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Periodically driven small polarons
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Small lattice polarons driven by strong external electric fields are considered. A time-dependent Schrödinger
equation is integrated directly in time domain. The field agitates ions both directly and through modulation of
carrier density. It is found that when the field is in resonance with local ion oscillations, the polaron is liberated
from its self-induced trap and the tunneling frequency increases exponentially.

DOI: 10.1103/PhysRevB.95.165121

I. INTRODUCTION

Polaron is a carrier in a condensed-matter system that
deforms surrounding atoms or ions from their equilibrium
positions. A stable polaron moves through the system together
with the deformation. The deformation impedes polaron
motion, increases its effective mass, and reduces mobility.
In polar solids with low carrier density, the carrier-ion
interaction derives from an unscreened Coulomb interaction
which is strong at short distances. Polaron transport properties
sharply, often exponentially, depend on ion positions, and
are a sensitive probe of the ion subsystem. Traditionally, ion
motion has been controlled through global variables such as
temperature or pressure, or through local modifications such
as isotope substitutions. Recently, however, direct excitation
of ions with lasers became possible [1]. Ions are driven
into resonance by strong laser fields and acquire oscillation
amplitudes as large as several percent of a lattice constant [1].
Such displacements significantly reduce or even completely
eliminate the deformation caused by the interaction with a
carrier. As a result, the carrier is “liberated” from the potential
trap created by the ions and its transport changes dramatically.
External driving of ions becomes therefore a powerful tool to
probe intrinsic polaron properties.

Polaron physics has a rich history that dates back to
Landau [2], Pekar [3,4], and Fröhlich [5]. The development
of the field is well documented in several books and reviews
[6–17]. In addition, for decades the polaron has served as a
testing ground for novel analytical and numerical techniques
including perturbative expansions [18–22], path integrals [23–
25], Monte Carlo methods [26–38], cluster diagonalization
[39–43], variational [23,44–50], and other [51–68] methods.
However, there has hardly been any work on externally driven
polarons or bipolarons. Most theoretical treatments of polaron-
light interactions are based on the linear response theory
[9,16,24,36,55–57,68], and as such assume weak coupling
between a charge carrier and an external electric field. The
field is treated as a perturbation that does not change polaron
states but only causes transitions between them. In this work
we are interested in the opposite limit of strong coupling when
the field directly alters the local state of the polaron. Arguably,
this is a much harder mathematical problem, and this is perhaps
one reason why it has not been widely addressed before. If fact,
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we are not aware of any publication on this subject prior to our
own recent paper [69].

The basic physics of driven polarons can be understood on a
two-site model system. In the absence of both ion displacement
and electric field [Fig. 1(a)] two atomic levels are in resonance,
leading to carrier transfer with a bare amplitude J . An external
electric field [Fig. 1(b)] periodically drives the levels on and off
resonance, which on average reduces the tunneling amplitude
to J1 < J . When an ion is included in the system [Fig. 1(c)]
its displacement drives the levels off resonance on a more
sustained basis. Tunneling is possible only with simultaneous
reversal of the deformation, and as such is exponentially
suppressed. This constitutes polaron formation. However, a
sufficiently strong external field can drive the ion in resonance,
see Fig. 1(d). That symmetrizes the potential so that the two
levels come into resonance periodically. As a result [69], the
tunneling amplitude increases exponentially compared to the
undriven case J3 � J2, but of course remains smaller than
bare amplitude J .

The goal of the present work is to extend the treatment of
Ref. [69] beyond the adiabatic approximation. Additionally,
indirect ion-field interaction through modulation of carrier
density is also included in the picture. In general, the direct
and indirect interactions compete with each other and their
balance should be carefully analyzed. Only a single polaron
case is studied while the bipolaron case is left for future work.

II. TWO-SITE DRIVEN POLARON MODEL

We consider one carrier of charge zc moving between
two tight-binding sites |1〉 and |2〉 with a hopping integral
J . The distance between the sites is 2b. One ion of mass
M , frequency �, charge zi , and dynamic coordinate y is
positioned symmetrically between the sites. The symmetric
position and polarization of ion displacement (parallel to the
line between the sites) is inspired by the layered structure of
high-temperature superconductors. Note that this arrangement
is different from the Holstein model of molecular crystals
[53], where each ion interacts with one lattice site only. The
full Hamiltonian consists of five terms: free carrier Hc, free
ion Hi , carrier-ion Hci , carrier-field Hcf , and ion-field Hif :

H = Hc + Hi + Hci + Hcf + Hif , (1)

Hc = −J (|1〉〈2| + |2〉〈1|), (2)
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FIG. 1. The effects of three interaction types on carrier tunneling.
(a) A free carrier on two sites. (b) An external field modulates on-site
energies and reduces the tunneling rate. (c) Carrier-ion interaction
skews the potential and impedes tunneling (polaron formation). (d)
The field drives the ion in resonance symmetrizing the potential and
increasing the tunneling rate relative to case (c).

