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Bosonic integer quantum Hall effect as topological pumping
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Based on a quasi-one-dimensional limit of quantum Hall states on a thin torus, we construct a model of
interaction-induced topological pumping which mimics the Hall response of the bosonic integer quantum Hall
(BIQH) state. The quasi-one-dimensional counterpart of the BIQH state is identified as the Haldane phase
composed of two-component bosons which form effective spin-1 degrees of freedom. An adiabatic change
between the Haldane phase and trivial Mott insulators constitutes off-diagonal topological pumping in which
the translation of the lattice potential for one component induces a current in the other. The mechanism of this
pumping is interpreted in terms of changes in polarizations between symmetry-protected quantized values.
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I. INTRODUCTION

Adiabatic change of parameters of a Hamiltonian some-
times causes nontrivial effects which cannot be found in its
instantaneous ground state. Topological pumping, originally
proposed by Thouless [1], provides a prototypical example
of such phenomena. Thouless considered a one-dimensional
(1D) band insulator in a periodic lattice potential V (x) =
V (x + a). Let us consider an adiabatic shift of the lattice
potential V (x − at/T ) parametrized by t . Since the lattice
potential is periodic, so is the Hamiltonian with respect to
its parameter: H (t + T ) = H (t). The one-particle quantum
states in an energy band are then specified by the wave
number kx and the parameter t . When the lattice potential
is adiabatically shifted by varying t , the particles move with
the lattice, and the Hamiltonian returns to its original form
after a shift by one lattice spacing. The ground state also
returns to the initial one as long as the particles stay in the
same band. However, the change in the ground state during
the cycle can cause a nonvanishing particle current. The total
current over one cycle is given by the Chern number, which
takes an integer and characterizes topologically distinct classes
of the set of one-particle states defined in the (kx,t) plane.
Hence the total current is quantized, and this phenomenon
is called the topological Thouless pumping. If we identify
the (kx,t) plane with the two-dimensional (2D) reciprocal
space, we find that the Thouless pumping shares the same
origin as the integer quantum Hall (QH) effect [2,3], in which
the quantized pumping corresponds to the quantized Hall
conductivity. Owing to its topological nature, the topological
pumping is robust against small deformation of the pumping
protocol, and can be realized by various types of cycles
using lattice models [4–7]. After almost 30 years since
Thouless’s prediction, the topological pumping was finally
realized experimentally by using ultracold atoms in optical
superlattices [8–10], in which the periodic change of the lattice
potential was created by the change of the phase of the standing
wave potential. Other schemes of manipulating an optical
superlattice for realizing the topological pumping have also
been discussed [11–14].
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The integer QH effect and its 1D counterpart, the Thouless
pumping, are composed of noninteracting free fermions. It is
well known that in high magnetic fields, interactions between
particles can generate highly entangled ground states and result
in various QH states with fascinating features. For example,
the fractional QH (FQH) state [15,16] and its non-Abelian
generalizations [17–19] exhibit fractionally quantized Hall
conductivity and host fractionalized excitations with exotic
quantum statistics which differs from ordinary bosons and
fermions. The FQH states are examples of topologically
ordered states [20], and exhibit ground-state degeneracy if
the system is put on a topologically nontrivial surface with
nonzero genus, such as a torus [21].

Other than the FQH states, strong correlations can create yet
another interesting integer QH state. The bosonic integer QH
(BIQH) state [22], which is formed by two-component bosons
with the total filling factor ν = 1 + 1, is such an example.
Since noninteracting bosons form a Bose-Einstein condensate
in the ground state, QH states of bosons inevitably require
interactions. Although the BIQH state does not exhibit any
fractionalized excitation or topological ground-state degener-
acy, it is strictly distinguished from a trivial phase as long
as the U(1) symmetry associated with the conservation of the
total particle number is preserved [23]. In this sense, the BIQH
state is an example of a 2D symmetry-protected topological
(SPT) phase [24–26] of bosons, and there have been studies
on its physical properties [27–31], physical models realizing
it (particularly in cold-atom setups) [32–42], exotic phase
transitions out of it [27,38,43], its relationship to quantum
spin liquid [44–46], and its generalizations [28,29,47]. The
Hall response of the BIQH state is described by the effective
Chern-Simons theory [22,23]

