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Signatures of the topological spin of Josephson vortices in topological superconductors
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We consider a modified setup for measuring the Aharonov-Casher phase which consists of a Josephson vortex
trapped in an annular topological superconducting junction. The junction encloses both electric charge and mag-
netic flux. We discover a deviation from the Aharonov-Casher prediction whose origin we identify in an additive
universal topological phase that remarkably depends only on the parity of the number of vortices enclosed by the
junction. We show that this phase is ±2π times the topological spin of the Josephson vortex and is proportional
to the Chern number. The presence of this phase can be measured through its effect on the junction’s voltage
characteristics, thus revealing the topological properties of the Josephson vortex and the superconducting state.
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One of the exciting aspects of topological order is the any-
onic excitations it supports, which admit fractional charge and
exotic quantum statistics. Several fundamental types of anyons
can be realized as vortex defects in topological superconduc-
tors, generating intensive interest in their properties [1–3].
However, detecting the anyonic properties of these vortices is
an ongoing challenge. It has been proposed [4] that Josephson
vortices retain the anyonic properties of bulk vortices and thus
could be viable candidates for the interference experiments
required to unequivocally measure their statistics. However,
determining the anyon class of Josephson vortices requires
finding the value of their universal exchange phase, which has
not yet been reported. This exchange phase is of particular
interest as it was argued that it could be used to supplement
the set of quantum gates generated by the Josephson vortices
to form a universal set [5,6].

In this Rapid Communication, we report a method to calcu-
late the universal exchange phase for Josephson vortices and
propose a proof-of-principle experiment by which to measure
it. We derive an effective quantum Hamiltonian for a Josephson
vortex in a topological Josephson junction [TJJ; see Eq. (12)],
unveiling the role of the low-lying Majorana edge states in the
soliton dynamics. For the case of a soliton going around an
annular Josephson junction [7,8] (see Fig. 1), the soliton accu-
mulates a universal phase related to the exchange phase of Ising
anyons. This phase can be exploited to induce a persistent mo-
tion of the vortex around the junction, triggered by the nucle-
ation of an additional vortex in the region enclosed by the junc-
tion (i.e., by changing the magnetic flux � through the central
hole). This induced motion drives the Josephson junction into
its finite voltage state [9], revealing the presence of the phase.

Our results therefore uncover a significant difference
between nontopological Josephson junctions and TJJs. For
the former, an externally induced charge Q can drive the
Josephson vortex into a persistent motion [7] through the
Aharonov-Casher effect [10–12]. This system is analogous to
an Aharonov-Bohm ring for electrons. However, the Josephson
vortex remains unaffected by other vortices in the system. In
contrast, for TJJs, the persistent motion of the Josephson vortex
can be controlled with, instead of one knob, two: (i) contin-
uously using the induced charge Q in the region enclosed by
the junction and (ii) using the enclosed flux which nucleates
vortices inside the path of the vortex, hence changing their
parity. In units of electron charge, the nucleation of an extra

vortex within the central region is equivalent to an e/4 (where
e is the electronic charge) shift in the enclosed charge Q.

The dynamics of a TJJ is governed by a modified sine-
Gordon Hamiltonian, where the regular bosonic degrees of
freedom couple with the low-lying Majorana fermions. In
particular, properties of phase solitons (Josephson vortices)
through the junction are modified so that each soliton carries
a Majorana zero mode [4,13–16]. While experiments to probe
the presence of this Majorana mode have been proposed
[4,14,17], little attention has been given to the universal
properties of the host soliton itself.

We start by discussing the fundamental mechanism behind
the topological spin of a Josephson vortex. We then derive
explicitly an effective Hamiltonian for the Josephson vortex
and demonstrate how the topological spin plays a role in its
dynamics. Next, we calculate the Berry connection governing
the phase that the Josephson vortex accumulates. Finally, we
propose a setup for measuring this phase.