Hi = − h̄2

2M

∂2

∂y2
+ 1

2
M�2y2, (3)

Hci = −gy(|1〉〈1| − |2〉〈2|), (4)

Hcf = zc|e|Eb(|1〉〈1| − |2〉〈2|) sin ω0t, (5)

Hif = −zi |e|Ey sin ω0t . (6)

Here E and ω0 are the field’s amplitude and frequency,
and g is the force between the ion and the carrier on
either site. The force is taken to be independent of y, i.e.,
carrier-ion interaction is treated in the linear approximation.
Note that Eqs. (1)–(6) are invariant under simultaneous site
inversion |1〉 ↔ |2〉, coordinate inversion y → −y, and time
inversion t → −t .

Because of a large number of physical parameters, it is
useful to transform to dimensionless variables. It is convenient
to measure everything in oscillator units. We choose �−1, h̄�,
and y0 = √

h̄/(M�) as the units of time, energy, and length,
respectively. Accordingly, dimensionless time τ , coordinate ζ ,
frequency ω, and hopping integral j are introduced as follows:

τ = �t, ζ = y

y0
, ω = ω0

�
, j = J

h̄�
. (7)

Dimensionless coupling constants between the field and the
carrier and between the field and the ion follow from the
transformation

αc = |e|Eb

h̄�
, αi = |e|E

h̄�

√
h̄

M�
. (8)

To estimate αc and αi , one can use values reported by Hu et al.
[1] in their studies of dynamically stabilized superconductivity
in YBa2Cu3O6.5: E = 3.0 MV cm−1 and h̄� = 83 meV. Using
the distance between copper-oxygen bilayers (8.2 Å) for 2b and
the mass and charge of the oxygen ion, one obtains αc ≈ 1.5
and αi ≈ 0.02. Despite the fact that αi 	 αc, effects of the
two coupling types are comparable, as will be detailed below.

The carrier-ion coupling constant λ is now discussed.
Commonly [13], λ is defined as the ratio of polaron shift

Ep = g2/(2M�2) (polaron energy in the atomic limit J = 0)
to half of bare bandwidth D (i.e., the lowest energy of a free
carrier). The half bandwidth in a two-site system is D2 = J .
Accordingly, λ is defined here as

λ = g2

2M�2J
. (9)

Expression (9) is quadratic in g, so the same λ describes
both attraction and repulsion. To distinguish between the two
possibilities, a sign variable zci is introduced:

zci = zc

|zc|
zi

|zi | . (10)

Accordingly, g in Eq. (4) can be written as

g = zci

√
2M�2Jλ. (11)

For the sake of visual clarity and keeping in mind the physics
of YB2C3O6.5, hereafter we will focus on the case of attraction,
i.e., positive zc = +1 (a hole inside a copper-oxygen plane)
and negative zi = −2 (an apical oxygen ion), which implies
g < 0. With such a choice, the on-site energy of |1〉 decreases
for negative y, see Eq. (4).

The full wave function is a two-element array {ψ1; ψ2}, both
elements being functions of time τ and ion displacement ζ .
Collecting all the definitions, the Schrödinger equation reads

i
∂

∂τ

(
ψ1

ψ2

)
=

(
ĥ1ζ −j

−j ĥ2ζ

)(
ψ1

ψ2

)
, (12)

where

ĥ1ζ,2ζ = −1

2

∂2

∂ζ 2
+ 1

2
ζ 2 ∓ zci

√
2jλζ

−(ziαiζ ∓ zcαc) sin (ωτ ). (13)

Normalization is chosen to be∫ ∞

−∞
{|ψ1(τ,ζ )|2 + |ψ2(τ,ζ )|2}dζ = 1. (14)

III. NUMERICAL METHOD

Equation (12) does not admit analytical solutions and
has to be integrated numerically. One approach is based on
Floquet theory and spectral expansion of ψ(τ ) in a Floquet
basis [70,71]. Here we adopt an alternative approach of direct
integration in time domain. The particular differencing scheme
is based on the Cayley form of the finite-time evolution
operator [72,73]

e−i(ĥζ +ĥj )�τ =
(
1 − i

2 ĥζ�τ
)(

1 − i
2 ĥj�τ

)
(
1 + i

2 ĥζ�τ
)(

1 + i
2 ĥj�τ

) + O(�τ 3),

(15)
where

ĥζ =
(

ĥ1ζ 0
0 ĥ2ζ

)
, ĥj =

(
0 −j

−j 0

)
. (16)

This representation is unitary and accurate to order (�τ )2

even for noncommuting operators ĥζ and ĥj , which is the case
here. Equation (15) leads to an unconditionally stable implicit
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time-stepping rule [74](
1 + i

2
ĥζ�τ

)(
1 + i

2
ĥj�τ

){
ψ1(τk+1,ζ )
ψ2(τk+1,ζ )

}

=
(

1 − i

2
ĥζ�τ

)(
1 − i

2
ĥj�τ

){
ψ1(τk,ζ )
ψ2(τk,ζ )

}
. (17)

where τk is the kth time step. Factorization of the evolution
operator into ζ and j parts enables sequential inversion: first
along ζ axis and then along the site index. The time-stepping
procedure is as follows. (i) Both wave function components
are discretized along ζ dimension: ψ1,2(τk,ζ ) → ψ1,2(τk,ζl).
(ii) Starting with ψ1,2(τk,ζl), the right-hand side of Eq. (17) is
computed. First, j part is applied which amounts to a (2 × 2)
matrix multiplication for each l. Second, ζ part is applied,
which is performed independently for ψ1 and ψ2 [ĥζ in Eq. (16)
is diagonal]. The resulting right-hand side is a two-row matrix
{bl