L = − 1

4π
εμνλ(A1μ∂νA2λ + A2μ∂νA1λ), (1)

where A1μ (A2μ) is the U(1) gauge field which couples to the
first (second) component of bosons. Here we assume that the
number of particles is separately conserved in each component.
From the effective theory (1), we can read off that a probe
electric field for one component induces the quantized Hall
response in the other. Such an “off-diagonal” response is a
unique feature of the BIQH state, which we highlight in this
paper.
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In this paper, we aim to construct nontrivial classes of
topological pumping which correspond to QH states created
by strong interactions. We first consider topological pumping
which mimics the Hall response of the FQH states, and
then focus on the case of the BIQH state. Based on a
quasi-one-dimensional (quasi-1D) limit of QH states [48–51],
we can systematically construct strongly interacting models of
topological pumping and thus naturally extend the connection
between the topological pumping and the QH effect to interact-
ing systems. We show that the quasi-1D limit of the BIQH state
is given by the Haldane phase [52–55], which is a celebrated
example of a SPT phase in one dimension [24,56,57]. The
mechanism of the resulting topological pumping is interpreted
in terms of changes in polarizations between quantized values
that correspond to two distinct gapped phases in the presence of
the inversion symmetry. The obtained off-diagonal topological
pumping intertwining two-component bosons provides novel
interaction-induced topological pumping, and suggests an
intriguing connection between the 2D topological phases and
1D gapped phases.

The rest of this paper is organized as follows. In Sec. II,
we describe our idea for obtaining models of topological
pumping systematically from QH states on a thin torus. We
take the case of FQH states as examples, and explain that their
thin-torus counterparts naturally give rise to fractional charge
pumping. In Sec. III, we construct a 1D lattice model that
corresponds to the thin-torus limit of two-component bosons
in a magnetic field. We then identify the Haldane state as
the thin-torus counterpart of the BIQH state. In Sec. IV,
the topological pumping which mimics the BIQH effect is
described and interpreted in terms of changes in polarizations
between symmetry-protected quantized values. Finally, we
summarize our results in Sec. V.

II. TOPOLOGICAL PUMPING AS FLUX INSERTION
THROUGH A THIN TORUS

In this section, we explain our idea for obtaining models of
1D topological pumping systematically from a so-called thin-
torus limit of 2D QH states [48–51]. Let us consider a bosonic
or fermionic system composed of N particles of charge Q and
mass M in a uniform magnetic field B on a 2D torus of size
Lx × Ly . We take the Landau gauge A = (0,Bx) and assume
QB > 0. The total number of flux quanta piercing the system is

Nφ = LxLy

2π�2 , where � =
√

h̄
QB

is the magnetic length. The filling

factor is defined as ν = N/Nφ . The single-particle spectrum
is given by the Landau levels En = h̄	(n + 1

2 ) (n = 0,1, . . . ),

where h̄	 = h̄2

2M�2 is the cyclotron energy. The eigenstates in
each level are Nφ-fold degenerate, and labeled in the present
gauge by the wave number km = 2πm

Ly
(m = 0,1, . . . ,Nφ − 1)

in the y direction. In particular, the lowest-Landau-level (LLL)
wave functions are given by [58,59]

ψm(r) = 1√
π1/2�Ly

∑
n∈Z

exp

[
− 1

2�2
(x − km�2 − nLx)2

+ i

(
km + nLx

�2

)
y

]
. (2)

FIG. 1. QH system on a thin torus (left) and topological pumping
(right). A flux φ (in units of h̄/Q) is inserted through a thin torus
on which the LLL orbitals (2) are formed with a constant spacing
a. In a thin-torus limit Ly/� � 1, the flux insertion argument for
the Laughlin FQH states can be restated as the change between
degenerate CDW ground states by a translation, which results in
fractional Thouless pumping. The figure is the case of ν = 1/3.

This wave function is localized around x = km�2 = ma with
a width � in the x direction, and delocalized in the y direction
(see the left panel of Fig. 1). Here, a = 2π�2/Ly = Lx/Nφ is
the spacing between neighboring wave functions, and used as
an effective “lattice constant” later.

In Laughlin’s flux insertion argument [60], the quantized
Hall conductivity can be derived as a response to an adiabatic
insertion of a flux quantum through the torus. The effect of flux
insertion is expressed by a twisted boundary condition, which
results in the replacement km → km + φ

Ly
with 0 � φ � 2π .

After inserting one flux quantum (φ = 2π ), the Hamiltonian
of the system goes back to its original form. However, each
Landau-level orbital shifts its position by a in the x direction
during this process. Hence, if some of the Landau levels are
completely occupied and others are empty, the system exhibits
the integer QH effect. The FQH effect is also understood
in a similar manner by taking into account the topological
ground-state degeneracy on the torus [21,59,61]. In this case,
the insertion of one flux quantum transfers the initial ground
state to another degenerate ground state, and some integer
multiple of flux quanta are required to go back to the initial
ground state.

Keeping this picture in mind, let us gradually decrease
the length Ly in the y direction while keeping the total area
LxLy fixed. By identifying the locations x = ma of the LLL
orbitals (2) as a lattice coordinate, the original 2D system
can be viewed as an effective 1D lattice model [48–51]. The
effective model contains some long-range interactions, whose
coefficients are given by interaction matrix elements with
respect to the LLL orbitals on concerned sites. However, as
we decrease Ly , the lattice constant a increases, and the LLL
orbitals are mutually separated further. Interactions for longer
distances are thus suppressed more rapidly in this process, and
the physics for Ly/� � 1 is expected to be dominated by a
few interaction terms for short distances.

