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Motivated by a recent experiment on the rare-earth material YbMgGaO4 [Y. Li et al., Phys. Rev. Lett. 115,
167203 (2015)], which found that the ground state of YbMgGaO4 is a quantum spin liquid, we study the
ground-state phase diagram of an anisotropic spin-1/2 model that was proposed to describe YbMgGaO4. Using
the density matrix renormalization-group method in combination with the exact-diagonalization method, we
calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy
and spin-spin correlation functions. Our studies show that in the quantum phase diagram, there is a 120◦ phase
and two distinct stripe phases. The transitions from the two stripe phases to the 120◦ phase are of the first order.
However, the transition between the two stripe phases is not of the first order, which is different from its classical
counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that
additional terms may also be important to model the material YbMgGaO4. These findings will stimulate further
experimental and theoretical works in understanding the quantum spin-liquid ground state in YbMgGaO4.
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I. INTRODUCTION

Frustrated antiferromagnets are the focus of recent research
efforts in correlated systems, largely motivated by the keen
interest in searching for exotic states of matter in materials
as well as in microscopic models [1]. In all proposed states,
the quantum spin liquid (QSL) [2,3], in particular, is quite
attractive because it is in close association with topological
order and can host fractionalized excitations [4,5].

Frustration is usually illustrated [1] by the triangular lattice,
in which the energy of all the bonds cannot be simultaneously
minimized. More than 40 years ago, Anderson proposed that
the ground state of the spin-1/2 antiferromagnetic Heisenberg
model on the triangular lattice was a candidate for QSL [2,3].
However, extensive numerical calculations have provided
strong evidence that its ground state has a magnetic long-range
order with a 120◦ structure [6,7]. The effect of the frustra-
tion only reduces the magnitude of the magnetic order [8]
and recent density matrix renormalization-group (DMRG)
calculations show that the magnetization is approximately
M ≈ 0.205(15) [9].

To destroy the magnetic order, one natural way is to include
next-nearest-neighbor interactions, such as the J1–J2 model on
the triangular lattice, which has been intensively studied quite
recently by the coupled cluster method [10], DMRG [11,12],
and variational Monte Carlo method [13–15]. Other proposals
are to consider the anisotropic interactions with J along the
horizontal direction and J ′ along the zigzag direction [16,17],
or the totally random nearest-neighbor interactions [18].

Interest in the triangular lattice is also stimulated by the syn-
thesis of several promising candidate materials for QSL, which
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makes it possible to test theoretical predictions experimentally.
These materials, including the inorganic Cs2CuCl4 [19],
Cs2CuBr4 [20], and Ba3CoSb2O9 [21], as well as the organic
salts κ-(ET)2Cu2(CN)3 [22] and EtMe3Sb[Pd(dmit)2]2 [23],
have witnessed the successful composition of the ideal
triangular lattice. Very recently, another triangular lattice
material, YbMgGaO4 [24,25], was found experimentally to
be a strong candidate for QSL. In this material, Yb3+ sits
on a perfect triangular lattice. It contains 13 electrons in
the 4f shell, which shall form spin-orbit entangled Kramers
doublets. These Kramers doublets are split by the D3d crystal
fields and thus can be treated as an effective spin-1/2 degree
of freedom at low temperature. Contrary to previous QSL
candidate materials, the spin-orbit coupling (SOC) is strong in
YbMgGaO4. It is argued that such SOC leads to anisotropic
exchange interactions and eventually destroys the long-range
magnetic order.

The rest of the paper is outlined as follows. In Sec. II, we
introduce the model Hamiltonian proposed for YbMgGaO4.
In Sec. III, the classical phases are obtained by the Luttinger-
Tisza method. In Sec. IV, we provide our phase diagram ob-
tained by the exact-diagonalization (ED) method and DMRG
method. The criticality is also discussed. Section V is devoted
to the conclusion, where we discuss our numerical results as
well as the validity of the model Hamiltonian for YbMgGaO4.