1; bl
2}. (iii) The left-hand side of Eq. (17) is inverted, again

in two consecutive steps. First, an intermediate function ψ∗ is
found from the following relation:

(
1 + i

2
ĥζ�τ

){
ψ∗

1 (ζl)

ψ∗
2 (ζl)

}
=

{
bl

1

bl
2

}
. (18)

Since ĥζ is diagonal, ψ∗
1 and ψ∗

2 are computed independently
using the method of Ref. [72]. (iv) Finally, ψ(τk+1,ζl) is found
by solving(

1 + i

2
ĥj�τ

){
ψ1(τk+1,ζl)
ψ2(τk+1,ζl)

}
=

{
ψ∗

1 (ζl)
ψ∗

2 (ζl)

}
. (19)

Since operator ĥj does not mix spatial coordinates, solving the
last equation amounts to inverting a (2 × 2) matrix for each l.
(v) The above sequence is repeated for the entire time interval
of interest. Most results presented in this paper were obtained
with �τ = 0.001 and �ζ = 0.1. Thus, time evolution over a
total time of τmax = 104 requires 107 time steps.

Choice of initial conditions ψ10,20 is now discussed. The
primary quantity of interest in this work is polaron tunneling
frequency between the sites. Therefore, we seek an initial
state that is localized at one of the two sites. Adiabatic
approximation provides a good starting point. Remove the
second derivative and assume αc = αe = 0 in Eq. (13). Then
fix ζ and solve the two-site one-carrier problem to obtain the
polaron adiabatic potential

w(ζ ) = 1
2 ζ 2 −

√
j 2 + 2λjζ 2. (20)

At λ > λcr = 1
2 , w(ζ ) develops two symmetric minima at

ζ0 = ±
√

2j

λ

(
λ2 − λ2

cr

)
. (21)

Near ζ0, the potential is quadratic with renormalized frequency
(in physical units)

�̃ = �

√
1 − λ2

cr

λ2
≡ �ω̃. (22)

Accordingly, a good starting wave function describing the
polaron in one of its minima is the ground state of an oscillator

with frequency ω̃ shifted by ζ0,

ψ10,20 = κ1,2
ω̃1/4

π1/4
e− 1

2 ω̃(ζ−ζ0)2
. (23)

Weights κ1,2 follow from solving the two-site problem

κ2

κ1
= 2λ − 2

√
λ2 − λ2

cr, (24)

and from the normalization condition |κ1|2 + |κ2|2 = 1.
The initial wave function can be further improved by

applying the projection operator

ψ0β = e−β(ĥζ +ĥj )ψ0, (25)

where β is a positive dimensionless number. Calculation of
Eq. (25) is also performed in a steplike fashion, by splitting
total imaginary time β into small steps �β 	 1 and replacing
the short-time evolution operator with a (�β)2-accurate
representation [75]

e−(�β)(ĥζ +ĥj ) ≈ (
1 − 1

2 ĥj�β
)
(1 − ĥζ�β)

(
1 − 1

2 ĥj�β
)
.

(26)

Application of all the factors is done in the same way as in
the case of real-time evolution, as described above. Since the
projection operator does not conserve normalization, ψ0 is
normalized after every time step �β. Most results presented
below were obtained with β = 2.0 and �β = 0.001.

For the purposes of this paper, a full wave function contains
too much information. To visualize tunneling rate, it is more
convenient to consider an integral probability for the carrier to
occupy either site 1 or site 2,

P1,2(τ ) =
∫ ∞

−∞
dζ |ψ1,2(τ,ζ )|2, (27)

or probability for the ion to be on the left (L) or on the right
(R) from the symmetry point ζ = 0,

P(L,R)(τ ) =
∫ (0,∞)

(−∞,0)
{|ψ1(τ,ζ )|2 + |ψ2(τ,ζ )|2}dζ. (28)

Another quantity of interest is instantaneous polaron energy
without ion-field and carrier-field contributions

E(τ ) = 〈(τ )|Ĥ |(τ )〉

=
∫ ∞

−∞
{ψ∗

1 ĥ1ζψ1 + ψ∗
2 ĥ2ζψ2}dζ

−j

∫ ∞

−∞
{ψ∗

1 ψ2 + ψ∗
2 ψ1}dζ. (29)

It can be shown by standard means that E(τ ) is real for all
times τ .

IV. LIMIT CASES

In this section, some limit cases of general model (12)
are reviewed. Consider first zero carrier-ion interaction λ = 0.
That splits the system into two independent subsystems: (i) a
free ion interacting with an external field, and (ii) a free carrier
hopping between two sites and interacting with an external
field. Solution to Eq. (12) is sought in a factorized form:
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FIG. 2. Numerical solution of Eqs. (31) and (32) for j = 1.0, αc = 1.5 and initial conditions ψ1(0) = 1 and ψ2(0) = 0. The top row is
wave function ψ1(τ ), both real part (dashed line) and imaginary part (solid line). The bottom row is the probability to reside on site 1.