If the ground state of a given QH state is smoothly
changed without closing an excitation gap with decreasing
Ly , the ground state is expected to gradually acquire a 1D
character owing to the suppression of interactions for long
distances. We can then view the ground state on a thin torus
as the 1D lattice counterpart of the QH state. It is then
expected that the insertion of a flux quantum through the
thin torus induces quantized current in the x direction. This
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phenomenon can be viewed as the topological pumping in the
1D model [62,63].

Let us illustrate the above idea using the simplest FQH
state, the Laughlin state of fermions at ν = 1/3. It was
shown that with decreasing Ly , the ν = 1/3 Laughlin state
is smoothly deformed into a charge-density-wave (CDW)
state in which every third site is occupied by a particle [49].
Here, density-density interactions for nearest-neighbor and
next-nearest-neighbor pairs of sites play a dominant role and
stabilize the CDW state. If a flux quantum is adiabatically
inserted through a thin torus, the LLL orbitals shift their
positions by one lattice spacing a, and the CDW ground state
changes into another degenerate ground state [63] as shown in
Fig. 1. The total current during this shift of the ground state
is equal to 1/3 if averaged in space; this corresponds to the
fractional Hall conductivity σxy = 1

3
Q2

h
of the Laughlin state.

Hence, as expected, the flux insertion for the 1D counterpart
of the FQH state results in fractional Thouless pumping.
Similarly to Laughlin’s argument for the FQH effect [61], here
the degeneracy of the ground states is essential in obtaining
the fractional pumping.

For a filling fraction with a denominator larger than 3, it is
not clear whether the FQH state is adiabatically connected
to a CDW state with decreasing Ly . This is because in a
thin torus, the density-density interactions that stabilize a
CDW state can severely compete with other interaction terms
in which two particles hop in a center-of-mass-conserving
manner [49–51,64,65]. However, if we keep only the density-
density interactions and neglect other interaction terms, the
system exhibits a CDW ground state with q-fold degeneracy
at every rational filing fraction ν = p/q (with p and q

being coprime) [49–51,66]. The adiabatic shift of such a
CDW state by one lattice spacing clearly results in fractional
Thouless pumping. Similar schemes for realizing fractional
pumping by CDW states have been discussed in literature
[67–71], especially in connection with the “synthetic dimen-
sion” technique [72] in cold atoms. In this technique, infinite-
range interactions in the synthetic dimension stabilize CDW
ground states [68,69,71,73,74]. Although the topological
pumping constructed here is just a translational operation of
the entire system and seems to be somewhat trivial, we will
see that the case of the BIQH state provides more nontrivial
topological pumping.

III. THIN-TORUS LIMIT OF THE BOSONIC INTEGER
QUANTUM HALL STATE

Based on the correspondence between the QH state and the
topological pumping described in the previous section, we here
construct the thin-torus counterpart of the BIQH state. Let us
start with two-component bosons in a uniform magnetic field
on a torus described by the Hamiltonian

H =
∑

α=1,2

∫
d2r
(α)†(r)

[ p − QA(r)]2

2M

(α)(r)

+
∑
α,β

g(αβ)

2

∫
d2r
(α)†(r)
(β)†(r)
(β)(r)
(α)(r), (3)

where 
(α)(r) (α = 1,2) denotes the bosonic field operator for
the αth component. We assume repulsive contact interactions
g(αβ) > 0 between particles, and set g(11) = g(22) ≡ g for
simplicity. The filling factor for each component is set to
unity so that the total filling factor is given by ν = 1 + 1.
The system possesses the U(1)×U(1) symmetry associated
with the particle number conservation in each component.
Through exact diagonalization analyses [32–34], it was shown
that the BIQH state described by the effective Chern-Simons
theory (1) appears when the ratio of the intercomponent to
intracomponent interactions, δ ≡ g(12)/g, is close to unity.

Within the LLL approximation, the field operators are
expanded as


(α)(r) =
Nφ−1∑
m=0

b(α)
m ψm(r,φα), (4)

where b(α)
m annihilates a particle in the mth LLL orbital and

satisfies the commutation relations [b(α)
m ,b

(β)†
n ] = δαβδmn and

[b(α)
m ,b

(β)
n ] = 0. To facilitate later discussions on topological

pumping, we have introduced a magnetic flux φα which
couples to the αth component so that the LLL wave function
ψm(r,φα) is given by the right-hand side of Eq. (2) with km

replaced by km + φα

Ly
. Correspondingly, the positions of the

LLL orbitals are shifted to x = (m + φα

2π
)a in the αth compo-

nent. Substituting the expansion (4) into the Hamiltonian (3),
we obtain

H = 1

2
h̄	

∑
α

N (α)

+
∑

α

∑
j

∑
|n|�m� Nφ

2

Vmnb
(α)†
j+nb

(α)†
j+mb

(α)
j+m+nb

(α)
j

+
∑

j

∑
− Nφ

2 <m,n� Nφ

2

V (12)
mn (φ1 − φ2)b(1)†

j+nb
(2)†
j+mb

(2)
j+m+nb

(1)
j .

