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Measuring topological invariants from generalized edge states in polaritonic quasicrystals
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We investigate the topological properties of Fibonacci quasicrystals using cavity polaritons. Composite
structures made of the concatenation of two Fibonacci sequences allow one to investigate generalized edge states
forming in the gaps of the fractal energy spectrum. We employ these generalized edge states to determine the
topological invariants of the quasicrystal. When varying a structural degree of freedom (phason) of the Fibonacci
sequence, the edge states spectrally traverse the gaps, while their spatial symmetry switches: The periodicity of
this spectral and spatial evolution yields direct measurements of the gap topological numbers. The topological
invariants that we determine coincide with those assigned by the gap-labeling theorem, illustrating the direct
connection between the fractal and topological properties of Fibonacci quasicrystals.
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Topology has long been recognized as a powerful tool both
in mathematics and in physics. It allows one to identify families
of structures which cannot be related by continuous deforma-
tions and are characterized by integer numbers called topolog-
ical invariants. A physical example where topological features
are particularly useful is provided by quantum anomalies, i.e.,
classical symmetries broken at the quantum level [1], such
as the chiral anomaly recently observed in condensed matter
[2]. From a general viewpoint, wave or quantum systems
possessing a gapped energy spectrum, such as band insulators,
superconductors, or two-dimensional (2D) conductors in a
magnetic field, can be assigned topological invariants, gener-
ally called Chern numbers [3]. These numbers control a variety
of physical phenomena: For instance, in the integer quantum
Hall effect, they determine the value of the Hall conductance
as a function of magnetic field [4,5]. Such topological features
related to Chern numbers have been explored in crystals [6]
and more recently in various artificial periodic lattices for cold
atoms [7–9], acoustic waves [10], or photons [11–16].

Quasicrystals—nonperiodic structures with long range or-
der [17,18]—are another important class of systems exhibiting
topological effects [19–24]. In particular, the topological edge
states [25–27] of quasicrystals have been recently investigated
in photonic systems [22,28–30] and exploited to implement
topological pumping, a key concept of topology [22]. A
paradigmatic example of a quasicrystal is given by the one-
dimensional (1D) Fibonacci chain. It presents a fractal energy
spectrum which consists of an infinite number of gaps [31]. A
rather surprising and fascinating property is that each of these
gaps can also be assigned a topological number analogous to
the aforementioned Chern numbers [32]: This constitutes the
so-called gap-labeling theorem [33]. These integers can take
N distinct values, N being the number of letters in the chain
[34]. Despite important advances on the topological properties
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of quasicrystals [19–24,28–30], the topological invariants have
not yet been directly measured as winding numbers.

The physical origin of topological numbers in a Fibonacci
quasicrystal can be related to its structural properties [35]. To
understand this, let us introduce a general method to generate
a Fibonacci sequence: It is based on the characteristic function

χj = sgn[cos(2πjσ−1 + φ) − cos(πσ−1)], (1)

proposed in Ref. [36], which takes two possible values ±1,
respectively identified with two letters A and B representing,
e.g., two different values of a potential energy. A Fibonacci
sequence of size N is a word

−→
FN (φ) ≡ [χ1χ2 · · ·χN ] formed by

A and B letters. In Eq. (1), σ = (1 + √
5)/2 is the golden mean

and φ is a structural degree of freedom called a phason, which
can be continuously varied between 0 and 2π . The role of the
phason has been experimentally investigated in the frame of
the Harper tight-binding model [22,28,36]. In the case of the
Fibonacci model, φ allows one to select distinct finite segments
along the infinite chain

−→
F ∞. Sweeping φ over a 2π period

induces a series of N independent local structural changes in
the Fibonacci sequence

−→
FN . Each change corresponds to the

exchange of two letters (AB ↔BA) at a given location of the
sequence [see the vertical arrows in Fig. 1(c)]. Importantly,
for two particular values of φ within a period, the Fibonacci
sequence

−→
FN (φ) becomes palindromic, i.e., it coincides with its

mirror symmetric
←−
FN (φ) = [χNχN−1 · · ·χ1]. In between these

two values, φ drives a π -periodic symmetry cycle along the 1D
structure. When concatenating

−→
FN (φ) with

←−
FN (φ), generalized

edge states appear at the interface of the two mirror sequences,
with properties tightly linked to φ. Since topological invariants
can always be written as winding numbers, it was predicted
[35] that the Fibonacci topological numbers are measurable
by counting how many times the edge states traverse the gap
while scanning the phason degree of freedom.