ψ1,2(ζ,τ ) = φ(ζ,τ )χ1,2(τ ). Equation (12) decouples into one
equation for φ:

i
∂φ(ζ,τ )

∂τ
=

{
−1

2

∂2

∂ζ 2
+ 1

2
ζ 2 − ziαiζ sin (ωτ )

}
φ(ζ,τ ),

(30)
and two coupled equations for χ1,2:

i
∂χ1

∂τ
= zcαc sin (ωτ )χ1 − jχ2, (31)

i
∂χ2

∂τ
= −jχ1 − zcαc sin (ωτ )χ2. (32)

Equation (30) admits an explicit solution by means of Husimi
substitution [76,77] that maps a forced harmonic oscillator
onto a free oscillator. For example, the lowest (m = 0) Floquet
state has the form

φ0(ζ,τ ) = e−iε0τ+iS(ζ,τ ) 1

π1/4
e− 1

2 [ζ−η(τ )]2
, (33)

with

ε0 = 1

2
− (ziαi)2

4(1 − ω2)
, (34)

S(ζ,τ ) = ziαi ω

1 − ω2
ζ cos (ωτ ) − (ziαi)2(1 + ω2)

8ω(1 − ω2)2
sin (2ωτ ),

(35)

η(τ ) = ziαi ω

1 − ω2
sin (ωτ ). (36)

This explicit formula can be used to validate the numerical
method described in the preceding section. In case of resonant
excitation ω = 1, no stable periodic solution is possible.
Instead, the amplitude of wave function oscillations η(τ ) grows
linearly with time. If the oscillator is in its ground state when
the field is turned on, the time-dependent solution still has
the form of Eq. (33) but with ε0 = 1

2 and new functions η(τ )

and S(τ ):

ηres(τ ) = ziαi

2
(sin τ − τ cos τ ), (37)

Sres(ζ,τ ) = ziαi

2
ζ τ sin τ

+ (ziαi)2

16

(
τ−3

2
sin 2τ+τ 2 sin 2τ+2τ cos 2τ

)
.

(38)

Equations (31) and (32) and their analogs in quantum
optics have been studied in several papers [78–82] but no
analytical solution has been reported. (Somewhat surprisingly,
the more general problem of an infinite chain in a periodically
varying electric field is exactly solvable, providing analytical
description of dynamic localization [83].) To gain some
insight, we show several numerical solutions in Fig. 2. At
low frequencies ω 	 j , the on-site energies change slowly
compared to intersite hopping. When the levels are out of
resonance, the carrier gets confined to one of the sites and the
frequency of oscillations increases, as can be seen in the left
panels of Fig. 2. At high frequencies ω � j , fast oscillations of
on-site energies average to zero and the dynamics approaches
that of a free carrier with an intersite tunneling amplitude j ,
see Fig. 2 on the right. At intermediate frequencies, carrier
dynamics is complex, as illustrated in Fig. 2, center.

In the absence of an external field αi = αc = 0, the general
problem [Eq. (12)] reduces to a free two-site polaron. Note
that although the present model involves an intersite ion that
couples to both sites simultaneously, the model can be mapped
to the two-site Holstein polaron that has been studied in detail
[39,40,54]. A relevant quantity is the energy split of the lowest
level pair, as it defines polaron “mass” and tunneling frequency
in the undriven case [ftun = �ε12/(2π )]. In this paper, the
ground state energy and the first excited state energy are
computed by discretizing polaron Hamiltonian of Eq. (12)
in ζ space and directly diagonalizing a resulting matrix, see
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FIG. 3. Energy split of the two lowest stationary eigenstates of
the two-site polaron for several adiabaticity parameters j . Exact
numeric eigenvalues from Eq. (12) (for αi = αe = 0) and adiabatic
numeric eigenvalues from Eq. (39) are shown by solid and dashed
lines, respectively. The exact and adiabatic eigenstates are nearly
indistinguishable at j = 10. The same is true for the exact and
antiadiabatic solution, Eq. (43) shown by dot-dashed lines, at j =
0.3. In all cases, exact eigenvalues lie between the adiabatic and
antiadiabatic limits. Notice also a good match between numeric
adiabatic values and the instanton formula [Eq. (40)] for large j

and λ.

Fig. 3. Tunneling frequencies thus obtained are later used as a
reference for the driven case.

There are two well understood limits of the (undriven) two-
site polaron. In the adiabatic limit [40,54,59,60] j � 1, the
two-function Schrödinger equation [Eq. (12)] is reduced to a
one-function equation with Hamiltonian

ĥad = −1

2

∂2

∂ζ 2
+ w(ζ ), (39)

where w(ζ ) is the adiabatic potential [Eq. (20)]. Eigenvalues
of ĥad can be found numerically by discretizing Eq. (39) using
standard rules. Level splitting can also be estimated with the
instanton technique [84–86], leading to the following result
[40,69]:

�εinst
12 =

√
8j

πλ
F1

(
λ

λcr

)
e− j

2λ
F2( λ

λcr
), (40)

F1(x) = x2(1 − x−2)5/4

[x(1 + √
1 − x−2)]

√
1−x−2

, (41)

F2(x) = x2
√

1 − x−2 − log [x(1 +
√

1 − x−2)], (42)

where λcr = 1
2 . Figure 3 compares Eq. (40) with numerical

diagonalization of adiabatic Hamiltonian ĥad and of full
Hamiltonian [Eq. (12)].