(5)

We note that the interaction in this Hamiltonian preserves
the center-of-mass position in the x direction. The interaction
matrix elements are calculated by using the LLL wave
functions as [51,58]

Vmn = zmng

LxLy

∑
q

[δ′
n,ny

e−(1/2)q2�2
cos(qxkm�2) + (m ↔ n)],

(6a)

V (12)
mn (φ) = g(12)

LxLy

∑
q

δ′
n,ny

e−(1/2)q2�2
cos

[
qx

(
km− φ

Ly

)
�2

]
,

(6b)

where the sum is over the wave vector q =
( 2πnx

Lx
,

2πny

Ly
) (nx,ny ∈ Z), δ′

n,ny
is the modulo-Nφ Kronecker

delta, and zmn = 2−δm,|n|(1+δm,0)2−δm,Nφ/2(1+δ|n|,Nφ/2) is a factor for
fixing the double counting of some terms. If we take the limit
Lx/� → ∞ (and thus Nφ → ∞) while keeping Ly/� fixed,
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these elements are given more simply by

Vmn = 2zmng√
2πLy�

e−(1/2)(k2
m+k2

n)�2
, (7a)

V (12)
mn (φ) = g(12)

√
2πLy�

e−(1/2)[(km−φ/Ly )2+k2
n]�2

. (7b)

Let us first consider the case when no flux is inserted
through the torus: φ1 = φ2 = 0. When we take the thin-torus
limit Ly → 0, the only remaining interactions are on-site ones,
which are the m = n = 0 components of Eq. (5). We thus
obtain

H =
∑

α=1,2

∑
j

V00n
(α)
j

(
n

(α)
j − 1

) +
∑

j

V
(12)

00 n
(1)
j n

(2)
j , (8)

where we ignore the constant kinetic energy of the LLL.
The ground state of the thin-torus Hamiltonian (8) is easily
obtained. For δ < 1, where the intracomponent interaction is
dominant (2V00 > V

(12)
00 ), the ground state is the product state

of Bose-Mott insulators∣∣∣∣∣· · · n
(1)
j · · ·

· · · n
(2)
j · · ·

〉
=

∣∣∣∣· · · 1 1 1 1 · · ·
· · · 1 1 1 1 · · ·

〉
. (9)

For δ > 1, where the intercomponent interaction is dominant
(2V00 < V

(12)
00 ), the ground states are ferromagnetic states∣∣∣∣∣· · · n

(1)
j · · ·

· · · n
(2)
j · · ·

〉
=

∣∣∣∣· · · 2 2 2 2 · · ·
· · · 0 0 0 0 · · ·

〉
,

∣∣∣∣· · · 0 0 0 0 · · ·
· · · 2 2 2 2 · · ·

〉
, (10)

if we fix only the total number of particles. If we fix the number
of particles in each component, a phase separation occurs. The
point δ = 1, at which 2V00 = V

(12)
00 , is special—the on-site

energy is the same for |n(1)
j ,n

(2)
j 〉 = |2,0〉 , |1,1〉 , |0,2〉, leading

to 3Nφ -fold degeneracy of the ground state. This macroscopic
degeneracy in the thin-torus limit is lifted by fluctuations as
we increase Ly .

To obtain a unique ground state at δ = 1, we proceed away
from the thin-torus limit by increasing Ly and consider leading
fluctuations. The next-leading interactions are the nearest-
neighbor ones, which are V10,V

(12)
10 (= V

(12)
−1,0), and V

(12)
01 terms.

The V
(12)

01 term involves hopping of particles, while the other
ones are of an electrostatic type. To discuss the competition of
these terms, we restrict ourselves to the low-energy manifold of
the Hilbert space spanned by the 3Nφ -fold degenerate ground
states of Eq. (8) at δ = 1. The thin-torus ground states (9)
and (10) for δ �= 1 also reside in this manifold. In this restricted
subspace, in which the constraint

∑
α n

(α)
j = 2 is satisfied at

every site, the operators

Sj = 1

2

∑
α,β

b
(α)†
j σ αβb

(β)
j (11)

satisfy the commutation relations of the SU(2) generators and
have the fixed magnitude S2

j = 1(1 + 1) as is known in the
Schwinger boson formalism [75]. Here, σ = (σx,σ y,σ z) is a
set of Pauli matrices. The Hamiltonian can thus be written in

terms of the spin-1 operators as

H =
∑

j

[
Jxy

(
Sx

j Sx
j+1 + S

y

j S
y

j+1

) + JzS
z
jS

z
j+1 + D

(
Sz

j

)2]
,

(12)

where Jxy = 2V
(12)