Topological spin of the Josephson vortex. We start by identi-
fying the origin of the topological spin of the Josephson vortex.
TJJs [13,18] differ from their nontopological counterparts by
the presence of a pair of one-dimensional counterpropagating
Majorana states present at the junction, with a Hamiltonian
Hψ = H + H̄ (H describes the external edge, and H̄ describes
the internal one):

H = i
v

2

∫
dx ψ(x)∂xψ(x),

H̄ = −i
v

2

∫
dx ψ̄(x)∂xψ̄(x). (1)

FIG. 1. An annular topological Josephson junction trapping a
single soliton. The soliton is depicted in blue. Counterpropagating
Majorana edge states are nucleated in the junction. A charge Q and
phase � are induced externally within the central region (red).
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Here x ∈ [0,L] is the coordinate of the edge, and v is
the neutral edge velocity. The fields obey anticommutation
relations of the form {ψ(x),ψ(x ′)} = {ψ̄(x),ψ̄(x ′)} = δ(x −
x ′), and {ψ(x),ψ̄(x ′)}=0. We perform the following mode
expansion:

ψ(x) =
√

1

L

∑
n

e−2πinx/Lψn,

ψ̄(x) =
√

1

L

∑
n

e2πinx/Lψ̄n. (2)

The modes ψn satisfy {ψn,ψn′ } = δn+n′,0 (with similar nota-
tion for the opposite chirality). Note that in particular this
implies ψ2

0 = 1/2 (for either chirality). Plugging this into the
Hamiltonian, we get

H = 2πv

L

[
1

2

∑
n

nψ−nψn

]
≡ 2πv

L
L,

H̄ = 2πv

L

[
1

2

∑
n

nψ̄−nψ̄n

]
≡ 2πv

L
L̄. (3)

We now explore the properties of L and L̄, the dimensionless
momentum operators. Using Eq. (2), periodic boundary con-
ditions on the Majorana field imply n ∈ Z, while antiperiodic
boundary conditions imply n ∈ Z + 1

2 .
We examine the change in momentum when the boundary

conditions are exchanged between periodic and antiperiodic
for a closed circular Josephson junction in the absence of
tunneling. We write L and L̄ as

L =
∑
n>0

nψ−nψn − 1

2

∑
n>0

n ≡
∑
n>0

nψ−nψn + L0(Nv),

L̄ =
∑
n>0

nψ̄−nψ̄n − 1

2

∑
n>0

n ≡
∑
n>0

nψ̄−nψ̄n + L̄0(N̄v), (4)

where L0 (L̄0) is the ground-state contribution and Nv (N̄v)
denotes the number of vortices enclosed by the external
(internal) edge. Specifically, when there is an odd number
of vortices enclosed by the edge, n ∈ Z; otherwise, n ∈
Z + 1/2. We now calculate the difference in the ground-state
contribution in the presence of a Josephson vortex within the
junction, i.e., Nv = 1 and N̄v = 0. We employ a regularizing
function F (x) such that F ′(x) = ∂xF (x) decays to zero faster
than 1/x2 when x → ∞ and F ′(0) = 1. We calculate the
regularized sum [19]

�L0 = L0(1) − L̄0(0)

= −1

2

∞∑
n=1

{
nF ′(αn) −

(
n − 1

2

)
F ′

[
α

(
n − 1

2

)]}
. (5)

By taking the limit α → 0 we now get

�L0 = −1

2
∂α

∞∑
n=1

{
F (αn) − F

[
α

(
n − 1

2

)]}

= −1

2
∂α

∞∑
n=1

[
α

2
F ′(αn) −

(α

2

)2 1

2
F ′′(αn)

]

= −1

2
∂α

∫ ∞

α/2
d(αn)

[
1

2
F ′(αn) − α

8
F ′′(αn)

]

= 1

16
[F ′(0) + F ′(∞)] = 1

16
. (6)

This result gives the value of the topological spin of the vortex,
which is related to the dimension of the spin operator of the
Ising conformal field theory (see, e.g., [20]). In the following
we explore how this quantized momentum shift can affect the
dynamics of the soliton in the presence of tunneling between
the two Majorana edge states.

Effective Hamiltonian for the Josephson vortex. We now
proceed to show that the effective description of a Josephson
vortex contains explicitly the topological spin discussed above.
We turn on the electron tunneling across the junction, leading
to a Josephson term and a Majorana tunneling term.