In this Rapid Communication we present a direct measure-
ment of the topological invariants of a Fibonacci quasicrystal
as spectral winding numbers. As an important consequence,
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FIG. 1. (a) Nominal potential energy corresponding to a laterally
modulated 1D cavity. (b) SEM image of a portion of a 1D cavity
reproducing the Fibonacci sequence (top view). The letters A and B
correspond to two different widths of the cavity. (c) SEM image
showing the full view of three fabricated Fibonacci structures,
corresponding to three different values of the phason φ. Each structure

consists of the concatenation
←−
FN

−→
FN of a Fibonacci sequence

−→
FN

and its mirror symmetric
←−
FN . Vertical white arrows indicate the

position of local changes in the sequence introduced when scanning φ.
(d) Schematics of the experimental setup.

we also relate these invariants to the observed change of spatial
symmetry of generalized edge states, a robust feature largely
insensitive to intrinsic disorder and other imperfections. We
employ cavity polaritons, quasiparticles arising from the
strong coupling between excitons confined in quantum wells
and photons confined in a semiconductor microcavity [37].
This photonic system allows one to emulate a variety of Hamil-
tonians [38–41] and characterize the associated eigenstates
both in the spectral and spatial domain [40]. Here, we harness
these features to emulate generalized edge states forming in
the gaps of the fractal Fibonacci spectrum.

To explore the edge states, we design concatenated struc-
tures

←−
FN

−→
FN made of the juxtaposition of a given Fibonacci

sequence and its mirror symmetric [Fig. 1(c)]. The interface
defines a Fabry-Pérot cavity of zero geometric length but finite
round-trip phase θcav due to the reflexion between

−→
FN and←−

FN (see Supplemental Material [42]). Thus, the edge states
will appear at energies Egap(φ), implicitly determined by the
resonance condition

θcav(Egap,φ) = 2πm, (2)

with m ∈ Z. As detailed in Ref. [35], θcav is periodic in φ with a
period π

|q| , where q is an integer, the topological invariant of the
considered gap. Therefore, the evolution of the energy of the
edge states when increasing φ reflects directly the topological
properties of the gap in which they appear.

To fabricate these structures, we process a planar micro-
cavity (of nominal Q factor 70 000) grown by molecular
beam epitaxy. The cavity consists of a λ/2 Ga0.05Al0.95As
layer surrounded by two Ga0.8Al0.2As/Ga0.05Al0.95As Bragg
mirrors with 28 and 40 pairs in the top and bottom mirrors,
respectively. Twelve GaAs quantum wells of 7 nm width

are inserted in the structure, resulting in a 15 meV Rabi
splitting. Quasi-1D cavities (wires) are realized using electron
beam lithography and dry etching. The lateral width of
these wires is modulated quasiperiodically, as shown in the
scanning electron microscopy (SEM) image of Fig. 1(b). The
modulation consists of two wire sections A and B of same
length a = 1 μm, but different widths wA and wB . The width
modulation induces an effective 1D potential for the longitu-
dinal motion of polaritons [Fig. 1(a)] that follows the desired
Fibonacci sequence. We chose N = 55 letters for the Fi-
bonacci sequences and thus 110 letters for the concatenated
structures. We have fabricated on a single sample the N = 55
concatenated structures corresponding to all possible values of
φ producing a structural change in the sequence. Figure 1(c)
shows a subset of three fabricated structures; the position of the
interface between the mirror sequences

←−
FN and

−→
FN is indicated

by a vertical line. The exciton-photon detuning is of the order
of −20 meV for all experiments.

To study the polariton modes in these quasiperiodic
structures, we perform low temperature (10 K)
microphotoluminescence experiments [see Fig. 1(d)].
Single structures are excited nonresonantly at low power,
using a cw monomode laser at 740 nm. The excitation spot
covers an 80-μm-long region centered on the interface. The
emission is collected with a 0.5 numerical aperture objective
and focused on the entrance slit of a spectrometer coupled to a
CCD camera. Imaging the sample surface or the Fourier plane
of the collection objective allows one to study the polariton
modes either in real or momentum space.