01 , Jz = 2(V10 − V
(12)

10 ), and D = 2V00 −
V

(12)
00 . This has the form of the XXZ chain with a single-

ion anisotropy [76–78]. At δ = 1, in particular, since V10 =
2V

(12)
10 = 2V

(12)
01 , the effective Hamiltonian is given by the

spin-1 antiferromagnetic Heisenberg chain

H = J
∑

j

Sj · Sj+1, (13)

where we set V10 ≡ J > 0. This Hamiltonian has a nondegen-
erate ground state known as the Haldane state [52–55]. The
macroscopic degeneracy of the ground state of Eq. (8) is thus
lifted by the leading fluctuations.

At this stage, it is interesting to compare the phases of
the spin-1 chain (12) [76–78] with the phase diagram of
the original 2D system. The two-component bosons (3) at
ν = 1 + 1 in two dimensions show a couple of phases when
varying the interaction ratio δ (Fig. 2) [34,79]. When δ is
small, the two components are nearly decoupled and form
the Moore-Read states [80] independently. In the opposite
limit, when δ is large (numerically δ � 2.5), the 2D ground
state exhibits a phase separation. The BIQH state appears
around δ = 1 intervening the two limiting cases [32–34]. Our
mapping to a spin chain (12) qualitatively reproduces these
phases as summarized in Fig. 2. When Ly/� is sufficiently
small, the single-ion anisotropy D is the most dominant term
in Eq. (12). For δ < 1, we have D > 0, and the ground
state is a large-D state, which is equivalent to the doubled

FIG. 2. Schematic phase diagram of two-component bosons (3)
at ν = 1 + 1 in the space of the ratio of the intercomponent
to intracomponent interactions, δ = g(12)/g, and the length Ly in
the y direction. A quasi-1D limit Ly/� � 1 is described by the
spin-1 chain (12), while the 2D phase diagram has been studied
in Refs. [34,79]. The product of Bose-Mott insulators [(Mott)2] in
the quasi-1D limit is expected to evolve into the the product of
Moore-Read states [(MR)2] for small δ in the 2D case. A phase
separation (PS) occurs for δ > 1 in the quasi-1D limit and for δ � 2.5
in the 2D case. A Haldane phase that intervenes between the regions
of (Mott)2 and PS in the quasi-1D limit is expected to evolve into the
BIQH phase in the 2D system.
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Mott insulators in Eq. (9). For a single-component Bose gas
at the filling factor ν = 1, it was shown that the ground
state in the thin-torus limit is given by a Bose-Mott insu-
lator |· · · n

(α)
j · · ·〉 = |· · · 1 1 1 1 · · ·〉, and then two CDW

states |· · · n
(α)
j · · ·〉 = |· · · 2 0 2 0 · · ·〉 and |· · · 0 2 0 2 · · ·〉

become nearly degenerate with the ground state as we increase
Ly/�; these three states naturally evolve into the threefold
degenerate ground states of the bosonic Moore-Read state
on a 2D torus [81]. Similarly, the doubled Mott insulators
in Eq. (9) are expected to evolve into the doubled Moore-Read
states found in the 2D system. For δ > 1, we have D < 0
and Jz < 0, and the spin chain (12) exhibits ferromagnetic
ground states as in Eq. (10); if the total magnetization of the
system is fixed at zero, a phase separation occurs as found
in the 2D system. As we increase Ly/�, the Haldane phase
appears between the large-D and ferromagnetic phases in the
spin-chain model, and its range along the δ axis gradually
increases. Owing to the uniqueness of the ground state and
high entanglement between the two components, it is natural
to speculate that this phase evolves into the BIQH phase in the
2D case. It is worth noting that our mapping to a spin chain can
be generalized to the case of arbitrary integer ν, resulting in
a spin- ν

2 version of Eq. (12). Then the Haldane conjecture for
the Heisenberg chain (13) [52,53] suggests the emergence of
gapped (gapless) states for even (odd) ν. The gapless state at
ν = 1/2 + 1/2 is expected to evolve into a gapless composite
fermion liquid in the 2D case [82].

Next, let us consider the thin-torus limit in the case
when some fluxes φα are inserted through the torus. Since
the Hamiltonian (5) depends on the fluxes only through
φ1 − φ2, we set φ1 �= 2πn (n ∈ Z) and φ2 = 0 without loss of
generality. In this case, since the flux causes lattice mismatch
between the two components, the only remaining interaction
in the limit Ly/� → 0 is the on-site intracomponent one V00,
and the intercomponent interactions completely disappear. The
ground state is thus the doubled Mott insulators (9) at any δ. We
note that this fact does not contradict the above identification
of the BIQH state with the Haldane phase, since the flux
insertion breaks the inversion symmetry of the system (except
at φ1 = π ) and thus there is no clear distinction between the
Haldane phase and the Bose-Mott insulator [7,83,84]. In the
next section, we show that the change in the ground state during
the adiabatic flux insertion is related to the Hall response of the
BIQH state, leading to the off-diagonal topological pumping
in the quasi-1D system.