II. MODEL HAMILTONIAN

The model considered in this paper is a highly anisotropic
spin-1/2 Hamiltonian with nearest-neighbor interactions,
which is proposed to describe YbMgGaO4. It stems from the
study of the pyrochlore lattice [26–29], a three-dimensional
network of corner-sharing tetrahedra, which offers outstanding
opportunities for the study of geometric magnetic frustration
where exotic states such as spin ice can emerge [30–32]. It
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FIG. 1. (a) Illustration of the anisotropic triangular lattice. The
phase factor γij = 1, ei2π/3, and e−i2π/3 for the bond along the a1,
a2, and a3, respectively. (b) The first Brillouin zone of the trian-
gular lattice. The high-symmetry points K = ( 4π

3 ,0) (magenta) and
K ′ = ( − 4π

3 ,0) (cyan) at the corners, and M0 = (0, 2π√
3
) (red), M+ =

(π, π√
3
) (blue), and M− = ( − π, π√

3
) (green) at the middle of the edges

are marked. (c)–(e) The magnetic patterns of the classical spins. (c)
The 120◦ order whose peaks of the static structure factors [38] locate
at the K (K ′) point. (d),(e) The three degenerate ground states of
the stripe-B and stripe-A order, respectively. The peaks of the static
structure factors of the three degenerate states locate at the M0, M+,
and M− points, from top to bottom, respectively.

should be noted that whether such an anisotropic exchange
on triangular lattice resulting from SOC will stabilize or
destabilize the conventional order is unclear a priori [33].

In general, the Hamiltonian is given by [24]

H =
∑
〈ij〉

[
JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γijS
+
i S+

j + γ ∗
ij S

−
i S−

j )

− iJz±
2

(
γ ∗

ij S
+
i Sz

j − γijS
−
i Sz

j + 〈i ↔ j 〉)], (1)

where Sα
i (α = x,y,z) are the three components of spin-1/2

operators, and S±
i = Sx

i ± iS
y

i . The coupling Jzz and J± are
positive in our model. The phase factor γij = 1, ei2π/3, e−i2π/3

for the bond 〈ij 〉 along the a1, a2, a3 lattice direction,
respectively; see Fig. 1(a). In the absence of J±± and Jz±,
Eq. (1) is an XXZ model whose ground state is known to
be the 120◦ phase [34–36]. Due to the competition from the
J±± and Jz±, the ground-state phase diagram is expected to be
much richer. For simplicity, we will set Jzz = 1 as the energy
unit. Moreover, we set J±/Jzz = 1 throughout the paper, which
agrees with a recent experiment [37].

III. CLASSICAL PHASE DIAGRAM

We first give glimpses of the classical phase diagram of
the model (1) before moving to the large-scale numerical
calculations. The classical phase diagram has already been
obtained by Li et al. with the Luttinger-Tisza method [39–41]
and Monte Carlo simulation [42,43]. Here, we will focus on
the criticality of the phase transitions between those phases in
the phase diagram. The classical spin is an O(3) vector, which

is given by

Si = S(sin θi cos φi, sin θi sin φi, cos θi), (2)

where θi and φi = Q · Ri + ϕ are, respectively, the polar
and azimuthal angles at site i with the position Ri . The
ordering wave vector Q is determined after minimizing
H with respect to {θi,φi}. By the Fourier transformation
Sα

i = 1√
N

∑
q eiq·Ri Sα

q with α = x,y, and z, the model (1) takes
the form

H =
∑
〈ij〉

∑
αβ

Sα
i J

αβ

ij S
β

j

=
∑
αβ

∑
q

Sα
q J αβ(q)Sβ

−q, (3)

where J (q) is a 3×3 symmetric matrix, which is written as

J (q) =

⎡
⎢⎣

2J±F + 2J±±G −2
√

3J±±K −√
3Jz±K

−2
√

3J±±K 2J±F − 2J±±G Jz±G
−√

3Jz±K Jz±G JzzF

⎤
⎥⎦,

(4)

with

F = f (q) = cos qx + 2 cos
qx

2
cos

√
3qy

2

G = g(q) = cos qx − cos
qx

2
cos

√
3qy

2

K = h(q) = sin
qx

2
sin

√
3qy

2
. (5)

The smallest eigenvalue of J (q) over the first Brillouin
zone (FBZ) [Fig. 1(b)] provides a lower bound for the
classical ground-state energy [39–41]. Therefore, we obtain
the magnetic order with the characteristic Q for the given
parameters.