In the opposite, antiadiabatic limit, j 	 1, a fast ion
instantaneously follows carrier transitions. Level splitting is
derived from the sudden approximation [51–53]

�ε12 = 2j e−2jλ. (43)

τ

0 2000 4000 6000 8000 10000

P
L(τ

)

0

0.2

0.4

0.6

0.8

1
j = 10, λ  = 0.9, α

c
 = 0

FIG. 4. Time evolution of two-site polaron for j = 10, λ = 0.9,
and αc = 0.0. The dashed line is undriven case αi = 0, while the solid
line is driven case at αi = 0.05 and ω = 0.71.

We now turn to the full time-dependent problem [Eq. (12)]
with nonzero αi and αc. We begin with the adiabatic
limit j � 1.

V. TWO-SITE DRIVEN POLARON: ADIABATIC CASE

Effects of direct ion-field interaction αi �= 0, αc = 0 are
considered first. Figure 4 compares time evolution of the
driven and undriven polaron for j = 10 and λ = 0.9. Period
of undriven oscillations is T0 = 7080 which is consistent with
the lowest doublet split of �ε12 = 8.81 × 10−4 [formula (40)
is accurate to 5.7%]. In contrast, the driven case shows much
faster oscillations with a period T ≈ 410, i.e., a decrease of
17.3 times. Notice that the driven PL(τ ) is not a clean sinusoid
but rather a complex function with multiple overtones.

A possible mechanism behind faster oscillations is now
discussed. The argument is based on the property of quantum
oscillators that the centroid of a driven wave function follows
a classical equation of motion [76]. Consider an ion near the
bottom of the adiabatic potential, as shown in Fig. 5. Frequency
of small-amplitude oscillations is ω̃ =

√
1 − (λcr/λ)2, see

Eq. (22). The classical equation of motion at resonance reads

ẍ + ω̃2 x = ziαi sin (ω̃τ ). (44)

An explicit solution with arbitrary starting point x0 and zero
initial velocity is

x(τ ) = x0 cos (ω̃τ ) + ziαi

2ω̃2
[ sin (ω̃τ ) − (ω̃τ ) cos (ω̃τ ) ]. (45)

The oscillation-averaged total energy is

〈ε(τ )〉 = 1

8
(ziαiτ − 2ω̃ x0)2 + (ziαi)2

8 ω̃2
. (46)

Long-term behavior of 〈ε(τ )〉 is quadratic growth. However,
short-term details depend on starting position x0. For positive
x0, energy initially decreases and oscillations stop before
picking up again. On the basis of this observation, the
following mechanism can be proposed, see Fig. 5. Initially,
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FIG. 5. Proposed mechanism of field-enhanced polaron tunnel-
ing. The double-well function is adiabatic potential [Eq. (20)] for
j = 10 and λ = 0.9. The two minima are located at ζ0 = ±3.52.
Dots with fuzzy edges symbolize an ion wave function at different
times. Starting from the bottom of the left well, the ion absorbs energy
from the field and rises to the top of potential barrier. After tunneling
to the right well, the ion loses energy and slows down. Then the cycle
repeats.

the ion is near the bottom of the left well of the adiabatic
potential. The external field drives the ion in resonance and
its energy rises. As energy approaches the top of the potential
barrier, quantum-mechanical tunneling probability increases
exponentially and eventually the ion tunnels under the barrier
into the right well. There, the ion finds itself out-of-phase with
the field (the in-phase position would be on the right side of
the right well) and starts losing energy. Once the ion descends
to the bottom of the right well, the process repeats but in the
opposite direction.

Reality is more complicated. One complication comes from
nonharmonicity of the adiabatic potential. As can be inferred
from Eq. (20), the instantaneous frequency decreases with the
amplitude of oscillations. As a result, an external field cannot
always be in resonance. One can only speak of an “effective”
or “average” resonance for the duration of the process. It is
clear that the rate of energy absorption or loss is less than for
ideal resonance. Another complication is the gradual nature
of quantum-mechanical tunneling. Numerical analysis shows
that underbarrier tunneling is not a sharp process. Rather, the
full wave function is nonzero in both wells at all times, so the
“start” or “end” of tunneling is not easy to identify.

The qualitative argument presented above leads to an
important conclusion. According to Eq. (45), the rate of
amplitude increase is proportional to coupling constant αi .
If one assumes that tunneling takes place when energy reaches
a certain value, and by association when the amplitude reaches
a certain value, then the tunneling condition will be reached
faster at larger αi . This implies that the frequency of driven
tunneling is directly proportional to the field strength and to
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FIG. 6. Tunneling frequency ftun versus ion-field coupling αi for
j = 10 and λ = 0.9. ftun has been determined from the maximum of
Fourier power spectrum of PL(τ ).

the square root of laser intensity

ftun ∝ αi ∝
√

I . (47)

To verify this prediction, we show ftun(αi) computed for
j = 10 and λ = 0.9 in Fig. 6. ftun has been determined from
the location of the largest peak in a Fourier power spectrum
of PL(τ ). Relation (47) approximately holds at intermediate
0.03 < αi < 0.10. There is a local minimum at weak couplings
αi ≈ 0.01, which implies that a very weak coupling initially
disrupts quantum-mechanical tunneling and decreases the
tunneling rate. In the opposite limit of strong coupling, αi >

0.1, oscillations become highly irregular without a dominant
harmonic in the Fourier transform.