IV. OFF-DIAGONAL TOPOLOGICAL PUMPING
IN THE THIN-TORUS LIMIT

In this section, we describe the 1D topological pumping
which mimics the BIQH effect, and thereby reinterpret the fact
that the thin-torus counterpart of the BIQH state is the Haldane
phase. We start from the two-component Bose system (3) on
a 2D torus, and consider its Hall response. As discussed in
Sec. III, we introduce a magnetic flux φα (α = 1,2) through the
torus, which results in the twisted boundary condition for the
αth component in the y direction. We also introduce a magnetic
flux θα (α = 1,2) through the other direction of the torus,
which results in the analogous twisted boundary condition in

the x direction. Then the Hall response of the αth component
to the flux insertion for the βth component (α,β = 1,2) can be
expressed by the many-body Chern number [63]

Cαβ = 1

2πi

∫ 2π

0
dθα

∫ 2π

0
dφβ

( 〈
∂θα

ψ
∣∣∂φβ

ψ
〉 − 〈

∂φβ
ψ

∣∣∂θα
ψ

〉 )
,

(14)

where |ψ(θα,φβ)〉 is the many-body ground state for the twists
θα and φβ for the αth and βth components in the x and y

directions, respectively, while the other twisting angles are set
to zero. The Chern-Simons theory (1) of the BIQH effect
corresponds to C11 = C22 = 0 and C12 = C21 = 1. These
responses result in the off-diagonal topological pumping in
the thin-torus limit as we see below.

Hereafter we focus on the responses corresponding to
C11 and C21. These can be analyzed by setting φ2 = 0 and
adiabatically changing the pumping parameter t ≡ φ1

2π
T from

0 to T . The Hall current in the x direction is identified as the
pumped charge. For fixed t , it is useful to introduce the Berry
phase

γα(t) = −
∫ 2π

0
dθα 〈ψ(θα,t)| ∂θα

|ψ(θα,t)〉 (mod 2π ), (15)

which is associated with the change in the ground state
|ψ(θα,t)〉 when θα is adiabatically changed from 0 to 2π . The
Chern number (14) can then be rewritten as

Cα,β=1 = − 1

2π

∫ T

0
dt ∂tγα(t). (16)

In this expression, the quantized Hall response, or equivalently
the quantized charge pumping can be understood as 2πn

(n ∈ Z) change in the Berry phase γα(t) over the pumping
process [85].

A more intuitive understanding of the quantized pumping
can be gained by introducing the polarization. To introduce it,
we define

zα(t) = 〈ψ(t)| exp

[
2πi

Lx

∫
d r x
(α)†(r)
(α)(r)

]
|ψ(t)〉 ,

(17)

where |ψ(t)〉 = |ψ(θα = 0,t)〉. This is convenient in describ-
ing the center-of-mass position of the particles in the αth
component in the x direction since the position x is defined
modulo Lx under the periodic boundary condition. Within
the LLL approximation, we can exploit the fact that the
j th LLL orbital for the αth component is localized around
xα(j ) = (j + t

T
δα,1)a in the x direction (with larger spacing a

for smaller Ly/�), and approximate zα(t) as

zα(t) ≈〈ψ(t)| exp

[
2πi

Nφa

∑
j

xα(j )n(α)
j

]
|ψ(t)〉

= 〈ψ(t)| exp

[
2πi

Nφ

∑
j

jn
(α)
j + 2πit

T
δα,1

]
|ψ(t)〉 .

(18)

This resembles the expectation value of the Lieb-Schultz-
Mattis twist operator [86–91]. The phase of zα(t) gives the
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polarization [92,93]

Pα(t) = 1

2π
Im ln zα(t) (mod 1). (19)

Importantly, the polarization is directly related to the Berry
phase as [92,94–96]

Pα(t) = − 1

2π
γα(t). (20)

The Chern number can therefore be rewritten as the change in
the polarization over the pumping cycle:

Cα,β=1 = �Pα =
∫ T

0
dt ∂tPα(t). (21)

The BIQH effect should thus correspond to the topological
pumping with �P1 = 0 and �P2 = 1.