In Table I, we present our results for Jz± � 0. These results
are obtained with the toroidal boundary condition (TBC).
We find three phases in the classical phase diagram: a 120◦
phase [44] with the magnetic pattern, shown in Fig. 1(c),
and two stripe phases [45] which are called the bond stripe
(stripe-B) phase [Fig. 1(d)] and the angle stripe (stripe-A)
phase [Fig. 1(e)]. In the 120◦ phase, the spins lie in the
x–y plane, leaving the z component disordered. The peaks
of the static structure factors locate at the K and K ′ and other
symmetry equivalent points. In the stripe-B (-A) phase, the
spins can be parallel (perpendicular) to one of the three bonds
a1, a2, and a3. Therefore, both of the stripe phases are threefold
degenerate, and in the ground state the Q locates at one of the
three points M0, M+, and M−. By comparing the ground-state
energy in these phases, we can determine the transition points
among these phases.

Figure 2 shows the ground-state energy for Jz± = 0.0,
0.5, 1.0, and 1.5. The symbols in the curves represent the
phase transition points. At Jz± = 0.0, we find a 120◦ phase
sandwiched by two stripe phases. The inversion symmetry
of the curve for Jz± = 0.0 with respect to J±± = 0 is a
reminiscence of the invariance of Hamiltonian (1) under the
π/2 rotation around the z axis. This symmetry is broken
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TABLE I. The classical phases, the characteristic wave vectors Q, classical ground-state energy Ecl/(NS2), the allowed angles (θ,φ), and
the conditions for the phases for Jz± � 0.

Phases Q Ecl/(NS2) (θ,φ) Conditions

Stripe-B M0,M± −2(J± − 2J±±)

(
π

2 , nπ

3

)
(n = 0,1, . . . ,5)

⎧⎨
⎩

J±± � − J±
4 , Jz± ∈

[
0,

√
J±(3J±−Jzz)

2

]
Jz± �

√
2J±±(Jzz + 4J±± − 2J±), Jz± ∈

[√
J±(3J±−Jzz)

2 ,∞
)

120◦ K,K ′ −3J±
(

π

2 ,∀φ ∈ [0,2π )
) − J±

4 � J±± � J±
4 − J 2

z±
3J±−Jzz

, Jz± ∈
[
0,

√
J±(3J±−Jzz)

2

]

Stripe-A M0,M± αa βb

⎧⎨
⎩

J±± � J±
4 − J 2

z±
3J±−Jzz

, Jz± ∈
[
0,

√
J±(3J±−Jzz)

2

]
Jz± �

√
2J±±(Jzz + 4J±± − 2J±), Jz± ∈

[√
J±(3J±−Jzz)

2 ,∞
)

aα = −[(J± + 2J±±) + Jzz/2] −
√

4J 2
z± + [(J± + 2J±±) − Jzz/2]2.

bβ = (
π

4 + 1
2 tan−1

[
J±+2J±±−Jzz/2

2Jz±

]
, (2n+1)π

6

)
(n = 0,1, . . . ,5).

for a nonzero Jz±, as can be seen from the curve for
Jz± = 0.5. The kink in the curve is evidence of the first-order
phase transition between each stripe phase and 120◦ phase.
As Jz± increases, the transverse components (x,y) and the
longitudinal component (z) become strongly coupled and
the region of the 120◦ phase shrinks. Eventually, the 120◦ phase
vanishes at the tricritical point (J±±,Jz±) = (−0.25,1.0). The
two stripe phases then transit into each other via a first-order
phase transition.

IV. QUANTUM PHASE DIAGRAM

A. Energy derivative, fidelity, and entanglement entropy

In this section, we turn to study the quantum phases
in the Hamiltonian (1), which may help us to gain some
insight into the QSL state in the YbMgGaO4. First, for a
simple profile of the ground-state phase diagram, we study
the Hamiltonian (1) by using ED on a 6×4 cluster with TBC.
We will examine the ground-state energy and its derivative.
They can provide direct evidence for quantum phase transitions
[46]. Moreover, we study the ground-state fidelity [47–51] and
entanglement entropy [52,53], which are frequently used as
probes for quantum phase transitions in a variety of models.
For a given Hamiltonian with a control parameter λ and a
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−1.5

