/10.1142/S0217979292002395
https://doi.org/10.1142/S0217979292002395
https://doi.org/10.1103/PhysRevLett.65.1379
https://doi.org/10.1103/PhysRevLett.65.1379
https://doi.org/10.1103/PhysRevLett.65.1379
https://doi.org/10.1103/PhysRevLett.65.1379
https://doi.org/10.1134/S0021364013160054
https://doi.org/10.1134/S0021364013160054
https://doi.org/10.1134/S0021364013160054
https://doi.org/10.1134/S0021364013160054
https://doi.org/10.1088/0953-8984/4/13/022
https://doi.org/10.1088/0953-8984/4/13/022
https://doi.org/10.1088/0953-8984/4/13/022
https://doi.org/10.1088/0953-8984/4/13/022
https://doi.org/10.1088/0953-8984/5/27/029
https://doi.org/10.1088/0953-8984/5/27/029
https://doi.org/10.1088/0953-8984/5/27/029
https://doi.org/10.1088/0953-8984/5/27/029
https://doi.org/10.1103/PhysRevB.64.134528
https://doi.org/10.1103/PhysRevB.64.134528
https://doi.org/10.1103/PhysRevB.64.134528
https://doi.org/10.1103/PhysRevB.64.134528
https://doi.org/10.1209/epl/i2006-10227-1
https://doi.org/10.1209/epl/i2006-10227-1
https://doi.org/10.1209/epl/i2006-10227-1
https://doi.org/10.1209/epl/i2006-10227-1
https://doi.org/10.1023/A:1013815313109
https://doi.org/10.1023/A:1013815313109
https://doi.org/10.1023/A:1013815313109
https://doi.org/10.1023/A:1013815313109
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.91.224410
https://doi.org/10.1103/PhysRevB.58.15288
https://doi.org/10.1103/PhysRevB.58.15288
https://doi.org/10.1103/PhysRevB.58.15288
https://doi.org/10.1103/PhysRevB.58.15288
https://doi.org/10.1088/0953-8984/27/44/446002
https://doi.org/10.1088/0953-8984/27/44/446002
https://doi.org/10.1088/0953-8984/27/44/446002
https://doi.org/10.1088/0953-8984/27/44/446002
https://doi.org/10.1103/PhysRevLett.84.5180
https://doi.org/10.1103/PhysRevLett.84.5180
https://doi.org/10.1103/PhysRevLett.84.5180
https://doi.org/10.1103/PhysRevLett.84.5180
https://doi.org/10.1103/PhysRevLett.97.187001
https://doi.org/10.1103/PhysRevLett.97.187001
https://doi.org/10.1103/PhysRevLett.97.187001
https://doi.org/10.1103/PhysRevLett.97.187001
https://doi.org/10.1103/PhysRevB.95.035143
https://doi.org/10.1103/PhysRevB.95.035143
https://doi.org/10.1103/PhysRevB.95.035143
https://doi.org/10.1103/PhysRevB.95.035143
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1103/PhysRevB.56.10097
https://doi.org/10.1007/BF01357181
https://doi.org/10.1007/BF01357181
https://doi.org/10.1007/BF01357181
https://doi.org/10.1007/BF01357181
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/S0550-3213(00)00657-X
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1016/j.nuclphysb.2007.05.025
https://doi.org/10.1103/PhysRevB.44.2403
https://doi.org/10.1103/PhysRevB.44.2403
https://doi.org/10.1103/PhysRevB.44.2403
https://doi.org/10.1103/PhysRevB.44.2403
https://doi.org/10.1142/S0217979292000311
https://doi.org/10.1142/S0217979292000311
https://doi.org/10.1142/S0217979292000311
https://doi.org/10.1142/S0217979292000311
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevB.37.7382
https://doi.org/10.1103/PhysRevB.37.7382
https://doi.org/10.1103/PhysRevB.37.7382
https://doi.org/10.1103/PhysRevB.37.7382
https://doi.org/10.1007/BF01313669
https://doi.org/10.1007/BF01313669
https://doi.org/10.1007/BF01313669
https://doi.org/10.1007/BF01313669
https://doi.org/10.1103/PhysRevB.35.6703
https://doi.org/10.1103/PhysRevB.35.6703