Let us now discuss in detail the topological pumping in
the thin-torus limit of the BIQH state. The pumping protocol
in the present case is not just the translation but involves the
change of intercomponent interactions, in sharp contrast with
the FQH cases discussed in Sec. II. Since the Hamiltonian (5)
in the LLL basis is invariant under the combined operations of
the spatial inversion j → Nφ − j and the interchange of two
components 1 ↔ 2, zα(t) in Eq. (18) satisfies

z1(t) = e2πit/T z∗
2(t), (22)

which indicates P1(t) + P2(t) = t/T . Thus, �P1 = 0 implies
�P2 = 1 and vice versa. Furthermore, by exploiting the
invariance of the pumping protocol under the combined
operations of the spatial inversion and time reversal t → −t ,
we find Pα(−t) = −Pα(t), from which we obtain �Pα =
2
∫ T/2

0 dt ∂tPα(t). Thus, half of the expected changes �Pα =
δα,2 in the polarizations over one cycle must occur during
t ∈ [0,T /2]:

Pα(T/2) − Pα(0) = 1
2δα,2. (23)

To discuss the variation of the polarizations Pα(t) as
functions of t , it is important to notice that the system
possesses the spatial inversion symmetry at t = 0 and t = T/2.
Therefore, the polarization Pα must be quantized to 0 or 1/2
at these values of t . It is known that in the presence of the
inversion symmetry, a change in the polarization between these
quantized values in general signals a phase transition [89,90].
The polarization can therefore be used as an order parameter
for detecting 1D topological phases protected by the inversion
symmetry [89,90,97,98]. Similar results can also be obtained
through the quantization of the Berry phase [99–103]. At
t = 0, the thin-torus limit of the BIQH state is given by the
Haldane state as discussed in Sec. III; the Haldane phase is
known to be a topological phase protected by the inversion
symmetry [24,56,57], and has the polarizations [89,90]

P1(0) = P2(0) = Nφ/2. (24)

At t = T/2, the ground state in the thin-torus limit is given by
the doubled Mott insulators; a direct calculation using Eq. (9)
yields

P1(T/2) = Nφ/2, P2(T/2) = (Nφ + 1)/2. (25)

The Haldane phase and the doubled Mott insulators have the
different polarizations (24) and (25), and thus are distinct

FIG. 3. Schematic picture of the off-diagonal topological pump-
ing in the thin-torus limit of the BIQH state. The upper and lower
chains describe the first and second components, respectively.

phases as long as the system possesses the inversion symmetry.
The topological pumping can be interpreted as a process of
connecting between the two phases smoothly by breaking the
inversion symmetry. The idea of utilizing symmetry-breaking
perturbations to connect between otherwise distinct gapped
phases has also been used in other examples of topological
pumping such as those based on the Su-Schrieffer-Heeger
model [4,5,104], the spin-Peierls phases [6] (equivalent to
an interacting Su-Schrieffer-Heeger model via the Jordan-
Wigner transformation), and the Haldane insulator phase
of an extended Bose-Hubbard model [7]. We note that
the polarizations in Eqs. (24) and (25) are consistent with
the relations (23); conversely, the relations (23) require the
appearance of topologically distinct phases (in an inversion-
symmetry-protected sense) at t = 0 and T/2. This gives an
explanation on why the Haldane phase, a typical example of
a 1D SPT phase, should emerge in the thin-torus limit of the
BIQH state.

Figure 3 summarizes the process of the off-diagonal
topological pumping in the thin-torus limit. The Haldane phase
at t = 0 can intuitively be described as localization of bosons
at bonds of the lattice in a way similar to that of one-component
bosons [84]. By shifting the lattice for the first component, the
inversion symmetry is broken and the ground state is smoothly
deformed into the doubled Mott insulators at t = T/2, and
finally returns to the original ground state at t = T . During
this process, the bosons in the second component are pumped
by one lattice spacing while the bosons in the first component
stay around the same positions.

Two remarks are in order. First, although the Haldane phase
in the spin-1 chain can be protected not only by the inversion
symmetry but also by the time-reversal or the spin rotation
symmetry [24,56,57], the latter two symmetries do not protect
the Haldane phase in the case of soft-core bosons as in the
present case [7,83,84]. This is because the spin-1 degrees
of freedom required for the symmetry protection argument
are not perfectly formed in the presence of fluctuations in
on-site particle numbers. The inversion symmetry is thus the
only symmetry that protects the Haldane phase at t = 0 in the
present case. The second remark is on the mapping to a spin-1
chain done in Sec. III. In the mapping from the thin-torus
Hamiltonian to a spin chain in the FQH cases, the inversion
symmetry is sometimes broken since the mapping process
involves grouping of several neighboring sites starting from
CDW ground states [64,65]. In the case of the BIQH state,
in contrast, the mapping to a spin chain retains the inversion
symmetry of the original system, since each spin-1 degree of
freedom is composed of bosons at the same site.
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(b) Nφ = 7 

FIG. 4. Energy spectrum of the Hamiltonian (5) as a function
of Ly/� for (a) Nφ = 6 and (b) Nφ = 7. The ground-state energy is
subtracted from the spectrum. Circles indicate eigenenergies in the
equal-population case N1 = N2 = Nφ . Crosses indicate eigenener-
gies in the minimally imbalanced case (N1,N2) = (Nφ + 1,Nφ − 1).
The two lowest energies for each pseudomomentum are shown. The
data for the largest Ly/� correspond to the case of Lx = Ly . Dashed
lines indicate the energy gaps 0.721J and 0.857J of the spin-1
Heisenberg chain (13) with Nφ = 6 and 7 spins, respectively, where
J is given by V10 = 2V

(12)
10 in Eq. (7) (we note that the gap in the

thermodynamic limit [105,106] is given by 0.410J ).