The Josephson term is encapsulated in Hϕ , which governs
the dynamics of the relative phase degree of freedom ϕ across
the junction [21]:

Hϕ = h̄c̄

g2

∫
dx

{
1

2c̄2
ϕ̇2 + 1

2
ϕ′2 + 1

λ2
[1 − cos ϕ]

}
, (7)

where ϕ̇ ≡ (g2c̄/h̄)�, with � being the canonical momentum,
λ is the Josephson penetration length, c̄ is the renormalized
velocity of light, and g is a dimensionless constant which
depends on the parameters of the junction [7].

The Majorana tunneling term is first order in the electron
tunneling and takes the form

Htun = i

∫
dx W (x)ψ(x)ψ̄(x), (8)

where W (x) = m cos [ϕ(x)/2] is the Majorana mass term
[4,13].

The full Hamiltonian for the TJJ, HTJJ = Hϕ + Hψ + Htun

[4], is an extension of the supersymmetric sine-Gordon model
for general values of m [15]. The bosonic degrees of freedom
couple with the low-lying Majorana fermions, which we now
turn to solve in the presence of a single soliton.

We consider the solution for a classical soliton in the
nonrelativistic limit which for short and long Josephson
junctions takes the approximate forms [22]

ϕs(x,q(t)) � 2π

(
x − q(t)

L

)
, λ � L,

ϕs(x,q(t)) � 4 arctan exp

(
x − q(t)

λ

)
, λ 	 L, (9)

respectively, with a center-of-mass coordinate at q(t). We
plug the solution into the Euclidean action derived from
the Hamiltonian Hϕ to get the energy associated with the
soliton center-of-mass coordinate [23], 1

2msq̇
2 + E0, where

we defined the soliton mass ms [ms = (2π )2h̄/g2c̄L for λ � L

and ms = 8h̄/g2c̄λ for λ 	 L] and the soliton rest energy [7].
We now proceed to the Majorana sector, Hψ = ∫

dx �T H0�,
with � = (ψ ψ̄)T and

H0 = 1

2

[
iv∂x iW (x,q(t))

−iW (x,q(t)) −iv∂x

]
, (10)
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where W (x,q(t)) = m cos[ϕs(x,q(t))/2]. The equations sim-
plify considerably by taking a Galilean boost to the moving
frame,

x ′ = x − q(t), t ′ = t,

∂x = ∂x ′ , ∂t = −q̇∂x ′ + ∂t ′ .

We see that the Majorana fields couple to the center-of-mass
velocity of the soliton via a vector-potential-like term that
measures the total momentum carried by the two counterprop-
agating edge states, taking the form

i

2
q̇

∫
dx(ψ∂xψ + ψ̄∂xψ̄) = 2π

L
q̇(L − L̄). (11)

The junction Hamiltonian HTJJ, written in the background of a
single soliton, is given in terms of the soliton’s center-of-mass
momentum p̂ (which we now reinstate as a quantum operator)
as

Hs = E0 + 1

2ms

[
p̂ − 2π

L
(L − L̄)

]2

+ 2πv

L
(L + L̄) + i

∫
dx W (x)ψ(x)ψ̄(x). (12)

This Hamiltonian describes the dynamics of the Josephson
vortex within the junction and is our first main result. The
ground-state contribution to the vector potential is given by

2π

L
(L0 − L̄0) = (−1)Nv

2π

L

1

16
, (13)

coinciding with the one calculated previously in Eq. (6). This
suggests that the topological spin of the soliton affects its
dynamics and may be measurable. We next turn to show that
the low-lying fermion states do not affect the universality
of this phase in the adiabatic limit by providing numerical
evidence.

The Berry connection. Due to the interactions of the
Josephson vortex with the subgap states of energies �n

(n = 0,1, . . .), the phase of the soliton is universal only when
its traverse time around the junction is large compared toh̄/�1.
We establish this by introducing a numerical procedure for
finding the Berry phase that the ground state |q〉 accumulates
as function of the position of the soliton, q.