Notice that experimentally achievable field strengths [1]
αi = 0.02 lie near the lower end of the linearity region,
according to the present calculation. This suggests that a
further increase in the field strength should systematically raise
ftun. This effect may have implications for superconductivity
in the cuprates, as was suggested in Ref. [69].

In real crystals, local ion frequencies may be shifted
by dispersion, lattice imperfections, temperature, and other
factors. Therefore it is important to understand the sensitivity
of ftun increase to variations of ion frequency �. In the present
model, �−1 is taken to be a unit of time, so one should consider
sensitivity to external driving frequency ω instead. Figure 7
presents PL(τ ) for several values of ω. One can observe that
enhanced polaron tunneling persists for detunings of up to
several percent of � on both sides of the “optimal” frequency
ω = 0.71. (Which of course renders the choice of optimal
frequency itself somewhat arbitrary.) For larger detunings,
PL(τ ) assumes more complex beatlike shapes which makes it
difficult to interpret the motion as periodic tunneling between
two potential wells. An important conclusion, however, is that
polaron delocalization is a robust effect that exists in a finite
interval of ion and driving frequencies, and as such should be
observable in real materials.
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FIG. 7. Time evolution of two-site polaron for several driving
frequencies. Model parameters are j = 10, λ = 0.9, αi = 0.05, and
αc = 0.0. The optimal driving frequency for this case is ω = 0.71,
for which data were shown in Fig. 4.

So far, only interaction between the external field and ion
has been taken into account. Now we consider the opposite
case of carrier-field interaction in the absence of ion-field
interaction: αe �= 0 and αi = 0. Figure 8 compares PL(τ ) for
several αe. The overall ftun(αe) dependence is similar to the
ftun(αi) behavior: initially, at small αe, the frequency decreases
relative to the undriven case before increasing at larger αe.

A possible underlying mechanism is now discussed, see
Fig. 9. In the adiabatic limit j � 1, j � ω the carrier
wave function equilibrates between the two sites for any
instantaneous position of the ion and instantaneous value of
the field. The time-dependent field “rocks” the carrier density
between the two sites. In turn, the oscillating carrier density
pulls the ion with variable strength and excites the latter
in its own well if the field frequency is close to the ion
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FIG. 8. Time evolution of two-site polaron with carrier-field drive
for j = 10, λ = 0.9, ω = 0.71. There is no ion-field coupling αi = 0.
Dashed line is the undriven case αe = 0.0, thick slow-varying line is
αe = 0.2, and thin fast-varying line is αe = 0.8.
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FIG. 9. Mechanism of enhanced polaron tunneling for αe �= 0.
Oscillating electric field changes partial carrier weights on the two
sites. The weights are indicated by positively charged dots. By
virtue of carrier-ion coupling, oscillating carrier density excites the
negatively charged ion at the bottom of the potential well.

frequency. Thus instead of direct excitation by the field, the
ion is driven into resonance by oscillating carrier density and
nonzero carrier-ion interaction.

Fluctuations of carrier density occur on a background set
by the much larger bare kinetic energy J . As a result, influence
of the external field is effectively reduced. In order to estimate
this effect, solve the two-site problem for small αe 	 j . In the
first order, one obtains for the wave functions

ψ2(τ )

ψ1(τ )
=

(
2 + zeαe sin ωτ

λj

)(
λ −

√
λ2 − λ2

cr

)
, (48)

and for the densities

|ψ1(τ )|2 = 1

8λ
(
λ − √

λ2 − λ2
cr

) − �n(τ ), (49)

|ψ2(τ )|2 =
(
λ − √

λ2 − λ2
cr

)
2λ

+ �n(τ ), (50)

where

�n(τ ) = zeαe sin ωτ

16jλ3
. (51)

(Note that |ψ1(τ )|2 + |ψ2(τ )|2 = 1.) Thus, a carrier-field
interaction plus a carrier-ion interaction is equivalent to an
ion-field interaction with some effective coupling constant
α̃i . Recasting carrier-ion interaction [Eq. (4)] with �n from
Eq. (51) into ion-field interaction form [Eq. (6)], one obtains

α̃i = ze

zi

αe√
32j λ5

. (52)

For j = 10 and zi = −2 the last formula changes from α̃i ≈
−αe

6 at λ = 1
2 to α̃i ≈ − αe

36 at λ = 1. Using the estimates given
in Sec. II, αe = 1.5 and αi = 0.02, one concludes that α̃i > αi ,
that is the indirect light-ion interaction is at least comparable to
the direct interaction and may even be dominant. One should
note that precise values of αe and αi depend on the local
crystal structure and fine details of the dielectric response of
a particular solid. These topics are beyond the scope of the

165121-7



P. E. KORNILOVITCH PHYSICAL REVIEW B 95, 165121 (2017)

α
i

0 0.05 0.1 0.15

α
e

0

0.5

1

1.5

2
×10-3

1

2

3

4

5

6

7

FIG. 10. Polaron tunneling frequency ftun = 1/T vs two cou-
pling constants αi and αe for j = 10, λ = 0.9, and ω = 0.71. Note
a broad depression along the line αe = (22 − 25)αi which is in
agreement with Eq. (52). To create this figure, ftun was first computed
on a (16 × 21) mesh and then interpolated to a (121 × 161) mesh.

present work and for this reason αe and αi will continue to be
treated here as phenomenological parameters.