To support the above picture of topological pumping, we
have performed exact diagonalization calculations for the
Hamiltonian (5) with the number of flux quanta up to Nφ = 7.
We consider contact interactions with g(12) = g. Figure 4
presents the energy spectrum as a function of Ly/�. The
ground state is found to remain in the sector with zero
pseudomomentum, indicating that the BIQH state in two
dimensions is smoothly deformed into the Haldane state in
the thin-torus limit. For Ly/� � 5, the energy gap above the
ground state agrees well with the finite-size energy gap of
the spin-1 Heisenberg chain (13) (dashed lines) calculated
by KOBEPACK [107,108]. Reflecting the large ground-state
degeneracy in the thin-torus limit, a large number of eigenen-
ergies collapse onto the ground-state energy with decreasing
Ly/�. For Ly/� � 5, the energy gap stays around a constant
value, indicating the convergence to a 2D system. Figure 5
presents the polarizations Pα , the amplitudes |z1| = |z2| of
the twist operators, and the energy spectrum as functions
of the pumping parameter t . The ground state is found to
remain in the zero-pseudomomentum sector in this process
also. The calculated polarizations smoothly connect between
Eqs. (24) and (25) for the Haldane state (t = 0) and the doubled
Mott insulators (t = ±T/2). While the polarization of the first
component stays around P1 = 0, the second component shows
�P2 = 1 over the cycle, clearly signaling the off-diagonal
topological pumping. As we decrease Ly/�, long-range inter-
actions are suppressed and the system gradually acquires a
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FIG. 5. The polarizations Pα (left top), the amplitudes |z1| = |z2|
of the twist operators (left bottom), and the energy spectrum (right)
as functions of the pumping parameter t ∈ [−T/2,T /2), for Nφ = 6
and (a) Ly/� = 2.5, (b) 3.5, and (c) 5.0. Circles and crosses indicate
eigenenergies in the equal-population and minimally imbalanced
cases, respectively, as in Fig. 4. Since the energy spectrum is
symmetric around t = 0, it is shown only for t ∈ [0,T /2].

1D character. Correspondingly, the change in the polarization
becomes sharper in the quasi-1D limit. A rapid change in the
center-of-mass position (and thus the polarization) has also
been observed in 1D topological pumping [8,9,12,14]. When
the rapid crossover from the Haldane state to the doubled
Mott insulators occurs, the energy gap becomes small and the
amplitudes |z1| = |z2| of the twist operators decrease. This
indicates the increase in the localization length of the many-
body wave function in this regime—while |zα| converges to
unity in the thermodynamic limit in 1D gapped systems, its
value can be suppressed when the system size is smaller than or
comparable to the localization length [89,90,93]. This behavior
can be explained by the suppression of on-site particle number
fluctuations when decreasing Ly/�: If such fluctuations are
completely absent, the pumping cycle is described by the

165116-7



MASAYA NAKAGAWA AND SHUNSUKE FURUKAWA PHYSICAL REVIEW B 95, 165116 (2017)

spin-1 chain model (12), in which the Haldane phase and the
doubled Mott insulators cannot be connected without closing
a gap.

V. SUMMARY

In summary, we have constructed strongly interacting
models of topological pumping by taking the thin-torus limit
of 2D QH states. The thin-torus limit of the FQH states is given
by CDW ground states; adiabatically connecting between
degenerate CDW ground states gives the fractional Thouless
pumping. As a more nontrivial example, we have constructed
topological pumping which corresponds to the BIQH effect
of two-component bosons. The quasi-1D counterpart of the
BIQH state is identified as the Haldane phase, and adiabatically
connecting between the topological Haldane phase and the
trivial doubled Mott insulators constitutes the off-diagonal
topological pumping. We have elucidated the nature of the
topological pumping via the change in the polarizations be-
tween inversion-symmetry-protected quantized values. Since

the idea of connecting between the Haldane and trivial
phases by inversion-symmetry-breaking perturbations does
not depend on the details of the system, the obtained off-
diagonal topological pumping should not be limited to the thin-
torus model considered in this paper. While the time-reversal
symmetry is broken in QH states and related topological
pumping, it is an intriguing direction to construct a bosonic
version of time-reversal-symmetric Z2 pumping [109] which
may correspond to 2D bosonic topological insulators [28,110].
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