We take a short Josephson junction. When the soliton goes
adiabatically around the junction, the Majorana edge states
depend parametrically on its position. In addition, there is
a Z2 phase associated with the motion of the soliton: when
the soliton completes a cycle, each fermionic mode enclosed
by its motion acquires a minus sign. We work in momentum
states and truncate the Hilbert space to retain 4N + 2 modes:
2N modes in the antiperiodic edge and 2N + 1 modes in the
periodic edge, the latter including a Majorana zero mode ψ0.
The final mode we retain is the extra Majorana zero-energy
state ψv , which is localized far from the Josephson junction,
either at the center of the annulus or at its outer edge, depending
on the parity of the number of vortices in the central hole.
In addition, we perform a gauge transformation in which
the Majorana fields are single valued under q → q + L by
absorbing the Z2 phase into the Majorana tunneling term.

Next, we transform the Hamiltonian into a Bogoliubov form
for fermions by taking appropriate superpositions of the two

zero-energy Majorana fermions, (ψ0 ± iψv)/
√

2. The spinor
is then rearranged so that particle-hole conjugation is written
as τxK (where τx is the first Pauli matrix in Bogoliubov space
and K is complex conjugation). The Hamiltonian can then be
diagonalized via(

H1 H2

H
†
2 –H ∗

1

)(
U V ∗
V U ∗

)
=

(
E 0
0 −E

)(
U V ∗
V U ∗

)
. (14)

The correct choice of the zero mode that is contained in
the positive-energy group of 2N + 1 eigenvectors leads to
a nonvanishing determinant of U . We can then use Eq. (14)
to form the BCS ground state |q〉. Explicitly, for q = 0, the
Hamiltonian blocks are H1 =⊕2N

k=0
kπ
L

and

H2 = m

2

[
0⊕

(
N⊕

k=1

σy

)
−

(
σy√

2

)
⊕

(
N−1⊕
k=1

σy

)
⊕ 0

]
.

The Berry connection for |q〉 is given by

i〈q |∂qq〉 = i

4
Tr{(1 + gg†)−1[g′g† − g(g†)′]}, (15)

where g = (V U−1)∗ [24]. In addition, we define the translation
operator T for the soliton χq = Tqχ0, with χT

q = (UT
q ,V T

q ).
Tq is given explicitly by Tq = ZqPq , with Pq generating the
translation and Zq generating the Z2 transformation:

Pq = P (1) ⊕ P (2), P (1) = P (2)∗ =
2N+1⊕
n=1

e(−1)n(1−n)iπq/L,

Zq = Z(1) ⊕ Z(2), Z(1) = Z(2) =
2N+1⊕
n=1

(−1)mod(n,2)� q

L
+ 1

4 �.

We diagonalize Eq. (14) numerically for q = 0, and using
Tq we obtain the eigenvectors for any other position of
the soliton. We substitute into Eq. (15), performing the
derivative symbolically. The result is presented in Fig. 2
with the overlap calculated using the Onishi formula,
|〈−q |q〉| =

√
| det χ †

−qχq | [25] for two counterpersisting

FIG. 2. Numerical results for the geometric phase accumulated
by the persisting Josephson vortex. The dashed brown line describes
the geometric phase accumulated by each persisting soliton in the
presence of a vortex within the central region. In addition, the solid
black line describes the overlap norm of two counterpropagating
solitons, which becomes nonzero at half cycles. At these points the
geometric phase of each soliton acquires its universal values nπ/16,
n ∈ Z.
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FIG. 3. Energy spectrum for the Josephson vortex. Solid red lines
describe the energy of the Josephson vortex in the presence of an
even number of vortices enclosed within its path. Dashed blue and
dotted green lines describe the case with an odd number of vortices
(for even and odd fermion parities, respectively). The velocity of
the persisting soliton is proportional to the gradient of the energy,
vs ∝ ∂QE. Fermion parity changing effects open a gap between the
green and blue lines, disorder opens a gap between lines of the same
color.

solitons, demonstrating that the topological spin is, in
principle, an observable. We repeated the procedure taking
reversed boundary conditions on the two Majorana edge
states, obtaining the same phase but with an additional minus
sign, which reproduces Eq. (13) to machine precision.