Nonetheless, one general conclusion can be reached by
examining Fig. 9: the direct and indirect ion-field interactions
are always of opposite signs. For example, in case of attraction
(depicted in the figure), the same field pulls the ion in one
direction while modifying carrier density to pull the ion in
the opposite direction. This can also be seen in Eq. (52) that
becomes negative whenever ze and zi are of opposite signs. The
main conclusion remains true in case of carrier-ion repulsion.

Thus the two interactions always compete and the combined
effect is always smaller than either of the two. This competing
nature is confirmed by numerical calculations summarized
in Fig. 10. Shown is the polaron tunneling frequency, as
determined from the location of the largest peak in a power
spectrum of PL(τ ), as a function of αi and αe. It is evident from
the figure that ftun is in fact a function of α′

i = αi − c−1αe,
where c ≈ 22–25 is a numerical coefficient that is in agreement
with Eq. (52). Given that neither αi nor αe is known (unless
detailed first-principle calculations of the dielectric response
are performed) it is convenient to lump both interactions in one
effective ion-field interaction with a new phenomenological
coupling constant α′

i . Therefore, αi = α′
i and αe = 0 will be

assumed for the rest of the paper. Again, we choose to deal
with an effective ion-field interaction rather than carrier-field
interaction because of easier visualization.

We now return to the main subject of this paper: exponential
increase of the tunneling frequency under a driving field.
Figure 11 compares ftun of the driven and undriven polarons as
a function of λ. The undriven line is essentially the same that
was shown earlier in Fig. 3 but now computed not from the
spectrum of a stationary Schrödinger equation but from Fourier
analysis of the time-dependent Schrödinger equation, and
divided by 2π . The two methods produce numbers that match
within less than 1%. The undriven case shows the familiar
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FIG. 11. Polaron tunneling frequency ftun = 1/T for j = 10. In
the undriven case, ftun declines exponentially with λ, while it is
approximately constant in the α′

i = 0.05 driven case.

exponential decrease with λ reflecting a growing potential
barrier between two minima. In contrast, ftun of the driven case
remains approximately constant. This is understandable, since
a small deepening of the potential results in a proportionally
small increase of the time the ion needs to gain enough energy
to get over the barrier. In other words, in the driven case, ftun

is more a function of the field strength rather than details of
the potential.

An important consequence is that the ratio between driven
and undriven ftun grows exponentially in the deep polaron
regime. In the example of Fig. 11, the driven frequency exceeds
the undriven one by two orders of magnitude at λ = 1.0 and
by three orders at λ = 1.1. Thus field assistance promotes
polaron tunneling and increases polaron mobility. This effect
has important consequences for transport properties of polaron
systems.

VI. NONADIABATIC CASES

A. Slow carriers, fast ions: j � 1

We now turn to the opposite antiadiabatic case j 	 1. In
this regime, ion oscillations are fast and carrier transitions
between the sites are rare. When the carrier is confined to one of
the two sites, the ion shifts to a new equilibrium position toward
the carrier by (2jλ)1/2. When the carrier tunnels to the second
site, the displacement must reverse. Overlap of ion wave
functions separated by 2(2jλ)1/2 leads to an exponentially
small level splitting given by Eq. (43). Numerical solution
confirms this physical picture. Figure 12(a) shows temporal
evolution of an undriven polaron for j = 0.1 and λ = 35. The
left-space probability has an ideal sine-wave shape as expected
for a closely split level doublet. The numerical time period is
in perfect agreement with the analytical formula, as shown in
Fig. 12(b).

An external electric field drives the ion in resonance. As
the oscillation amplitude rises in accordance with Eq. (45), the
overlap integral grows allowing for more frequent transitions.
Increased tunneling rate between the two states is evident
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FIG. 12. Driven polaron in the antiadiabatic regime j = 0.1,
λ = 35, and ω = 1.0. (a) Left side probability PL(τ ) in the undriven
case. (b) Tunneling frequency ftun = 1/T of the undriven polaron
compared with the energy split [Eq. (43)], divided by (2π ). (c)
PL(τ ) in the driven case, for α′

i = 0.008. (d) Fourier spectrum of
the time series shown in (c). (e) PL(τ ) for a larger coupling constant
α′

i = 0.014, showing faster oscillations. (f) Tunneling frequency vs
α′

i showing an approximately linear dependence.

in Fig. 12(c). Figure 12(d) shows the corresponding Fourier
spectrum with a prominent peak near 0.00165. Different from
the adiabatic case, in the j 	 1 limit the ionic potential re-
mains undistorted and harmonic. As a result, the most effective
driving frequency is simply ω = 1.0. This is confirmed by
numerical results.

Similarly to the adiabatic case, stronger external fields
cause more frequent tunneling. This can be seen by comparing
the time series in Figs. 12(c) and 12(e). In the latter case,
the field is almost twice as strong (0.014 vs 0.008), which
leads to faster oscillations. The overall ftun(α′

i) dependence
is roughly linear, as shown in Fig. 12(f). The physical reason
is the same as before: the amount of time needed to reach
an amplitude at which tunneling takes place “comfortably” is
inversely proportional to α′

i and E .