−1.3

−1.1

−0.9

−0.7

J±±/Jzz

E
cl
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Jz± = 1.0
Jz± = 1.5

FIG. 2. Classical ground-state energy per site Ecl/N for
Jz± = 0.0 (red solid line), 0.5 (cyan dashed line), 1.0 (blue dot-dashed
line), and 1.5 (green dotted line) with S = 1/2. The filled symbols
mark the phase transition points.

ground state |ψ(λ)〉, the fidelity F (λ,λ′) is defined as the
overlap of two wave functions, i.e., F (λ,λ′) = |〈ψ(λ)|ψ(λ′)〉|.
To determine the phase boundary, we choose λ′ = λ + δ, with
δ 
 1. The fidelity is expected to be smaller if λ and λ′ are
in different phases, rather than in the same phase. Therefore,
the fidelity shows a minimum around the critical point in our
finite systems. The entanglement entropy, in our case the von
Neumann entropy, is defined as SvN = −Trρ ln ρ, where ρ is
the reduced density matrix. To calculate ρ, we split the system
into two halves. The reduced density matrix is obtained by
tracing out the freedom of one half. At the transition point,
SvN shows a maximum if such transition is continuous or a
jump if the transition is first order [53]. Both the fidelity and
the entanglement entropy can efficiently determine the phase
boundary without the detailed knowledge of the phases.

To do so, for a given Jz±, we set J±± as the control
parameter and take δ = 0.005. In Fig. 3(a), we show the
first derivative of the ground-state energy, de0/dJ±±, for
Jz± = 0.0,0.4, and 0.6. There are two inconspicuous jumps for
each curve, which are signals of a first-order phase transition.
One can expect that these jumps will become sharp as the
system size increases, as shown in the next section. As
for the fidelity illustrated in Fig. 3(c), two dips, which are
interpreted as phase transitions, are seen for each curve of
Jz±. Moreover, as Jz± increases, the interval between the two
dips decreases. These two transition points merge into one at
(J 0

±±,J 0
z±) = [−0.17(2),0.85(3)]. This behavior qualitatively

agrees with that in its classical counterpart. Our results can be
further confirmed by the entanglement entropy. In Fig. 3(e),
we show SvN as a function of J±±. Two jumps are observed in
each curve of Jz±. The positions where the jumps occur agree
well with those obtained by the fidelity and energy derivative.
These results suggest a qualitative change in the ground state
for our finite clusters and thus a first-order phase transition.

However, when Jz± > J 0
z±, as shown in Figs. 3(b) and 3(d),

the curves for de0/dJ±± are smooth and only tiny oscillations
(of the order of 10−4) are seen in the fidelity F . Therefore,
no characteristic behaviors of a first-order phase transition are
observed. Meanwhile, a maximum in SvN is seen in Fig. 3(f).
These may be taken as a possible signal of a continuous phase
transition or a crossover.

In Fig. 4, we summarize our phase diagram. The phase
boundary is obtained from ED. It includes three phases:
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FIG. 3. The first derivative of the ground-state energy de0/dJ±±
for (a) Jz± = 0.0, 0.4, and 0.6 and for (b) Jz± = 0.9, 1.2, and 1.5
are shown as a function of J±±. (c)–(f) The fidelity F as well as
the entanglement entropy SvN for the corresponding parameters are
shown. The data are obtained on 6×4 clusters.

stripe-B phase, stripe-A phase, and 120◦ phase. The transitions
from the two stripe phases to the 120◦ phase are of the first
order. Above the tricritical point, i.e., Jz± > J 0

z±, the 120◦
phase disappears. The stripe-B phase transits into the stripe-A
phase directly as J±± increases. Our analysis of the classic
spin model tells us that such transition is first order. However,
our ED results do not detect signals for a first-order phase tran-
sition. In addition, we confirm these conclusions on hexagonal
clusters as well. In the following sections, we will discuss more
about the properties of each phase and phase transitions.
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z
±
/
J

z
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FIG. 4. The schematic quantum phase diagram of the model (1)
on the triangular lattice. There are three different phases: the 120◦

phase, the stripe-B phase, and the stripe-A phase. The solid boundary
lines represent a first-order phase transition, while the dotted line
separating the stripe-B phase and the stripe-A phase stands for a
continuous transition or a crossover.
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FIG. 5. The ground-state energy per site e0 for (a) Jz± = 0.0 and
(b) Jz± = 1.0 of a 10×6 cluster. Inset: (a) A jump in de0/dJ±±
suggests a first-order phase transition, and the position is marked by
an open circle (◦) in the main panel. (b) The position of the maximum
in the entanglement entropy SvN is marked by open square (�) in the
main panel.