Figure 2 shows the photoluminescence spectrum in real
space [Fig. 2(a)] and momentum space [Fig. 2(b)] of a
Fibonacci structure with φ = 0.6π , wA = 3.5 μm, and wB =
2.2 μm. The energy spectrum shows an alternation of mini-
bands and gaps. The emission in real space allows one
to identify two types of modes in the spectrum: modes
delocalized over the whole structure, and modes localized
at the interface between the

←−
FN and

−→
FN sequences (x = 0).

The delocalized modes form minibands, as can be seen
in the momentum space emission: These modes are bulk
modes forming a fractal energy spectrum characteristic of the
Fibonacci quasicrystal [43]. We can identify the main gaps
of the spectrum by applying the gap-labeling theorem [33],
which predicts k = π

a
(p + qσ−1) for the wave-vector position

of the gaps [44]. Here, p and q are integers, with q being
the gap topological number [33]. From the momentum space
spectrum of Fig. 2(b) we extract [p,q] = [−1,2] for the lower
main energy gap, and [p,q] = [1,−1] for the higher main
energy gap.

In addition to the bulk states, we observe states that are
localized at the interface between

←−
FN and

−→
FN . One of them (at

energy ∼1596.5 meV) lies below the bulk band structure and
is thus topologically trivial [42]. Two other localized states
(encircled) lie within the widest spectral gaps: These are the
expected topological edge states. Their spatial localization
around the interface depends on the contrast of the Fibonacci
quasiperiodic potential. Figure 2(c) shows the spatial profile
[squared modulus of the wave function |ψ(x)|2] of the edge
state of the gap q = +2, measured for a series of structures
of the same A-letter width wA = 3.5 μm, but various B-letter
widths wB . As wB decreases, the potential contrast [amplitude
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FIG. 2. (a), (b) Energy-resolved emission of a Fibonacci structure (a) in real space and (b) in momentum space, for a given value of the
phason (φ = 0.62π ). Edge states are visible in the two lowest main energy gaps, characterized by q = +2 and q = −1. These states are

localized at the interface (x = 0) between the
←−
FN and

−→
FN Fibonacci sequences. (c) Spatial profile of the edge state of gap q = +2 measured

in a series of structures of the same A-letter width wA = 3.5 μm but various B-letter widths wB , yielding different contrasts for the Fibonacci
potential.

of the steps in Fig. 1(a)] increases: This leads to wider spectral
gaps, and thus to a stronger spatial localization of the wave
function.

To explore the topological properties of the Fibonacci
sequences by means of these edge states, we will now monitor
their evolution when varying the phason degree of freedom
φ. We investigate a full set of N = 55 structures with wA =
3.5 μm and wB = 2.4 μm. For each structure, we perform
spectroscopic measurements similar to Figs. 2(a) and 2(b), and
extract the energy of the two edge states with respect to the
lowest bulk energy mode (bottom of the parabola, energy E0).
The results are plotted in Fig. 3(a), where the gap boundaries
are indicated by the horizontal lines. Numerical calculations
based on a scattering matrix approach [35] are presented for
comparison in Fig. 3(c). Note that when φ = 0 or π , no edge
state is observed. Indeed, for these particular values of φ, the−→
FN sequence is palindromic and

←−
FN

−→
FN effectively reduces

to a single Fibonacci sequence of size 2N . Hence there is no
interface cavity and thus no edge state.

As clearly seen in Fig. 3(a), while scanning the phason φ,
the states perform piecewise spectral traverses inside the gaps.
The number and the direction of the traverses yield a direct
determination of the winding number [35],

W = 1

2π

∫ 2π

0

dθcav

dφ
dφ = 1

2π

∫ 2π

0

dδ̃

dφ
dφ = 2q, (3)

where δ̃ ≡ Egap−E−

g

is the relative spectral position of the edge
state within the gap, with 
g being the gap width and E− the
energy of the gap lower boundary [45].

The direction and periodicity of the observed traverse are
different for the two edge states we consider: The lower energy
state traverses upwards four times (winding numberW = +4),
while the higher energy state traverses downwards two times
(W = −2), when φ spans a full period [0,2π ]. This winding
W = 2q of the edge states allows for a direct determination
of the gap topological numbers. We deduce q = +2 for the
lower energy state and q = −1 for the higher energy state.
These values obtained from the winding of the edge states
are fully consistent with those previously determined from

the bulk band structure (gap-labeling theorem), illustrating the
existence of a bulk-edge correspondence in the quasiperiodic
system.