B. Intermediate frequencies: j ∼ 1

As a typical example of intermediate phonon frequencies
we consider j = 1.0. The polaron is expected to behave
between the j � 1 and j 	 1 limits. In particular, an optimal
driving frequency should be less than 1.0 but not as much as in
the adiabatic regime. Figure 13 shows a sample of numerical
results obtained for λ = 5.0. A scan over driving frequencies
found that the most prominent tunneling occurs at ω = 0.99,
i.e., this case is closer to the antiadiabatic limit. The figure
reveals the now familiar physical picture. The undriven case
(not shown) corresponds to a deep polaron regime with a large
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FIG. 13. Driven polaron at intermediate phonon frequencies j =
1.0, λ = 5.0, and ω = 0.99. (a) PL(τ ) for α′

i = 0.03. (b) Fourier spec-
trum of PL(τ ) shown in (a). (c) PL(τ ) for a larger coupling constant
α′

i = 0.10, showing faster oscillations. (d) Tunneling frequency vs α′
i

showing an approximately linear dependence.

tunneling period of T ≈ 85 880. An external force promotes
tunneling and increases ftun by 2-to-3 orders of magnitude.
ftun increases linearly with the field’s strength in accordance
with the physical mechanism described in previous sections.

VII. SUMMARY AND DISCUSSION

The ability to drive ions in resonance by external laser fields
is a powerful technique of experimental solid state physics. In
systems where ions are strongly coupled to charge carriers
or other degrees of freedom, direct excitation of ions must
lead to large and measurable changes in other subsystems.
In this paper we investigated one model system where such
effects are particularly strong: the small lattice polaron. By
definition, a lattice polaron is a charge carrier that interacts
with surrounding ions so strongly that it deforms the lattice
and displaces the ions from their equilibrium positions by finite
amounts. If those ions are agitated by a different source, in our
case by an external laser field, that should change the balance of
forces between the ions and the carrier. Specifically, the energy
barrier that prevents the carrier from tunneling between lattice
sites will be affected. That should lead to exponentially large
changes in polaron tunneling rates, which may be detectable
through transport or optical response.

In the absence of analytical solutions even for the simplest
cases, we employed direct step-by-step integration of the time-
dependent Schrödinger equation as the main analysis tool. A
two-site polaron model has been chosen as being sufficient to
reveal the essential physics. Our findings can be summarized
as follows.

(i) Increase of polaron tunneling rate has been found at all
ion frequencies � (as compared to the bare transfer integral J ),
as long as the field is appropriately tuned to the ion resonance.
The effect exists in a finite range of driving frequencies. In
accordance with general polaron theory, an optimal driving
frequency has been found to be ω = � in the antiadiabatic limit
J 	 �, and gradually decreasing to ω < � in the adiabatic
limit J � �.
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(ii) Resonant energy build up has been proposed as a
common physical mechanism behind enhancement of tunnel-
ing. When an oscillator, quantum or classical, is driven in
resonance, its amplitude grows linearly with time. As a result,
one of the ion’s turning points gets progressively closer to a
symmetrical position between two stable states, symmetrizing
the polaron potential and reducing its height. After a finite
number of oscillations the barrier is reduced so much that the
ion tunnels “easily.” (Of course tunneling is not instantaneous
but because of exponential dependence, at a very high level
one can assume that tunneling happens as soon as the barrier
is reduced to a certain height.) After tunneling, the ion initially
loses energy dropping to the potential bottom. After that, the
process begins in the opposite direction.

(iii) It follows from the above mechanism that ftun scales
linearly with the number of resonant oscillations, i.e., linearly
with the potential depth. At the same time, frequency of
undriven tunneling scales exponentially with the potential’s
depth. Thus the ratio of driven to undriven ftun scales
exponentially with the coupling constant and as such can reach
several orders of magnitude in the deep polaron regime.

(iv) With similar reasoning, one can predict a linear de-
pendence of ftun on the field amplitude E . (And subsequently,
a square root dependence on laser intensity ftun ∝ √

I .) The
rate of amplitude increase is proportional to E . Therefore, the
number of oscillations needed to reach the “easy tunneling”
condition is ∝E−1, from which the stated dependence follows.

(v) In addition to affecting ions, the external field couples
directly to carriers. The field modulates carrier density on both

sites, which in turn rocks the ion and drives it in resonance
even in the absence of direct laser-ion interaction. The two
interactions are generally of the same order but they pull
the ion in opposite directions, so that the two forces partially
compensate each other.

Let us conclude by briefly discussing possible conse-
quences of polaron “undressing.” The present work was
motivated by recent experiments on dynamically stabilized
superconductivity [1]. We previously proposed [69] that
exponential enhancement of bipolaron tunneling rates between
copper-oxygen bilayers could explain the observed increase
of the apparent critical temperature in YBCO. This proposal
requires additional proof. Given that the observable quantity
in Ref. [1] was an optical response, it would make sense
to compute the dynamical optical response of a driven
(bi)polaron. This calculation is left for future work. More
generally, any polaron property that depends on the tunneling
probability, for example dc conductivity or Hall coefficient,
will be affected by a resonant excitation of ions. A general
theory of transport properties of driven polarons seems to be
worth developing.
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