B. Ground-state energy and magnetic structure factors

In the last section, we have mapped out the phase boundary
by ED but without providing the details of those phases. Here,
we resort to DMRG [54–56], which enables us to access large
lattice sizes, to provide more information of those phases.
To get accurate results with DMRG, we use the cylindrical
boundary condition (CBC). The clusters we use are Lx × Ly =
10×6, 12×8, and 15×10. The aspect ratio is about 1.5, which
was proposed to be the best to minimize the edge effect [9,57].
We keep up to 3000 states in our simulations and typically
about 10 sweeps are performed to improve the accuracy.

Let us start our discussion by showing the ground-state
energy. The energy per site e0 as a function of J±± is shown
in Fig. 5. In Fig. 5(a), we show the energy for Jz± = 0.0. A
clear kink can be observed in the energy curve. The position
of the kink, J±± = 0.215(5), is marked by an open circle.
It is remarkable to note that such a kink is characteristic of
a first-order phase transition. In contrast, in Fig. 5(b) with
Jz± = 1.0, the energy is smooth as a function of J±± within
our numerical accuracy. This provides further evidence that
such transition is not first order. The possible phase transition
point (the open square) J±± � −0.265(5) is given by the sharp
peak in the entanglement entropy, as shown in the inset.

Now we turn to study the magnetic order in each phase.
The magnetic order is naturally detected by the spin-spin
correlation functions,

Sν
ij = 〈

Sν
i Sν

j

〉
, (6)

and their Fourier transformation, i.e., static magnetic structure
factors (SMSF),

Sν
N (Q) = 1

N

∑
ij

eiQ·(Ri−Rj )Sν
ij , (7)

where ν = x, y, and z represents the spin component, 〈·〉 is
the average over the ground state, Ri is the position of site i,
and N = LxLy is the total number of the spins.
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FIG. 6. Typical contour plots of the SMSF of x, y, and z

components for (a) J±± = −0.38, (b) 0.10, and (c) 0.40 along the
line Jz± = 0. The white lines denote the FBZ. x,y, and z represent
the spin components.

In Fig. 6, we show the typical SMSF of the stripe-B phase,
120◦ phase, and stripe-A phase at Jz± = 0.0. The positions
of the peaks of the SMSF clearly demonstrate the differences
among the three phases. In the stripe-B phase, as we show in
the row of Fig. 6(a) where J±± = −0.38, the dominant spin
component is x and the peak of the SMSF locates at M0.
However, in the stripe-A phase shown in the row of Fig. 6(c)
with J±± = 0.40, the dominant spin component becomes y

and the peak remains at M0. Actually, the ground states of
the two stripe phases are threefold degenerate, and the peak
of the SMSF can locate at any of the equivalent point M0,
M+, or M−. However, we do not detect all the degenerate
states simultaneously in our DMRG calculations. This results
from the CBC we imposed to simulate the highly anisotropic
triangular lattice. In the Appendix, we will discuss more about
this. Hereafter, for simplicity, we will restrict our discussion
to QM = M0 = (0, 2π√

3
) only because others are symmetrically

equivalent. In the 120◦ phase shown in the row of Fig. 6(b) with
J±± = 0.10, both the x and y components are dominant and
of nearly equal weight. They peak at QK = K = ( 4π

3 ,0). The
behaviors in the 120◦ phase agree with that in the standard XXZ
Heisenberg model [36]. From these data, one can immediately
figure out that the magnetic order in the quantum model is
similar to its classical version.

As Jz± increases, the spins in the stripe-B phase remain
in the x–y plane, but in the stripe-A phase the z component
also becomes dominant. This phenomenon can be understood
directly from Hz±, the last line of the Hamiltonian (1), as
follows. In the mean-field level, Hz± is approximately zero in
the stripe-B phase, and thus Jz± is irrelevant in the stripe-B
phase. However, in the stripe-A phase, Hz± ∼ 2Jz±

∑
i S

z
i .