Proposed setup for detecting the phase shift. We finally
consider the setup depicted in Fig. 1 where a single Josephson
vortex is trapped within the junction and the voltage between
the inner and outer superconducting plates is measured. The
energy spectrum of the Josephson vortex can be derived
from Eq. (12), and in the presence of an externally induced
Aharonov-Casher charge Q within the central region, is given
by

Es = Ec

[
Q

2e
+

(nf

4
+ nv

16

)
− Nb

]2

, (16)

where Ec is the charging energy for the junction, nf = (−1)Nf

is the fermion parity within the enclosed path of the Josephson
vortex (Nf is the fermion number), nv = (−1)Nv is the parity
of the number of vortices within the same region, and Nb ∈
Z is the relative number of Cooper pairs between the two
superconducting plates. In the low-energy sector there is an
emergent dependence between nf and nv: If nv = 1, then nf =
1, but if nv = −1, then nf is free [4].

Assume we start from the case that there are no vortices
within the central hole in the annulus (Fig. 1), i.e., nv = 1
and nf = 1. The junction can be tuned into the zero voltage
state by shifting the induced Aharonov-Casher charge Q. The
Josephson vortex accordingly acquires a vanishing velocity.
Next, we add an extra vortex within the central region of the
sample, shifting the value of nv to −1. The Josephson vortex
acquires a phase shift which is equivalent to a ±e/4 shift in the
induced Aharonov-Casher charge (see Fig. 3). It then performs
a persistent motion, and the junction is driven into its finite
voltage state. This dependence of the voltage characteristics

of the junction on the number of vortices enclosed within the
junction is our second main result.

One possible realization of the system is a topological
insulator with an s-wave superconductor deposited on its
surface, forming a Josephson junction shaped as in Fig. 1.
The dynamics of the soliton will be largely determined by
the s-wave superconducting layer, while a Majorana zero
mode will be trapped by the soliton on the surface state
of the topological insulator. Furthermore, the charge on
the central island will be varied by means of a capacitive
gate [12].

Discussion. Our central result is the identification of a
relative π/4 phase associated with a Josephson vortex in a
topological Josephson junction encircling an odd versus even
number of vortices. It is useful to compare this result with
the full conformal case which describes the physics with a
vanishing Majorana mass, m = 0. Then, vortex exchange is
captured by a standard fusion rule from conformal field theory
(see, e.g., [20]), σ (z)σ (0) ∼ z−1/8[I + z1/2ψ(z)], where I is
the identity field and ψ and σ are fields of dimensions 1/2 and
1/16, respectively. By identifying the field σ (z) as the vortex
and z = x + iy as its coordinate, this equation reproduces
the presence of a −π/4 phase shift for a rotation of one
vortex around another, z → e2πiz. For the case of an odd
fermionic number, a 3π/4 phase shift would ensue. Instead,
in our case, the nonzero Majorana mass term protects the
anyon properties decided by the bulk topological quantum
field theory, which is a manifestation of Ocneanu rigidity
[26].

Finally, we address the context of this work from ex-
perimental and theoretical perspectives. Trapping a single
Josephson vortex within an annular Josephson junction has
been experimentally achieved [9,27]. It was demonstrated
that the Josephson vortex is able to tunnel through a barrier,
revealing its quantum nature [9]. Interference experiments
of Josephson vortices have been reported [12]. Recently,
Josephson vortices were directly observed with scanning
tunneling spectroscopy, and their local density of states was
deduced [28]. More specifically, in the context of topo-
logical superconductors, quasiparticle poisoning may affect
observables that are sensitive to fermion parity-changing
effects. However, the e/4 shift discussed here remains immune
to a shift by e, and hence so is the residual motion of
the soliton generated by it. Possible realizations of annular
topological Josephson junctions were discussed in [4] us-
ing semiconductor heterostructures or p-wave superconduc-
tors (see, e.g., [29]). Solitons in other scenarios involving
p-wave superconductors and two-band superconductors were
discussed in [30,31]. Other papers touching on the Aharonov-
Casher effect in topological superconductors include [32,33].
The effective action of bulk Abrikosov vortices was considered
in [34].
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der Grant No. 303742, and the Binational Science Foundation
through Grant No. 2014345.
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