We now show that the topological invariants of the
quasicrystal are not only measurable as winding numbers of
the edge states, but they can also be directly retrieved from
the spatial symmetry of the corresponding wave functions.
Figure 4 (left column) shows the measured profile of the
q = +2 and q = −1 edge states for values of φ taken in
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FIG. 3. (a) Measured energy of the edge states of gaps q = +2
and q = −1 as a function of the phason φ. E0 denotes the energy of the
lowest bulk mode, and the solid lines indicate the gap boundaries. (b)
Corresponding spatial symmetry of the edge states. When scanning φ,
the wave functions evolve from symmetric (S) to antisymmetric (AS)
with respect to the interface (x = 0). (c) Relative spectral position
within the gaps of the two considered edge states, obtained from
scattering matrix calculations. (d) Calculated symmetry of the two
considered edge states.
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FIG. 4. Measured (left) and calculated (right) spatial profile of the
q = +2 and q = −1 edge states for values of φ taken in four different
quadrants: [0,π/2], [π/2,π ], [π,3π/2], and [3π/2,2π ]. The mode
spatial structure switches from symmetric (S) to antisymmetric (AS)
with respect to the interface (x = 0), with a direction and periodicity
yielding a direct measurement of the topological invariants of the
quasicrystal. The blue lines are shifted vertically to improve their
visibility.

four successive quadrants: [0,π/2], [π/2,π ], [π,3π/2], and
[3π/2,2π ]. The states either show a maximum or a minimum
intensity at the interface (x = 0), corresponding to either a
node or an antinode of the wave function. In the frame of
a Fabry-Pérot model [46] we will denote these two cases as
symmetric (S) and antisymmetric (AS), respectively. Because
of experimental imperfections the states are not perfectly S
or AS, but we shall employ this convenient terminology. We
observe that the q = +2 state (red) switches symmetry in
each quadrant, while the q = −1 state (blue) keeps the same
symmetry in the first two quadrants before switching to the
opposite symmetry in the last two quadrants. The symmetry
index (S or AS) is reported in Fig. 3(b) for all values of φ, and
compared to theory in Fig. 3(d). Comparing this behavior to
the spectral features reported in Figs. 3(a)–3(c), we observe
that symmetry flips are exactly synchronized with the spectral
traverse of the states: They occur in between two successive

traverses. Their periodicity thus allows one to determine
the absolute value of the topological numbers. In addition,
we observe that the sign of q is reflected in the direction of
the symmetry flips within a period: The wave function of the
q = −1 state switches from AS to S while that of the q = +2
state switches from S to AS. These experimental observations
can be fully accounted for by a Fabry-Pérot interpretation.
The resonance condition of Eq. (2), besides giving an accurate
prediction for the gap state energies as shown in Figs. 3(a)
and 3(c), also encodes information on the mode symmetry.
Indeed, for a fixed cavity length the occurrence of a node
or antinode at the center is fully determined by the parity of
the integer m. The spatial symmetry of the topological states
thus switches at each spectral traverse [42]. This can be seen
in the right column of Fig. 4, showing the calculated spatial
profile of the two gap states under study, in all four quadrants.
These features demonstrate that, in contrast to previous studies
using normal edges (interface with vacuum) [22,29], the use
of generalized edges yields an additional degree of freedom
(the symmetry index) that can be used to directly measure
the topological invariants of the quasicrystal. This method is
independent from the one based on spectral windings. It should
thus prove useful in other physical platforms where the spectral
degrees of freedom are more difficult to access.

In summary, we have investigated the topological properties
of 1D Fibonacci polaritonic quasicrystals. We image general-
ized edge states forming in the gaps of the fractal energy
spectrum. The behavior of these edge states upon varying
a structural degree of freedom (phason) allows for a direct
determination of the topological invariants of the quasicrystal.
The latter coincide with the bulk invariants assigned by
the gap-labeling theorem, illustrating the direct connection
between the fractal and topological properties of Fibonacci
quasicrystals. This work establishes a method to determine
the topological features of quasicrystals by means of a direct
measurement of winding numbers and of the corresponding
symmetry flips of the wave functions. Taking advantage of
the matter part of polaritons, it could be extended to probe the
interplay of topology and interactions in quasicrystals [47] and
potentially realize strongly correlated topological phases [48].
Furthermore, the building of cavities with topological mirrors
could allow for the investigation of the topological Casimir
effect [49] in a well-controlled platform.
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