Therefore, the z component should be ordered for a finite Jz±.
In Fig. 7, we show

√
Sν

N (QM )/N as a function of J±±
for Jz± = 1.0, which is well above the tricritical point and
only the two distinct stripe phases exist. One can distinguish
from Fig. 7 that the SMSF in both stripe phases peak at
QM . From our previous analysis of the energy derivative,

−0.5 −0.3 −0.1 0.1 0.3
0.0

0.1

0.2

0.3

0.4

0.5

J±±/Jzz

S
ν N
(Q

M
)/

N

 

 

ν = x
ν = y
ν = z
ν = y+z

FIG. 7. The x (blue), y (cyan), z (magenta), and y + z (black)
components of the SMSF at QM are shown as a function of J±± when
Jz± = 1.0. The size of the cluster is Lx×Ly = 10×6.

fidelity, and entanglement entropy, we do not find signals of
a first-order phase transition between the two stripe phases.
This can be further clarified by the order parameters in each
phase. To investigate the phase transition between the two
stripe phases, we make a comparison between the x component
and the summation of y and z components of the SMSF,
which is also shown in Fig. 7. The intersection of the two
curves occurs at J±± = −0.27(1) and is fairly consistent with
the one obtained by the entanglement entropy in Fig. 5(b).
Moreover, these quantities evolve smoothly as a function
of J±±, which provides us another evidence to exclude the
possibility of a first-order phase transition between the two
stripe phases. Therefore, there are two possibilities about the
transition between the two phases. One is that the transition
is continuous, and the other is a crossover. However, due to
the limited sizes, we cannot definitely tell which one is correct
and therefore we leave it as an open question.

C. Numerical results relevant to YbMgGaO4

Since it is argued that the Hamiltonian (1) is sufficient to
describe the nature of YbMgGaO4 [24,58], in this section, we
will focus on this material with the relevant coupling param-
eters. These parameters have been determined accurately by
measuring the magnetization and magnetic susceptibility as
well as by the electron spin resonance (ESR) [24]. According
to those experiments, Jz± is rather small and is insignificant
in the material, and this inference is further confirmed by the
later experiment on the magnetic excitations [59]. Though
the ESR can only determine the intensity but not the sign of
the J±± term, the sign of the J±± does not have any effect
on the ground-state phases if Jz± = 0.0. This is because in
the absence of the Jz± term, the Hamiltonian (1) is invariant
under the π/2 rotation around the z axis. Consequently, in
the following discussions, we will focus on Jzz = J± = 1.0,
Jz± = 0.0, and sweep the parameters in the region 0.0 �
J±± � 0.5 hereafter. The validity of our conclusions to
other Jz± is also confirmed by our DMRG calculations.
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FIG. 8. Order parameters MN (Q) for the 120◦ order (filled
symbols) and stripe order (open symbols) with Q = QK and QM ,
respectively. The sizes of the clusters are Lx × Ly = 10×6 (blue),
12×8 (green), and 15×10 (red).

To search for the possible QSL phase and distinguish the
phase boundaries, we introduce the order parameter

MN (Q) =
√∑

ν

Sν
N (Q)/N, (8)

where Q = QK or QM . In Fig. 8, we plot MN (Q) at QK

(filled symbols) and QM (open symbols) as a function of J±±
for Jz± = 0.0 and Lx × Ly = 10×6, 12×8, and 15×10. We
observe a jump at J±± = J c

±± = 0.22(1) for all the curves.
This sharp transition indicates a first-order phase transition,
which is fairly in accordance with the independent verdicts
in Fig. 3. Below J c

±±, it is 120◦ ordered, and above J c
±±, the

stripe-A order dominates. Remarkably, in the stripe phase,
the MN (QM ) is nearly independent of the lattice size. Near
the transition point, MN (Q) at both QM and QK are slightly
suppressed but remain finite. Therefore, our results exclude
the possibility of a QSL ground state in this model.