https://doi.org/10.1103/PhysRevB.35.6703
https://doi.org/10.1103/PhysRevB.35.6703
https://doi.org/10.1103/PhysRevB.56.12909
https://doi.org/10.1103/PhysRevB.56.12909
https://doi.org/10.1103/PhysRevB.56.12909
https://doi.org/10.1103/PhysRevB.56.12909
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.7.1920
https://doi.org/10.1103/PhysRevB.7.1920
https://doi.org/10.1103/PhysRevB.7.1920
https://doi.org/10.1103/PhysRevB.7.1920
https://doi.org/10.1007/BF01433051
https://doi.org/10.1007/BF01433051
https://doi.org/10.1007/BF01433051
https://doi.org/10.1007/BF01433051
https://doi.org/10.1103/PhysRevB.41.142
https://doi.org/10.1103/PhysRevB.41.142
https://doi.org/10.1103/PhysRevB.41.142
https://doi.org/10.1103/PhysRevB.41.142
https://doi.org/10.1103/PhysRevB.50.17837
https://doi.org/10.1103/PhysRevB.50.17837
https://doi.org/10.1103/PhysRevB.50.17837
https://doi.org/10.1103/PhysRevB.50.17837
https://doi.org/10.1007/BF00056653
https://doi.org/10.1007/BF00056653
https://doi.org/10.1007/BF00056653
https://doi.org/10.1007/BF00056653
https://doi.org/10.1007/BFb0018160
https://doi.org/10.1007/BFb0018160
https://doi.org/10.1007/BFb0018160
https://doi.org/10.1007/BFb0018160
https://doi.org/10.1007/s100510070253
https://doi.org/10.1007/s100510070253
https://doi.org/10.1007/s100510070253
https://doi.org/10.1007/s100510070253
https://doi.org/10.1103/PhysRevLett.86.2605
https://doi.org/10.1103/PhysRevLett.86.2605
https://doi.org/10.1103/PhysRevLett.86.2605
https://doi.org/10.1103/PhysRevLett.86.2605
https://doi.org/10.1088/1367-2630/15/5/053050
https://doi.org/10.1088/1367-2630/15/5/053050
https://doi.org/10.1088/1367-2630/15/5/053050
https://doi.org/10.1088/1367-2630/15/5/053050
https://doi.org/10.1088/1367-2630/14/11/113038
https://doi.org/10.1088/1367-2630/14/11/113038
https://doi.org/10.1088/1367-2630/14/11/113038
https://doi.org/10.1088/1367-2630/14/11/113038
https://doi.org/10.1103/PhysRevLett.112.156402
https://doi.org/10.1103/PhysRevLett.112.156402
https://doi.org/10.1103/PhysRevLett.112.156402
https://doi.org/10.1103/PhysRevLett.112.156402
https://doi.org/10.1103/PhysRevB.50.655
https://doi.org/10.1103/PhysRevB.50.655
https://doi.org/10.1103/PhysRevB.50.655
https://doi.org/10.1103/PhysRevB.50.655
https://doi.org/10.1103/PhysRevB.59.9882
https://doi.org/10.1103/PhysRevB.59.9882
https://doi.org/10.1103/PhysRevB.59.9882
https://doi.org/10.1103/PhysRevB.59.9882
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevB.62.12700
https://doi.org/10.1103/PhysRevLett.79.1122
https://doi.org/10.1103/PhysRevLett.79.1122
https://doi.org/10.1103/PhysRevLett.79.1122
https://doi.org/10.1103/PhysRevLett.79.1122
https://doi.org/10.1103/PhysRevB.62.4336
https://doi.org/10.1103/PhysRevB.62.4336
https://doi.org/10.1103/PhysRevB.62.4336
https://doi.org/10.1103/PhysRevB.62.4336
https://doi.org/10.1016/j.physc.2003.11.077
https://doi.org/10.1016/j.physc.2003.11.077
https://doi.org/10.1016/j.physc.2003.11.077
https://doi.org/10.1016/j.physc.2003.11.077
https://doi.org/10.1103/PhysRevB.92.195108
https://doi.org/10.1103/PhysRevB.92.195108
https://doi.org/10.1103/PhysRevB.92.195108
https://doi.org/10.1103/PhysRevB.92.195108
https://doi.org/10.1088/0022-3719/21/29/009
https://doi.org/10.1088/0022-3719/21/29/009
https://doi.org/10.1088/0022-3719/21/29/009
https://doi.org/10.1088/0022-3719/21/29/009