Reasons for the failure to numerically detect the QSL
phase in Eq. (1) are perplexing. We conjecture that the
Hamiltonian (1) may be incomplete to describe the nature
of the compound YbMgGaO4 and additional terms should
be taken into account [59]. This is partially because as a
spin-orbit-coupled insulator with odd number of electrons per
unit cell [24], its ground state must be exotic if the time-reversal
symmetry is not broken according to the recent extension
[60] of the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem
[61–63]. The classical and semiclassical [43,64] analysis
makes the ground-state phases of the Hamiltonian (1) obscure
(both are against the QSL phase), while various contempora-
neous experiments [59,65–67] coincide with each other and all
show that the ground state of YbMgGaO4 is a strong candidate
for a gapless U(1) QSL phase. Remarkably, measurements
of the magnetic excitations close to the field-polarized state
indicate that the next-nearest-neighbor interactions may be
indispensable to get the full nature of the YbMgGaO4 [59].

0.0 0.1 0.2 0.3 0.4 0.5
0.0
0.1
0.2
0.3
0.4
0.5

J±±/Jzz

(a1)

S
ν N
(Q

M
)/

N

1.0 3.0 5.0 7.0 9.0
J±±/Jzz

(a2)

 

 

ν = x
ν = y
ν = z

0.3 4.0 7.0

FIG. 9. Upper panel: The x, y, and z components of the SMSF at
QM for Lx × Ly = 10×6 cluster under CBC are shown as a function
of J±±. Lower panel: (b+), (b0), and (b−) show the contour plots
of the SMSF at J±± = 0.3, 4.0, and 7.0, respectively. Here, all three
components are summed up.

V. CONCLUSION

In summary, by using the ED and DMRG method, we study
the ground-state phase diagram of an anisotropic spin-1/2
model with nearest-neighbor anisotropic interactions on the
triangular lattice proposed to describe the YbMgGaO4. We
utilize the ground-state energy and its derivative, the fidelity,
and the entanglement entropy as probes for phase transitions,
and the magnetic structure factor to distinguish the phases
therein. Our numerical results show that there are three distinct
phases: a 120◦ phase with three sublattices sandwiched by two
stripe phases. Our large-scale DMRG calculations suggest
that the 120◦ phase and the stripe phases in model (1) are
robust enough against the quantum fluctuations. The effects of
the quantum fluctuations merely change the phase boundary
compared with its classical counterpart. Although our result
does not favor an intermediate nonmagnetic phase near the
classical phase boundaries, nevertheless it cannot exclude the
existence of the QSL ground-state phase for YbMgGaO4.
We attribute the possible reason to the incompleteness of the
microscopic model (1). It calls for more accurate experiments
to settle this issue. Moreover, in the classical phase diagram,
the transition between the two stripe phases is of the first
order, but our numerical results exclude such possibility in the
quantum one.

Note added. Recently, we became aware of a preprint [68]
on a similar topics.
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APPENDIX: NOTE ON THE THREEFOLD-DEGENERATE
GROUND STATES IN THE STRIPE PHASES

The ground states in both the stripe-B and stripe-A phases
are threefold degenerate [69] if TBCs are used in our
simulations. The three states in each phase can be distinguished
by the positions (M0, M+, or M−) of the peaks of the SMSF.
However, to get accurate results, we use CBC instead of TBC

in our DMRG simulations, which lifts the degeneracy of the
ground states. This is because, under CBC, the number of
the bonds along the three directions a1, a2, and a3 is not
equal. Consequently, the energy of the three states is different,
depending on the size of the lattice and the parameters. As the
parameters change, one or two of the three states may have
lower energy than the others.

To verify our explanation, we show our numerical results
for Lx × Ly = 10×6 clusters under CBC in Fig. 9. The Jz± is
set to zero for simplicity, and J±± is a tunable parameter. We
can see that the stripe-A phase emerges when J±± � 0.215(5).
This phase is split into three regimes at J c1

±± � 0.37(1) and
J c2

±± � 5.3(1). In these three regimes, i.e., J±± < Jc1
±±, J c1

±± <

J±± < Jc2
±±, and J±± > Jc2

±±, the SMSF peaks at M+, M0, and
M−, respectively. The three different positions of the peaks are
the evidence of the threefold-degenerate ground states in the
stripe-A phase. Similarly, one can arrive at the same conclusion
in the stripe-B phase.
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